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Abstract
Metric-based methods have recently been introduced for model selection and regularization, often
yielding very significant improvements over the alternatives tried (including cross-validation). All
these methods require unlabeled data over which to compare functions and detect gross differences
in behavior away from the training points. We introduce three new extensions of the metric model
selection methods and apply them to feature selection. The first extension takes advantage of the
particular case of time-series data in which the task involves prediction with a horizonh. The idea is
to use att theh unlabeled examples that precedet for model selection. The second extension takes
advantage of the different error distributions of cross-validation and the metric methods: cross-
validation tends to have a larger variance and is unbiased. A hybrid combining the two model
selection methods is rarely beaten by any of the two methods. The third extension deals with the
case when unlabeled data is not available at all, using an estimated input density. Experiments are
described to study these extensions in the context of capacity control and feature subset selection.
Keywords: Metric-based Methods, Model Selection

1. Model Selection and Regularization

Supervised learning algorithms take a finite set of input/output training pairs{(x1,y1), . . . ,
(xm,ym)}, sampled (usually independently) from an unknown joint distributionP(X,Y), and at-
tempt to infer a functiong∈G that minimizes the expected value of the lossL(g(X),Y) (also called
thegeneralization error). In many cases one faces the dilemma that ifG is too “rich”, which often
occurs if the dimension ofX is too large, then the average training set loss (training error) will
be low but the expected loss may be large (overfitting), and vice-versa ifG is not “rich” enough
(underfitting).

In many cases one can define a collection of increasingly complex function classesG0 ⊂ G1 ⊂
·· · ⊂ G (although some methods studied here work as well with a partial order). In this paper we
focus on the case in which the function classes differ by the dimensionality of the inputX. Model
selectionmethods attempt to choose one of these function classes to avoid both overfitting and
underfitting. Variable subset selection is a form of model selection in which one has to select both
the number of input variables and the particular choice of these variables (but note that the two
decisions may be profitably decoupled). One approach to model selection is based oncomplexity
penalization(Vapnik, 1982, 1998, Rissanen, 1986, Foster and George, 1994): one first applies the
learning algorithm to each of the function classes (on the whole training set), yielding a sequence
of hypothesis functionsg0,g1, . . .. Then one of them is chosen based on a criterion that combines
average training loss and a measure of complexity (which usually depends only on the function
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classGi). Ideally the criterion estimates or bounds generalization error (e.g. as with the Structural
Risk Minimization of Vapnik, 1998). Another approach to model selection is based onhold-out
data: one estimates the generalization error by repeatedly training on a subset of the data and
testing on the rest (e.g. using the bootstrap, leave-one-out orK-fold cross-validation). One uses this
generalization error estimator in order to choose the function class that appears to yield the lowest
generalization error. Cross-validation estimators have been found to be very robust and difficult to
beat (they estimate generalization error almost unbiasedly, but possibly with large variance). The
metric-basedmethods introduced by Schuurmans (1997) and Schuurmans and Southey (2002) are
somewhat in-between in that they take advantage of data not used for training in order to introduce
a complexity penalty or a regularization term. These methods take advantage ofunlabeleddata:
the behavior of functions corresponding to different choices of complexity are compared on the
training data and on the unlabeled data, and differences in behavior that would indicate overfitting
are exploited to perform model selection, regularization, or feature selection.

Regularizationmethods are a generalization of complexity penalization methods in which one
looks for a function in the larger classG that minimizes a training criterion that combines both
the average training loss and a penalization for complexity, e.g., minimizing curvature (Poggio and
Girosi, 1990). These approaches are not restricted to a discrete set of complexity classes and may
potentially strike a better compromise between fitting the training data and avoiding overfitting.

An overview of advances in model selection and feature selection methods can be found in a
recent Machine Learning special issue (Bengio and Schuurmans, 2002), and of course in the other
papers of this special issue. This paper proposes new model selection methods and applies them
to feature selection. The application to feature selection is based on forward stepwise selection
to select the feature subsets (among features subsets of a given size) prior to applying the model
selection (to select the number of features, i.e., the size of the subsets), as explained in Section 3.3.1
and in Algorithm 1. Model selection is represented by a functionalS that takes a set of learning
algorithms(A0,A1, . . . ,An) along with a data setD as arguments, and returns an integer indexi∗ ∈
{0, . . . ,n} representing the selected model. In this setting, a “learning algorithm” is represented by a
functionalA that takes a data setD and returns a learned function. For exampleA could correspond
to minimizing an empirical error over a fixed class of functions, whileScould be one of the metric
model selection methods.

This paper proposes extensions of previously-proposed metric-based model selection methods
and applies them to feature selection problems. In Section 3 we present afirst extension that takes
advantage of the particular case of time-series data in which the task involves prediction over a given
horizon. The idea is to use att the unlabeled data that just precedest but cannot be used for training.
Experimental results on feature selection for auto-regressive data are reported in Section 3.3. For
time-series data, a common feature selection problem is that of choosing the appropriatelags of
the input time-series. Even though the series is one-dimensional, time-series prediction is a high-
dimensional learning problem when there are long-term dependencies and one considers all the past
values as potential inputs.

Thesecond extension, presented in Section 4, takes advantage of the different error distributions
between cross-validation and other model selection methods: cross-validation tends to have a larger
variance and is almost unbiased. The idea is to combine the functions selected by both methods.
This “meta” model selection method is rarely beaten by any of the two methods, as shown in the
results of Section 4.1, also with feature selection for auto-regressive data. Thethird extension
(Section 5) allows to apply metric methods when unlabeled data is not available at all. To obtain
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Algorithm 1 Stepwise Feature Subset Selection by Model Selection
Input: data setD, learning algorithmA, model selection algorithmS, loss functionalL, and set of
input featuresF. Write V(A,FN) for the restriction ofA that uses only the inputs features in the
subset ofN input featuresFN. Write Remp(A,D) for the training error when applyingA on D, and
write i∗ = S((A0,A1, . . . ,An),D) the output of a model selection algorithm, which returns theindex
of one of the algorithms in(A0,A1, . . . ,An) based on dataD.

• Let n = |F | the number of input variables.
• Let F0 = {} an initially empty set of features.
• Let A0 = V(A,F0) the algorithm that does not use any input.
• For N = 1 to n

• Let f ∗ = argminf∈F\FN−1
Remp(V(A,FN−1∪{ f}),D), the next best feature.

• Let FN = FN−1∪{ f ∗}, the larger feature subset.
• Let AN = V(A,FN), the corresponding restricted algorithm.

• Let i∗ = S((A0,A1, . . . ,An),D), the selected model index.
Output : the selected subsetFi∗ and the selected modelAi∗ .

unlabeled data, one simply samples from an estimated input density (trained on the input part of
the training data). Model selection experiments are performed on both artificial and real data sets
using a Parzen windows to estimate the input density, and showing results often as good as when
unlabeled data is available.

2. Metric-Based Model Selection and Regularization

Metric-based methods for model selection and regularization are based on the idea that solutions
that overfit are likely to behave very differently on the training points and on other points sampled
from the input densityPX(x). This occurs because the learning algorithm tries to reduce the loss at
the training points (but not necessarily elsewhere since no data is available there), whereas we want
the solution to work well not only on the training points but in general wherePX(x) is not small.
These metric-based methods are all based on the definition of ametric (or pseudo-metric) on the
space of functions, which allows to judge how far two functions are from each other:

d( f ,g) def= ψ(E[L( f (X),g(X))])

where the expectationE[·] is overPX(x) andψ is a normalization function. For example with the
quadratic lossL(u,v) = (u−v)2, the proper normalization function isψ(z) = z1/2. AlthoughPX(x)
is unknown, Schuurmans (1997) proposed to estimated( f ,g) using an averagedU ( f ,g) computed
on anunlabeled set U(i.e., pointsxi sampled fromPX(x) but for which no associatedyi is given).
In what follows we shall usedU ( f ,g) to denote the distance estimated on the unlabeled setU :

dU ( f ,g) def= ψ

(
1
|U | ∑

i∈U

L( f (xi),g(xi))

)
(1)

The metric-based methods proposed by Schuurmans (1997) and Schuurmans and Southey (2002)
are based on comparingdU( f ,g) with the corresponding average distance measured on thetraining
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set T:

dT( f ,g) def= ψ

(
1
|T| ∑i∈T

L( f (xi),g(xi))

)
In addition, the following notation is introduced to compare a function to the “truth” (the conditional
distributionPY|X):

d(g,PY|X) def= ψ(E[L(g(X),Y)])

and on a data setS:

dS(g,PY|X) def= ψ

(
1
|S| ∑i∈S

L(g(xi),yi)

)
.

Schuurmans (1997) first introduced the idea of a metric-based model selection by taking advantage
of possible violations of thetriangle inequality, with theTRI model selection algorithm, which
chooses the last hypothesis functiongl (in a sequenceg0,g1, . . . of increasingly complex functions)
that satisfies thetriangle inequalitydU (gk,gl ) ≤ dT(gk,PY|X) + dT(gl ,PY|X) with every preceding
hypothesisgk, 0≤ k < l . Improved results were described by Schuurmans and Southey (2002) with
a new penalization model selection method, based on similar ideas, calledADJ, which chooses the
hypothesis functiongl which minimizes theadjusted loss

d̂(gl ,PY|X) def= dT(gl ,PY|X)max
k<l

dU (gk,gl )
dT(gk,gl )

.

See Schuurmans and Southey (2002) for more detailed justification and for experiments showing
that these two methods outperform classical model selection procedures (including cross-validation)
on some small artificial data sets (with between 10 and 30 training examples) on which overfitting
can be severe.

This idea of a metric-based method to control overfitting was extended to the regularization
paradigm with theADA algorithm, which in the case of regression is defined by the following
regularized training criterion:

min
g∈G

dT(g,PY|X)max

(
dU(g,φ)
dT(g,φ)

,
dT(g,φ)
dU (g,φ)

)
whereφ is a kind of prior function which can be chosen for example as the constant average of the
yi ’s. Even better results were obtained with this method, and comparisons were performed (Schu-
urmans and Southey, 2002) that show ADA not only to beat in most cases a wide array of model
selection and regularization techniques, but also to often beat the oracle model selection method
(that picksgi that minimizesdU(gi ,PY|X) out of a finite set). This may occur because ADA is a reg-
ularization technique that can thus make a finer trade-off between overfitting and underfitting. Note
however that our experiments suggest that ADA involves an optimization problem which can some-
times be tricky and requires significantly more computation than the other metric model selection
methods.

It is interesting to point out here that the metric model selection methods have something very
important in common with Vicinal Risk Minimization (VRM) (Chapelle et al., 2001). Both seem
to work by penalizing changes in behavior ofg(x) in the vicinity of x, using an estimation ofP(x)
aroundx. VRM can be framed as the minimization of a convolved loss, i.e. expecting thatL(x,y)
is minimized not only at the training example(xi ,yi) but also atx’s in the neighborhood ofxi ,
according to an input density model.
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3. Extension to Time-Series Forecasting

The first extension we consider in this paper is for time-series data, such as economic or financial
data, that may be non-stationary. At timet, it is possible to obtain an information setIt which
includes all measurable observations at timet and prior to timet. It is desired to forecast some aspect
yt+h = y(It+h) of this information set at a future timet + h, using some aspect of the information
available att, xt = y(It). Because of the possible non-stationarity of the data (dependence ont of
Pt(yt+h|xt)), estimating generalization error is often done with thesequential validation technique,
rather than with leave-one-out orK-fold cross-validation. Sequential validation is based on the
analysis of the sequence of losses obtained by sliding a learning algorithmA over the time sequence,
as shown in Algorithm 2.

Algorithm 2 Sequential Validation
Input: data sequences{xt},{yt} (t ranging from 1 toT), learning algorithmA, loss functionalL,
forecast horizonh, step∆t, training window sizewt (often fixed to a constant), and first test pointt0.

For t ranging from t0 to T−h by steps ∆t
Training set: Dt = {(xs,ys+h)}, s∈ [t−wt, t−h−1]
Solution at t is: gt = A(Dt)
Test set: Tt = {(xs,ys+h)}, s∈ [t, t + ∆t−1]

Forecast at s: gt(xs)
Loss at s: ls = L(gt ,(xs,ys+h))

Output: the sequence of losses{lt}, for t ∈ [t0,T−h]

An illustration of the sliding training and test sets is shown in Figure 1.
The most important result of the sequential validation algorithm is the average loss, which can

be compared across several algorithms. The individual losses are useful to estimate confidence
intervals around the average loss or around differences in average loss (see Section 3.3.2).

In the sequential validation algorithm we would in general prefer to choose∆t = 1 but larger
values allow to save computations (in proportion to the value of∆t). The choice of the training
window sizewt depends on the degree of non-stationarity expected (or estimated) from the particular
data sequences. The most common choices arewt = min(w0, t) (a fixed value) andwt = t (use all the
available data). Using sequences shorter thant may be justified when the conditional distribution of
the data changes so much witht that old training pairs to hurt generalization to new cases. Note that
unlesswt is constant the amount of training data may change ast increases, thus usually requiring
an adaptive model selection algorithm.

3.1 Sequential Validation for Model Selection

Two levels of the sequential validation algorithm may be considered. At the topmost level, sequen-
tial validation may be used to estimate and compare the generalization performance of learning
algorithms (including different model selection algorithms). At a lower level, it can be used within
a learning algorithm in order to perform some form of model selection (more details in the experi-
mental section). In particular, at timet, the sequence of past lossesls for s∈ [t0, t −h] for different
algorithms (or solutions obtained with different complexities, or variable subsets) are available to
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...

Dt0

Dt0+∆t

t = 1 t = T

Dtlast

...

Available data

Tt0

Tt0+∆t

Ttlast

Figure 1: Sliding training and test sets that arise in the sequential validation procedure, whereDt denotes a training
set (up to timet), Tt denotes a test set (starting fromt), t0 is the time of the first test point, and∆t is the
increment between iterations. We assume here a training window sizewt of “infinite length”, i.e., which
uses all available past data.

Forecast Horizon
Target to forecast

End of
training set

Available unlabeled observations

Input value

t

Figure 2: A natural source of unlabeled data for time series forecasting with an horizon arises at the end of the training
set.

perform a data-driven model selection. Sequential validation can also be used as a model selec-
tion procedure: the function class associated with the lowest validation error up tot is chosen for
the forecast att. However, in our experiments we generally found that cross-validation (within the
training set) yielded better results for choosing the number of input variables.

3.2 Natural Source of Unlabeled Data

Inspection of the sequential validation algorithm quickly reveals that at timet there areh input
vectorsxs (s∈ [t − h+ 1, t]) which cannot be associated with a corresponding target outputys+h.
The idea of the proposed extension is to use theseunlabeled points to form the unlabeled setU
required in the metric methods (to computedU , as in Equation (1)). This phenomenon is illustrated
in Figure 2.
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It is also interesting to note that this unlabeled set includes in particular the input for the next
test point,xt . This suggests that a method that usesxt for model selection is actually doing a form
of transduction. Vapnik introduced in 1982 (see also Vapnik, 1998) the principle oftransductive
inference, which differs from the usualinductive inferenceprinciple in that the learner chooses a
solution based not only the training set but also on the input values of the test point(s). Here, this is
particularly true when the sequential validation step∆t is chosen equal to 1 (which is however more
computationally costly); otherwise, only one out of∆t of the test points would be inU .

Why would it be useful to use the metric model selection methods with the future test points
as unlabeled data? The intuition is simply that these are the data points that we care about: this is
where we most want to reject functions that “misbehave”.

3.3 Time-Series Transduction Experiments

3.3.1 EXPERIMENTAL SETUP

To verify the potential of metric model selection methods in time-series forecasting applications,
we performed feature-selection experiments using artificially-generated data in a controlled setting.
Our goal is to compare model selection algorithms (in this case the metric method ADJ against
cross-validation) on the set of progressively more complex models that arise in forward (stepwise)
feature selection.

Data Generation The artificial data series are generated from the class of linear autoregressive
AR(K) models, where given a fixed coefficients vectorα ≡ (α0, . . . ,αK)′ and initial conditions
y−1,y−2, . . . ,y−K , we have the process

yt = α0 +
K

∑
k=1

αkyt−k + εt, t ≥ 0

with εt ∼ N (0,σ2) i.i.d. Gaussian noise.1

To simplify matters and ease analysis, we restrict the generating models to the specific form
yt = α+ αyt−K + εt, where in our experimentsK = 1,2,3.

Task Description We seek to forecast the series{yt} at horizonh, given the realizations of the
pastK̃ series values (we do not impose thatK̃ be equal to the orderK of the generating process).
One typically considers apoint forecast, or in other words, at a given timet and given the values
of {yt ,yt−1, . . . ,yt−K̃+1}, one seeks an estimator ofE[yt+h|It ]. However, in our experiments, we
shall consider an “integrated” forecast, consisting of the sum of the series values over the horizon,
yt+1 +yt+2 + · · ·+yt+h. We shall then seek an estimator of

E[yt+1+yt+2 + · · ·+yt+h|It ].

In many applications this type of forecast can be interpreted more naturally in terms of the underly-
ing problem variables; for instance, given a financial series of (log) returns, the integrated forecast
corresponds to the estimated total portfolio (log) return over the horizon. Obviously, at horizon
h = 1, the integrated forecast is equivalent to the point forecast.

1. We also performed experiments withεt ∼ t(5), to evaluate the performance in the presence of an “uglier” fat-tailed
distribution; see the results in Section 4.1.
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We shall consider the class ofAR(K̃) models to make this forecast. This is equivalent to esti-
mating the coefficientŝβ ≡ (β̂0, . . . , β̂K̃)′ corresponding to the model

h

∑
j=1

yt+ j = β0 +
K̃

∑
k=1

βkyt−k+1 + εt ,

whereεt is i.i.d. Gaussian noise.
The estimation of̂β, for a fixedK̃, is easily performed analytically using the ridge estimator

β̂∗ = (X′X + λI)−1X′Y, whereX is the matrix of regressors,Y is the (column-) vector of targets,
andI is the identity matrix.2 This estimator implicitly uses a squared-error loss function, which is
appropriate for our task of estimating a conditional expectation.

Feature Selection The role of feature selection here (see Algorithm 1) is to decide whichαk are
significant and should be included in the regression. To this end, we use a standard forward stepwise
selection algorithm, in which the individual features are the lagged series values,yt−k,k= 0, . . . , K̃−
1. Forward selection proceeds incrementally, starting from the mean (the lowest-complexity model
that we are willing to consider), and at each step adds the feature that minimizes the training error.
At a given time stept, we have the following sequence of models produced by the algorithm,

{g(0)
t ,g(1)

t , . . . ,g(K̃)
t },

whereg(k)
t is the estimated regression model containing thek “best” features according to forward

selection (which are not necessarily the firstk lagged series values). The modelg(0)
t is simply the

mean on the current training set (obtained fromIt).
We observe that this sequence of models forms a total order with respect to complexity, and

is thenceamenable to selection by metric methods. We exploit this crucial property, which arises
naturally from the nature of the forward selection algorithm, in the experiments.

Experimental Plan The experiments measure the relative ability of 10-fold cross-validation ver-
sus metric model selection (in this case, ADJ) to select among the sequence of models produced
by stepwise selection. We compare the methods across a whole spectrum of parameters, i.e., all
permutations of:

• Forecasting horizonh = {1,2,5,10,15}
• Generating modelARorderK = {1,2,3}
• Generating model coefficient magnitudeα = {0.1,0.3,0.5,0.7,0.9}. This coefficient controls

the seriessignal-to-noise ratio; α = 0.1 yields series very close to white noise, whereas series
with α = 0.9 exhibit much more structure.

Each triplet〈horizon,AR order,magnitude〉 is henceforth called anexperiment.
We fix the maximum model order̃K = 10, and a constant training window sizewt = 75= t0,

making this a challenging task. The sequential validation increment is∆t = 10, and the total length
of each generated series is 1000 observations. In addition, each “basis” modelg(k)

t is estimated with
a small ridge penaltyλ = 10−

1
4 . (This hyperparameter was not tuned extensively, but empirically

produced quite reasonable results.)

2. In our procedure, we do not penalize the mean estimatorβ̂0; hence, the mean is estimated without bias.
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3.3.2 STATISTICAL METHODOLOGY

We compare the performance of two models on a given experiment by a usual pairedt-test on their
mean-squared error difference. However, the results of individual experiments (e.g. across different
horizons) cannot be pooled arbitrarily, since the expected error distribution is quite different across
experiments. For instance, weexpect a priorithe MSE to be higher when forecasting across a longer
horizon, given a stationary underlying generating process.

To perform a valid statistical test of the performance difference between methodsacross exper-
iments, it is necessary to normalize the distribution of paired differenceswithin each experimentto
have unit standard deviation, before pooling the observations across experiments, and then perform-
ing the statistical test.

More specifically, suppose we performM experiments, each one withNj test points. Letej
i , j =

1, . . . ,M, i = 1, . . . ,Nj be the squared errordifferencesbetween two methods we wish to compare
(e.g. cross-validation against ADJ in our case). The first step is to normalize the distribution of error
differences to unit standard deviation,

ẽj
i =

ej
i√

σ̂2(ej)
,

where the variance estimatorσ̂2(ej) is described below. Then we compute the overall mean differ-
enceēand standard error̂σē as

ē=
∑M

j=1 ∑Nj

i=1 ẽj
i

∑M
j=1Nj

, σ̂ē =
1√

∑M
j=1Nj

.

Throughout this section, the so-obtained mean difference ¯e is termednormalized MSE difference.

Estimation of σ(ej) The question left open is the estimation of the standard deviation of the error-
difference distribution within a single experiment. The usual estimator cannot be used here for it
rests upon an i.i.d. assumption, whereas the series we consider exhibit mild to strong autocorrelation
patterns. This autocorrelation is induced, on the one hand, by the problem structure, and on the other
hand by the sequential validation testing procedure.3

To properly estimate the variance, we use the Newey–West estimator well-known to econo-
metricians (Newey and West, 1987, Diebold and Mariano, 1995, Campbell et al., 1997), which in
addition to being consistent, has the desirable property of being robust at small sample sizes,4

σ̂2(ej) = γ̂ j
0 +2

q

∑
k=1

q−k
q

γ̂ j
k,

whereq is the maximum lag length to be considered,5 andγ̂ j
k is the empirical lag-k autocovariance,

γ̂ j
k =

1
Nj −k

Nj−k

∑
i=1

(ej
i − ēj)(ej

i+k− ēj),

with ēj the sample mean.

3. Since successive training sets in sequential validation tend to highly overlap, the trained models are generally very
correlated—especially at small step sizes∆t—thence inducing correlation in the error structure.

4. It guarantees the positive-definiteness of the estimated covariance matrix in the multivariate case.
5. This must scale with the sample size for the estimator to be consistent, but not too rapidly.
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3.3.3 EXPERIMENTAL RESULTS
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Figure 3: Left: Normalized MSE difference between the models chosen by cross-validation and ADJ, as a func-
tion of the magnitude of the AR coefficients (across all forecast horizons and generating model order).
The error bars represent 95% confidence intervals on the mean difference (normalized as explained in the
text). Right: Same measure, as a function of the forecast horizon; we note that even withextremely few
unlabeled observations (one or two), ADJ does not lose catastrophically against cross-validation, which is
very surprising; the two methods become essentially equivalent for longer horizons.

Figure 3 presents a summary of the experiments described above, comparing cross-validation
against ADJ. The left plot outlines the effect of the series signal-to-noise (SNR) ratio (for which
the generating model AR coefficient magnitude are a proxy) on performance. At very low SNR,
the series being essentially white noise, both methods perform about equally poorly—worse, in
fact, than a naive constant model (not shown on the figure). At the other end of the spectrum, at
high coefficient values, cross-validation performs, overall, significantly better than ADJ. However,
the opposite picture emerges at small but significant coefficient values, where ADJ significantly
beats cross-validation. We conjecture that at these moderate SNR levels, the intrinsic variance of
the choice made by cross-validation causes costly mistakes, whereas a less-variable (albeit biased)
method such as ADJ can pick out important structures without being swamped by the noise level.

The right plot in Figure 3 is, in some ways, more surprising: first, there is a steady improvement
in the average performance of ADJ with respect to cross-validation as the forecast horizon increases,
because of the increase in the number of unlabeled observations that ADJ can use to make its choice.
But the unexpected outcome is, relatively speaking,how well ADJ performs given extremely few
unlabeled observations(one or two); recall that these observations are used to form a Monte Carlo
approximator of an expectation (c.f. Equation 1), and that so few observations are sufficient to make
a reasonable model selection choice in this context strikes us as a surprise.

Moreover, we can count the number of experiments for which each method beats the other at
a statistical significance level greater than 95%; a kind of model selection tournament. The results
comparing ADJ to cross validation are shown in Table 1. The hypothesis about the behavior of each
method at a given series SNR finds more confirmation; a further surprise emerges from the horizon
data (Figure 3, right), where we find that ADJ sometimessignificantly beatscross-validation even
at very small forecast horizon (i.e., using extremely few unlabeled points). The two methods become
indistinguishable at longer horizons.
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XV Wins ADJ Wins Total Experiments

Overall 17 7 75

AR Coeff = 0.01 15

AR Coeff = 0.03 7 15

AR Coeff = 0.05 1 15

AR Coeff = 0.07 6 15

AR Coeff = 0.09 10 15

Horizon = 1 7 1 15

Horizon = 2 6 1 15

Horizon = 5 3 3 15

Horizon = 10 1 2 15

Horizon = 15 15

Table 1: “Tournament” results comparing cross-validation against ADJ for individual experiments. A “win” indicates
that the corresponding method beats the other at a statistical significance level of at least 95% (p≤ 0.05) on
the MSE criterion. A blank stands for zero. The results corroborate those of Figure 3.

4. “Meta” Model Selection

The motivation for this other extension to the metric model selection methods follows from several
years of working with various model selection methods and frustratingly comparing them against
cross-validation. Cross-validation does not always work but it almost always performs quite well.
However, it tends to have higher variance (in the sense of larger variations in error) than complexity
penalization methods. We also know that it is almost unbiased (it is unbiased for training with a bit
less examples than what is actually available).6 Since it is usually almost as good (and often better)
than these complexity penalization methods (including the metric methods), it must mean that these
other methods must have smaller variance (and none of them is guaranteed to be unbiased, so they
are likely to be biased). Can we take advantage of this situation, whereby one method is more biased
but has less variance than the other?

In this paper we have just begun to explore this opportunity. Let us callgxv the solution obtained
by cross-validation andgp the solution obtained by some form of complexity penalization, for a
particular training set. A simple-minded combination algorithm is the following: if, for a given test
point x, the absolute difference|gxv(x)−gp(x)| is “large”, then trustgp, else trustgxv. The intuition
for this heuristic rule is that a large difference in function value more likely indicates that the cross-
validatory choice is wrong, owing to its large variance. This leaves open the question of choosing
the proper threshold. A more sophisticated (and better grounded) algorithm for the squared loss,
which we have tested in the experiments is shown in Algorithm 3. We also test a trivial combination
algorithm, which takes the simple average of the predictiongxv(x) and the predictiongp(x).

Algorithm 3 is based on the idea of the logistic regression: it assigns a weightws(β) to the
cross-validation model (and 1−ws(β) to the ADJ model) based on a quadratic function of the
differencegxv(x)−gp(x);7 the use of the sigmoid ensures that the weights are always between 0 and

6. We are talking about the bias of an estimator of generalization error. However, for most model selection methods, the
only bias we care about is not in the value of the estimator but only of how it ranks different hypotheses.

7. The choice of this functional form is somewhat arbitrary, but yields empirically good results.
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Algorithm 3 Logistic Meta Model Selection

Input at t: the sequence of solutionsgxv
s andgp

s , respectively for the cross-validation and complexity
penalization selected models, and the data sequence{(xs,ys)} for s≤ t.

1. Let ds := gxv
s (xs)−gp

s(xs)

2. Let ws(β) := 1/(1+exp(−(β0 + β1ds+ β2d2
s)))

3. Let C(β) := ∑s≤t−h(ws(β)gxv
s +(1−ws(β))gp

s −ys+h)2

4. Let β∗ := argminβC(β)

Output at t: the solutiongt := wt(β)gxv
t +(1−wt(β))gp

t .

1. Contrarily to traditional logistic regression, the coefficient vectorβ for the weights is obtained
by directly optimizing a squared-loss criterion, estimated from thepast test observations(i.e., those
for s≤ t, available without cheating from the sequential validation procedure).

Like Boosting (Freund and Schapire, 1996) and other model combination algorithms, the lo-
gistic combination algorithm combines multiple predictors, and it does so in a way that gives more
weight to the best predictor. However, the weight changes from example to example, as a learned
function of the difference between the two predictors.

4.1 Meta Model Selection Experiments

The same experimental setup as described in Section 3.3.1 was used to compare the logistic com-
bination rule against cross-validation alone and ADJ alone. “Tournament” results are shown in
Table 2. The most significant observation is that the logistic combinationalmost always performs
better than either method taken alone. As the table shows, across all experiments, the logistic
combination loses only once to cross-validation and ADJ, whereas it wins more frequently against
them.

Table 3 shows “tournament” results against cross-validation in the same experimental setting
as described above (each tournament made up of the 75 experiments), in various conditions, with
m= 75 being the size of the training set andN is the number of features:

• Varying the combination algorithm . We tried both the logistic combination (Algorithm 3)
and an equal-weight combination (simple average) between the two model choices; i.e., in
the notation of Algorithm 3, the simple average combination isgt := 1

2gxv
t + 1

2gp
t .

• Varying the metric model selection method. We tried both ADJ and theSmallest Eigenvalue
Bound(SEB) criterion (Chapelle et al., 2002):

dT(g,PY|X)
(
1− N

m

)−1(
1+ N

mk

)
with k = (1−

√
N(ln 2m

N +1)+4
m )+.

• Process innovationsεt either following a normalN (0,1) distribution or a fat-tailed Student
t(5) distribution.

These results suggest a few interesting conclusions: 1) The simple average combination per-
forms surprisingly well (even better, in most cases, than the logistic combination), and is quite easier
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Logis Wins XV Wins Logis Wins ADJ Wins Total Exp.

Overall 6 1 15 1 75

AR Coeff = 0.01 1 15

AR Coeff = 0.03 6 15

AR Coeff = 0.05 1 3 1 15

AR Coeff = 0.07 3 15

AR Coeff = 0.09 8 15

Horizon = 1 1 7 15

Horizon = 2 1 6 15

Horizon = 5 3 1 2 15

Horizon = 10 1 15

Horizon = 15 1 15

Table 2: “Tournament” results comparing the logistic combination against, respectively cross-validation alone and
ADJ alone, for individual experiments. A “win” indicates that the corresponding method beats the other at a
statistical significance level of at least 95% (p≤ 0.05) on the MSE criterion. A blank stands for zero.

ADJ SEB

N (0,1) t(5) N (0,1) t(5)

Logistic combination 6/1 3/3 12/6 15/6
Simple average 15/7 11/7 28/4 35/3

Table 3: Number of times that each algorithmbeats/is beaten by cross-validation, under both a normal and at
distribution, in a total of 75 experiments (described in the text). “Beating”, as in the previous tournament
results, is to exhibit a statistically significantly better performance (p < 0.05 level).

to implement. 2) With ADJ, the logistic combination appears more robust (loses less often to cross-
validation alone). 3) The combination of SEB and cross-validation performs very well, better than
the combination of ADJ and cross-validation; we conjecture that SEB has an even smaller variance
than ADJ (albeit with a possibly worse bias), and this should be the basis of future investigations.

Finally, Figure 4 illustrates typical cases of the weight attributed to the cross-validation model
resulting from the logistic combination (as a function ofgxv− gp). (The alternative ADJ-selected
model gets the opposite weight). It is consistent with the intuition outlined above: in case of “small”
differences (but with a bias empirically estimated from the data) betweengxv andgp, choose cross-
validation, otherwise choose ADJ. It should be noted in passing that the steepness of the transition in
the weights depends in large part on the “aggressiveness” of the numerical optimization performed
on the parameters; when pushing the optimization to its limit, one usually ends up with very large
weights that yield an abrupt transition, an effect that is not quite desirable from the viewpoint of
numerical stability.
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Figure 4: Examples of the weightws(β) given to the cross-validation model (c.f. Algorithm 3), obtained by the
logistic regression, as a function of the differencegxv−gp evaluated at the test point.

5. Proposed Extension when No Unlabeled Data is Available

The final extension to TRI, ADJ and ADA applies to the case whereno unlabeled data is available,
which occurs in many applications. The basic idea is to approximate the expected value ofd( f ,g)
using amodel of the input densityrather than with an average over unlabeled data,

d̃( f ,g) def= ψ
(∫

P̂X(x)L( f (x),g(x))dx

)
,

whereP̂X(x) is the model of the input density. In practice this integral may be difficult to compute
analytically so we used a simple Monte-Carlo procedure based on sampling from the density model
P̂X. This model may be derived from the training set input points(x1, . . . ,xm) and/or prior knowledge
about the input density. In our experiments we have used a Parzen windows density estimator (that
only relies on the data),

P̂X(x) def=
1
m∑

i

e−0.5||xi−x||2/σ2

(2π)n/2σn
,

wherex ∈ R n. Such a model leaves the smoothing parameter to be chosen. Many methods have
been proposed for setting the smoothing parameter of such non-parametric density estimators. In our
experiments we have experimented with the effect of varyingσ and we have used an asymptotically
motivated estimator (Scott, 1992):

σ =
1.144

√
V̂ar[X]

m1/5
, (2)

whereV̂ar[X] denotes sample variance of the inputs on the training set.

5.1 Extension of Theoretical Results

Schuurmans and Southey (2002) proved several attractive theoretical results concerning the general-
ization performance of TRI, ADJ and ADA. Almost identical results can be proved for the extended
algorithms that use an estimated input densityP̂X(x), with the following change: instead of char-
acterizing the true generalization error (i.e., averaging the error over the true input densityPX(x)),
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those results characterize the generalization error measured with respect to the estimated input den-
sity P̂X(x). The main theoretical results are briefly recalled here. Let us call xTRI, xADJ, and xADA
the extended methods usingP̂X(x).

Proposition 1 Let gm = argmingi
d̃(gi ,PY|X), and letgl be the hypothesis selected by xTRI. If

m≤ l anddT(gm,PY|X)≤ d̃(gm,PY|X) thend̃(gl ,PY|X)≤ 3d̃(gm,PY|X).
The above tells us when xTRI cannot overfit too much.
Proposition 2 Let gm = argmingi

d̃(gi ,PY|X), and letgl be the hypothesis selected by xADJ. If

m≤ l andd̂(gm,PY|X)≤ d̃(gm,PY|X)) thend̃(gl ,PY|X)≤ (2+ dT (gm,PY|X)
dT (gl ,PY|X) )d̃(gm,PY|X).

The above tells us when xADJ cannot overfit too much.
Proposition 3 Consider a hypothesisgm, and assume thatdT(gl ,PY|X) ≤ d̃(gl ,PY|X) for l ≤

m, and dT(gl ,PY|X) ≤ d̂(gl ,PY|X) for l ≤ m. Then if d̃(gm,PY|X) ≤ 1
3

dT (gl ,PY|X)2

d̃(gl ,PY|X) for l < m (i.e.,

d̃(gm,PY|X) is sufficiently small) it follows thatd̂(gm,PY|X) < d̂(gl ,PY|X) for l < m and therefore
xADJ will not choose any predecessor in lieu ofgm.

The above tells us when xADJ cannot underfit too much. See Schuurmans and Southey (2002)
for proofs of equivalent results for the original methods, and detailed discussions. The same au-
thors observe that the conditions required for these propositions to hold are not always satisfied in
practice.

5.2 Experimental Results

5.2.1 ARTIFICIAL DATA RESULTS

To ascertain the validity of the proposed extensions, we first performed experiments on artificial
data, keeping the same overall framework as Schuurmans and Southey (2002). We tested the meth-
ods on data generated from the four following functions:

f1(x) = 1x≥0.5 f3(x) = sin2(2πx)
f2(x) = sin(1/x) f4(x) = 32x−275x2 +777x3−892x4 +358x5

Our class of nested models is the set of polynomials of fixed order,

g(x;β) =
m

∑
j=0

β j x
j ,

where the ordermdepends on the size of the training set (described below). The models are trained
to minimize a squared error criterion with weight decay; the members of the class vary according to
the value of the weight-decay coefficientλ (a higherλ implies a reduced capacity). We restrictedλ
to the set{10i : i = −5,−4.5,−4, . . . ,2}, which was found to be adequate. The optimal parameter
vectorβ̂∗ is given by the well-knownridge estimator, β̂∗ = (X′X +λI)−1X′Y, whereX is the matrix
of regressors,Y is the (column-) vector of targets, andI is the identity matrix.

The artificial data sets are generated from the functionsf1, . . . , f4. The input densityPX(x) is
chosen as either uniform on the[0,1] interval (U(0,1)), or normal with mean1

2 and variance1
12

(N (1
2, 1

12), chosen to have the same mean and variance as theU(0,1) distribution). Additive noise
with a distributionN (0,0.0025) is added in every case.

Like Schuurmans and Southey (2002), we consider training sets of sizes{10,20,30}. The size
of the unlabeled sets generated fromPX(x) (for TRI, ADJ, and ADA) is fixed to 200. The same

1223



BENGIO AND CHAPADOS

15 20 25 30
Train size

- 3

- 2

- 1

MSE Log- Ratio Target function: f3

15 20 25 30
Train size

- 1.25

- 1

- 0.75

- 0.5

- 0.25

0.25

MSE Log- Ratio Target function: f4

15 20 25 30
Train size

- 3

- 2

- 1

1

2

MSE Log- Ratio Target function: f1

15 20 25 30
Train size

- 3

- 2

- 1

MSE Log- Ratio Target function: f2

Figure 5: Comparison between Parzen-generated unlabeled data and “true” unlabeled data, for xTRI/TRI (dotted line),
xADJ/ADJ (dashed line), and xADA/ADA (solid line). Each point is the median test MSE log-ratio of 50
repetitions, with random training, unlabeled and test sets; the error bars represent 1 standard error on the
median, computed by bootstrap resampling. The input distribution isN ( 1

2 , 1
12). Surprisingly, the Parzen-

generated data sometimes performssignificantly better (negative log-ratio) than unlabeled data from “true”
PX(x), and never significantly worse.

number of unlabeled examples are sampled from the Parzen estimator for xTRI, xADJ, and xADA.
Finally, a single test set of size 5000 is generated to evaluate performance.

Figure 5 compares each method against 10-fold cross-validation. We observe that the proposed
methods compare favorably to the originals, sometimes beating them at a statistical significance
level above 95%.

Figure 6 shows the effect of the Parzen estimator bandwidthσ. Panel (a) shows the sensitivity
of the median MSE of the three algorithms toσ; xADA is the least sensitive to the choice ofσ.
Panel (b) shows the sensitivity of the log-norm of the parameters (i.e., reflecting the complexity of
the solution) with respect toσ. In most cases, as we expected, a higherσ yields simpler solutions.
However, unexpectedly, we find in one case that largerσ yields larger parameters (for xADA).

5.2.2 RESULTS ON THEBOSTON HOUSING DATASET

We also performed a series of experiments involving a combination offeature selectionalong with
model selection on a non-artificial regression task (Boston Housing) from the UCI Machine Learn-
ing Repository. We used for this purpose an RBF network regularized with weight decay, with one
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Figure 6: Effect of Parzen estimator window width for xTRI (dotted line), xADJ (dashed line), and xADA (solid
line). Panel (a)shows the median MSE performance; we observe that xTRI is very sensitive to the window
width, xADJ less to, and that xADA is nearly insensitive to it.Panel (b) shows the log-norm of the
parameters of the trained models; we note that the window width has a clear regularization effect for xTRI
and xADJ. In both cases, the window width is given as a multiplicative factor applied to Equation(2).
All results are computed for function f1 under aU(0,1) input distribution, 50 repetitions. The error bars
represent 1 standard error on the median and the mean respectively.

RBF per training example:

g(z;σ) =
m

∑
i=1

wi exp

(
−‖z−xi‖2

2σ2

)
,

where{xi}m
i=1 are the training set inputs, andσ is the RBF window width.8 For a given weight

decayλ, an analytical solution for thewi that minimizes the squared error criterion is easily obtained
(similar to the ridge estimator presented in Section 5.2.1).

We used a standard forward stepwise feature selection procedure (as described in algorithm 1
and Section 3.3.1) to obtain anested familyof models of increasing complexity. We then use a model
selection algorithm to select the best-performing model among this family. Table 4 compares the
performance of cross-validation (XVT), ADJ, and xADJ on the Boston dataset (506 observations
with no missing values, 18 features, 1 continuous target). The difficulty of the model selection
problem is controlled by the maximum allowed number of features; we compared the performance
allowing a maximum of 5, 10, and 18 features.

The results indicate that both cross-validation and xADJ perform, on average, significantly bet-
ter than plain ADJ. This is surprising, since the latter has access to more information (303 unlabeled

8. Not to be confused with the window width of the Parzen distribution used to sample unlabeled examples!
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Max. Num. MSE XVT MSE ADJ MSE xADJ

Var. Reps (std err) (std err) (std err) pXVT−ADJ pXVT−xADJ pADJ−xADJ

5 100 0.000204 0.000229 0.000210 0.001 ? 0.264 0.007 ?

(0.000013) (0.000013) (0.000013)

10 50 0.000190 0.000238 0.000202 0.003 ? 0.211 0.004 ?

(0.000019) (0.000022) (0.000019)

18 40 0.000158 0.000191 0.000173 0.023 ? 0.131 0.028 ?

(0.000017) (0.000021) (0.000019)

Table 4: Comparing cross-validation (XVT), ADJ, and xADJ on the UCI Boston Housing dataset. The table reports
the average Test MSE and standard errors, within the Forward Feature Selection setting described in the
text. Max. Var. is the maximum number of features allowed in the forward selection procedure. To obtain
standard errors, random (nonoverlapping) training (size=101), unlabeled (size=303), and test (size=102) sets
are drawn,Num. Rep. times (which differs depending onMax. Var. for computation time reasons). The
three rightmost columns give thep-values that the paired MSE difference between the indicated algorithms
is zero, under the appropriatet-distribution. We note that plain ADJ is always significantly worse than either
XVT and xADJ, and no significant difference is found between the latter two. The underlying Boston dataset
contains 506 observations with no missing values. The learning algorithm is an RBF network with constant
weight decay=10−2, gaussian window width=1, and one RBF per training point.

observations from the “true” distribution). Furthermore, xADJ never performs significantly worse
than cross-validation. In all cases, 300 unlabeled observations were generated from the Parzen
distribution for xADJ. The differences between ADJ and xADJ could just be due a statistical fluc-
tuation occuring with the particular data used in the experiments. However, since we do not fully
understand the nature of the generalization improvement brought by ADJ and xADJ there could
also be another explanation, which future work should investigate.

6. Conclusions

We have presented three new model and feature selection methods, with the goals of improving and
extending the applicability of metric-based methods.

A first surprising result is that ADJ can work with time-series data (and not be beaten by cross-
validation in the majority of cases) in a transductive fashion while using only as few as 1 to 10
unlabeled examples (whereas one would have expected that with so few examples the complexity
correction computed by ADJ would be very unreliable).

A second surprising result is that using non-parametric density estimators, ADJ can be succes-
fully applied even when an independent source of unlabeled data is not available.

Finally, a third and exciting result is the benefit gained by combining the models chosen by
cross-validation and another model selection method with lower variance, such as ADJ and SEB. We
conjecture that the significant improvements that we have observed are attributable to the different
error profiles of the respective methods. This should be explored more deeply in future work. A
theoretical analysis of the first two results also poses challenges for future investigations.
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