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Abstract

R-max is a very simple model-based reinforcement learning algorithm which can attain
near-optimal average reward in polynomial time. In R-max, the agent always maintains a
complete, but possibly inaccurate model of its environment and acts based on the optimal
policy derived from this model. The model is initialized in an optimistic fashion: all actions
in all states return the maximal possible reward (hence the name). During execution, it is
updated based on the agent’s observations. R-max improves upon several previous algo-
rithms: (1) It is simpler and more general than Kearns and Singh’s E3 algorithm, covering
zero-sum stochastic games. (2) It has a built-in mechanism for resolving the exploration vs.
exploitation dilemma. (3) It formally justifies the “optimism under uncertainty” bias used
in many RL algorithms. (4) It is simpler, more general, and more efficient than Brafman
and Tennenholtz’s LSG algorithm for learning in single controller stochastic games. (5) It
generalizes the algorithm by Monderer and Tennenholtz for learning in repeated games. (6)
It is the only algorithm for learning in repeated games, to date, which is provably efficient,
considerably improving and simplifying previous algorithms by Banos and by Megiddo.
Keywords: Reinforcement Learning, Learning in Games, Stochastic Games, Markov
Decision Processes, Provably Efficient Learning

1. Introduction

Reinforcement learning has attracted the attention of researchers in AI and related fields
for quite some time. Many reinforcement learning algorithms exist and for some of them
convergence rates are known. However, Kearns and Singh’s E3 algorithm (Kearns and
Singh, 1998) was the first provably near-optimal polynomial time algorithm for learning
in Markov decision processes (MDPs). E3 was extended later to handle single controller
stochastic games (SCSGs) (Brafman and Tennenholtz, 2000) as well as structured MDPs
(Kearns and Koller, 1999). In E3 the agent learns by updating a model of its environment
using statistics it collects. This learning process continues as long as it can be done relatively
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efficiently. Once this is no longer the case, the agent uses its learned model to compute
an optimal policy and follows it. The success of this approach rests on two important
properties: the agent can determine online whether an efficient learning policy exists, and
if such a policy does not exist, it is guaranteed that the optimal policy with respect to the
learned model will be approximately optimal with respect to the real world.

The difficulty in generalizing E3 to adverserial contexts, i.e., to different classes of games,
stems from the adversary’s ability to influence the probability of reaching different states.
In a game, the agent does not control its adversary’s choices, nor can it predict them with
any accuracy. Therefore, it has difficulty predicting the outcome of its actions and whether
or not they will lead to new information. Consequently, we believe that a straightforward
generalization of E3 to stochastic games is unlikely to be feasible – it would imply that at
each point during the learning process, the agent can either choose an exploration policy
or an exploitation policy. We believe that there are situations in which the agent cannot
force this choice on its opponent.1 In particular, during the earlier stages of the learning
process when the agent is biased towards exploration, the adversary may be able to prevent
learning from taking place by choosing its behavior appropriately.

To overcome this problem, we propose a different approach in which the choice between
exploration and exploitation is implicit. Our agent will always attempt to optimize its
behavior, albeit with respect to a fictitious model. Roughly speaking, this model assumes
that the reward the agent obtains in any situation it is not too familiar with is its maximal
possible reward, denoted by Rmax. Often, optimal behavior with respect to this fictitious
model results in exploration with respect to the real model, and thus, to learning. The
major insight behind the R-max algorithm is that the optimal policy with respect to the
agent’s fictitious model has a very interesting and useful property with respect to the real
model: it is always either optimal or it leads to efficient learning. In many situations, the
agent will not know ahead of time whether its behavior will lead to optimizing behavior
with respect to the real model or to learning – this depends on how the adversary will act.
However, it knows that it will either optimize or learn efficiently.

Since there is only a polynomial number of parameters to learn, as long as learning is
done efficiently we can ensure that the agent spends a polynomial number of steps exploring,
and the rest of the time will be spent exploiting. Thus, the resulting algorithm may be said
to use an implicit explore or exploit approach, as opposed to Kearns and Singh’s explicit
explore or exploit approach.

This learning algorithm, which we call R-max, is very simple to understand and to
implement. The algorithm converges in polynomial-time to a near-optimal solution. More-
over, R-max is described in the context of zero-sum stochastic games, a model that is more
general than Markov Decision Processes. As a consequence, R-max is more general and
more efficient than a number of previous results. It generalizes the results of Kearns and
Singh (1998) to adverserial contexts and to situations where the agent considers a stochas-
tic model of the environment inappropriate, opting for a non-deterministic model instead.
R-max can handle more classes of stochastic games than the LSG algorithm (Brafman and
Tennenholtz, 2000). In addition, it attains a higher expected average reward than LSG.

1. Of course, the agent always has a perfect exploitation policy at its disposal – the optimal one – but it
has no way of knowing it.
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We note that, like these other algorithms, R-max is polynomial in the size of the explicit
state-space model. (The details of the complexity parameters are discussed later.)

R-max also improves upon previous algorithms for learning in repeated games (Au-
mann and Maschler, 1995), such as those by Megiddo (1980) and Banos (1968). It is the
only polynomial time algorithm for this class of games that we know of. It is also much
simpler than these previous algorithms. Finally, R-max generalizes the results of Monderer
and Tennenholtz (1997) to handle the general probabilistic maximin (safety level) decision
criterion.

The approach taken by R-max is not new. It has been referred to as the optimism in
the face of uncertainty heuristic, and was considered an ad-hoc, though useful, approach
(e.g., see Section 2.2.1 in Kaelbling et al. (1996), where it appears under the heading “Ad-
Hoc Techniques” and Section 2.7 in Sutton and Barto (1998) where this approach is called
optimistic initial values and is referred to as a “simple trick that can be quite effective
on stationary problems”). This optimistic bias has been used in a number of well-known
reinforcement learning algorithms, e.g. Kaelbling’s interval exploration method (Kaelbling,
1993), the exploration bonus in Dyna (Sutton, 1990), the curiosity-driven exploration of
Schmidhuber (1991), and the exploration mechanism in prioritized sweeping (Moore and
Atkenson, 1993). More recently, Tadepalli and Ok (1998) presented a reinforcement learning
algorithm that works in the context of the undiscounted average-reward model used in this
paper. In particular, one variant of their algorithm, called AH-learning, is very similar to
R-max. However, as we noted above, none of this work provides theoretical justification for
this very natural bias. Thus, an additional contribution of this paper is a formal justification
for the optimism under uncertainty bias.

The paper is organized as follows: in Section 2 we define the learning problem more
precisely and the relevant parameters. In Section 3 we describe the R-max algorithm. In
Section 4 we prove that it yields near-optimal reward in polynomial time. We conclude in
Section 5.

2. Preliminaries

We present R-max in the context of a model that is called a stochastic game. This model
is more general than a Markov decision process because it does not necessarily assume that
the environment acts stochastically (although it can). In what follows we define the basic
model, describe the set of assumptions under which our algorithm operates, and define the
parameters influencing its running time.

2.1 Stochastic Games

A game is a model of multi-agent interaction. In a game, we have a set of players, each
of whom chooses some action to perform from a given set of actions. As a result of the
players’ combined choices, some outcome is obtained which is described numerically in the
form of a payoff vector, i.e., a vector of values, one for each of the players. We concentrate
on two-player, fixed-sum games (i.e., games in which the sum of values in the payoff vector
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is constant). We refer to the player under our control as the agent, whereas the other player
will be called the adversary.2

A common description of a game is as a matrix. This is called a game in strategic form.
The rows of the matrix correspond to the agent’s actions and the columns correspond to
the adversary’s actions. The entry in row i and column j in the game matrix contains the
rewards obtained by the agent and the adversary if the agent plays his ith action and the
adversary plays his jth action. We make the simplifying assumption that the size of the
action set of both the agent and the adversary is identical. However, an extension to sets
of different sizes is trivial.

In a stochastic game (SG) the players play a (possibly infinite) sequence of standard
games from some given set of games. After playing each game, the players receive the
appropriate payoff, as dictated by that game’s matrix, and move to a new game. The
identity of this new game depends, stochastically, on the previous game and on the players’
actions in that previous game. Formally:

Definition 1 A fixed-sum, two player, stochastic-game [SG] M on states S = {1, . . . , N},
and actions A = {a1, . . . , ak}, consists of:

• Stage Games: each state s ∈ S is associated with a two-player, fixed-sum game in
strategic form, where the action set of each player is A. We use Ri to denote the
reward matrix associated with stage-game i.

• Probabilistic Transition Function: PM (s, t, a, a′) is the probability of a transition
from state s to state t given that the first player (the agent) plays a and the second
player (the adversary) plays a′.

An SG is similar to an MDP. In both models, actions lead to transitions between states
of the world. The main difference is that in an MDP the transition depends on the action of
a single agent whereas in an SG the transition depends on the joint-action of the agent and
the adversary. In addition, in an SG, the reward obtained by the agent for performing an
action depends on its action and the action of the adversary. To model this, we associate a
game with every state. Therefore, we shall use the terms state and game interchangeably.

Stochastic games are useful not only in multi-agent contexts. They can be used in-
stead of MDPs when we do not wish to model the environment (or certain aspects of it)
stochastically. In that case, we can view the environment as an agent that can choose
among different alternatives, without assuming that its choice is based on some probability
distribution. This leads to behavior maximizing the worst-case scenario. In addition, the
adversaries that the agent meets in each of the stage-games could be different entities.

R-max is formulated as an algorithm for learning in fixed-sum Stochastic Games. How-
ever, it is immediately applicable to fixed-sum repeated games and to MDPs because both
of these models are degenerate forms of SGs. A repeated game is an SG with a single state
and an MDP is an SG in which the adversary has a single action at each state.

2. From the point of view of the probabilistic maximin value of the game, which is what we attempt to
attain, the case of n-player zero sum game does not differ significantly, as all other players can be viewed
as a single adversary.
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For ease of exposition we normalize both players’ payoffs in each stage game to be non-
negative reals between 0 and some constant Rmax. We also take the number of actions
to be constant. The set of possible histories of length t is (S × A2 × R)t × S, i.e., a
sequence consisting of t state-action-reward triplets, followed by the state reached. The set
of possible histories, H, is the union of the sets of possible histories for all t ≥ 0, where the
set of possible histories of length 0 is S.

Given an SG, a policy for the agent is a mapping from H to the set of possible probability
distributions over A. Hence, a policy determines the probability of choosing each particular
action for each possible history.

We define the value of a policy using the average expected reward criterion as follows:
Given an SG M and a natural number T , we denote the expected T -step undiscounted
average reward of a policy π when the adversary follows a policy ρ, and where both π and
ρ are executed starting from a state s ∈ S, by UM (s, π, ρ, T ) (we omit subscripts denoting
the SG when this causes no confusion). Let UM (s, π, T ) = minρ is a policy UM (s, π, ρ, T )
denote the value that a policy π can guarantee in T steps starting from s. We define
UM (s, π) = lim infT→∞ UM (s, π, T ). Finally, we define UM (π) = mins∈S UM (s, π).3

2.2 Assumptions, Complexity and Optimality

We make two central assumptions: First, we assume that the agent always recognizes
the identity of the state (or stage-game) it reached (but not its associated payoffs and
transition probabilities) and that after playing a game, it knows what actions were taken
by its adversary and what payoffs were obtained. Second, we assume that the maximal
possible reward Rmax is known ahead of time. We believe that this latter assumption can
be removed.

Next, we wish to discuss the central parameter in the analysis of the complexity of R-

max – the mixing time, first identified by Kearns and Singh (1998). Kearns and Singh argue
that it is unreasonable to refer to the efficiency of learning algorithms without referring to
the efficiency of convergence to a desired value. They defined the ε-return mixing time of
a policy π to be the smallest value of T after which π guarantees an expected payoff of at
least U(π) − ε. In our case, we have to take into account the existence of an adversary.
Therefore, we adjust this definition slightly as follows: a policy π belongs to the set Π(ε, T )
of policies whose ε-return mixing time is at most T , if for any starting state s, for any
adversary behavior ρ, and for every t ≥ T we have that U(s, π, ρ, t) > U(π)− ε.

That is, if a policy π ∈ Π(ε, T ) then no matter what the initial state is and what the
adversary does, the policy π will yield after any t ≥ T steps an expected average reward
that is ε close to its value. The ε-return mixing time of a policy π is the smallest T for
which π ∈ Π(ε, T ) holds. Notice that this means that an agent with perfect information
about the nature of the games and the transition function will require at least T steps, on
the average, to obtain an optimal value using an optimal policy π whose ε-return mixing
time is T . Clearly, one cannot expect an agent lacking this information to perform better.

We denote by Opt(Π(ε, T )) the optimal expected T -step undiscounted average return
from among the policies in Π(ε, T ). When looking for an optimal policy (with respect to
policies that mix at time T , for a given ε > 0), we will be interested in approaching this value

3. We discuss this choice below.

217



Brafman and Tennenholtz

in time polynomial in T , in 1/ε, in ln(1/δ) (where ε and δ are the desired error bounds),
and in the size of the description of the game.

The reader may have noticed that we defined UM (π) as mins∈S UM (s, π). It may appear
that this choice makes the learning task too easy. For instance, one may ask why shouldn’t
we try to attain the maximal value over all possible states, or at least the value of our initial
state? We claim that the above is the only reasonable choice, and that it leads to results
that are as strong as those achieved by E3.

To understand this point, consider the following situation: we start learning at some
state s in which the optimal action is a. If we do not execute the action a in s, we reach
some state s′ that has a very low value. A learning algorithm without any prior knowledge
cannot be expected to immediately guess that a should be done in s. In fact, without such
prior knowledge, it cannot conclude that a is a good action unless it tries the other actions
in s and compares their outcome to that of a. Thus, one can expect an agent to learn a
near-optimal policy only if the agent can visit state s sufficiently many times to learn about
the consequences of different options in s. In a finite SG, there will be some set of states
that we can sample sufficiently many times, and it is for such states that we can learn to
behave.

In fact, it probably makes sense to restrict our attention to a subset of the states such
that from each state in this set it is not too hard to get to any other state. In the context of
MDPs, Kearns and Singh refer to this as the ergodicity assumption. In the context of SGs,
Hoffman and Karp (1966) refer to this as the irreducibility assumption. An SG is said to be
irreducible if the Markov-chain obtained by fixing any two (pure) stationary strategies for
each of the players is irreducible (i.e., each state is reachable from each other state). In the
special case of an MDP, irreducibility is precisely the ergodicity property used by Kearns
and Singh in their analysis of E3.

Irreducible SGs have a number of nice properties, as shown by Hoffman and Karp (1966).
First, the maximal long-term average reward is independent of the starting state, implying
that maxπ mins∈S UM (s, π) = maxπ maxs∈S UM (s, π). Second, this optimal value can be
obtained by a stationary policy (i.e., one that depends on the current stage-game only).
Thus, although we are not restricting ourselves to irreducible games, we believe that our
results are primarily interesting in this class of games.

3. The R-max Algorithm

Recall that we consider a stochastic game M consisting of a set S = {G1, . . . , GN} of stage-
games in each of which both the agent and the adversary have a set A = {a1, . . . , ak} of
possible actions. We associate a reward matrix Ri with each game, and use Rim,l to denote a
pair consisting of the reward obtained by the agent and the adversary after playing actions
am and al in game Gi, respectively. In addition, we have a probabilistic transition function,
PM , such that PM (s, t, a, a′) is the probability of making a transition from Gs to Gt given
that the agent played a and the adversary played a′. It is convenient to think of PM (i, ·, a, a′)
as a function associated with the entry (a, a′) in the stage-game Gi. This way, all model
parameters, both rewards and transitions, are associated with joint actions of a particular
game. Let ε > 0. For ease of exposition, we assume throughout most of the analysis that
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the ε-return mixing time of the optimal policy, T , is known. Later, we show how this
assumption can be relaxed.

The R-max algorithm is defined as follows:

Input: N – the number of stage games, k – the number of actions at each stage game, ε
– the error bound, δ – the algorithm’s failure probability, Rmax – an upper bound on
the reward function, T – the ε-return mixing time of an optimal policy.

Initialize: Construct the following modelM ′ consisting ofN+1 stage-games, {G0, G1, . . . , GN},
and k actions, {a1, . . . , ak}. Here, G1, . . . , GN correspond to the real games, {a1, . . . , ak}
correspond to the real actions, and G0 is an additional fictitious game. Initialize all
game matrices to have (Rmax, 0) in all entries.4 Initialize PM (Gi, G0, a, a

′) = 1 for all
i = 0, . . . , N and for all actions a, a′.

In addition, maintain the following information for each entry in each gameG1, . . . , GN :
(1) a boolean value known/unknown, initialized to unknown; (2) the states reached by
playing the joint action corresponding to this entry (and how many times each state
was reached); (3) the reward obtained (by both players) when playing the joint action
corresponding to this entry. Items 2 and 3 are initially empty.

Repeat:

Compute and Act: Compute an optimal T -step policy for the current state, and
execute it for T -steps or until a new entry becomes known.

Observe and update: Following each joint action do as follows: Let a be the action
you performed in Gi and let a′ be the adversary’s action.

• If the joint action (a, a′) is performed for the first time in Gi, update the
reward associated with (a, a′) in Gi, as observed.

• Update the set of states reached by playing (a, a′) in Gi.

• If at this point your record of states reached from this entry contains
K1 = max((d4NTRmax

ε )3e, d−6ln3( δ
6Nk2 )e) + 1 elements, mark this entry as

known, and update the transition probabilities for this entry according to
the observed frequencies.

As can be seen, R-max is quite simple. It starts with an initial estimate for the model
parameters that assumes all states and all joint actions yield maximal reward and lead with
probability 1 to the fictitious stage-game G0. Based on the current model, an optimal T -
step policy is computed and followed. Following each joint action the agent arrives at a new
stage-game, and this transition is recorded in the appropriate place. Once we have enough
information about where some joint action leads to from some stage-game, we update the
entries associated with this stage-game and this joint action in our model. After each model
update, we recompute an optimal policy and repeat the above steps.

4. The value 0 given to the adversary does not play an important role here.
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4. Optimality and Convergence

In this section we provide the tools that ultimately lead to the proof of the following theorem:

Theorem 2 Let M be an SG with N states and k actions. Let 0 < δ < 1, and ε > 0 be
constants. Denote the policies for M whose ε-return mixing time is T by ΠM (ε, T ), and
denote the optimal expected return achievable by such policies by Opt(ΠM (ε, T )). Then,
with probability of no less than 1− δ the R-max algorithm will attain an expected return of
OptM (Π(ε, T ))− 2ε within a number of steps polynomial in N, k, T, 1

ε , and 1
δ .

In the main lemma required for proving this theorem we show the following: if the agent
follows a policy that is optimal with respect to the model it maintains for T steps, it will
either attain near-optimal average reward, as desired, or it will update its statistics for
one of the unknown slots with sufficiently high probability. This can be called the implicit
explore or exploit property of R-max: The agent does not know ahead of time whether it is
exploring or exploiting – this depends in a large part on the adversary’s behavior which it
cannot control or predict. However, it knows that it does one or the other, no matter what
the adversary does. Using this result we can proceed as follows: As we will show, the number
of samples required to mark a slot as known is polynomial in the problem parameters, and so
is the total number of entries. Therefore, the number of T -step iterations used for learning
the parameters is bounded by some polynomial function of the input parameters, say L.
That is, after L learning iterations we have an (almost) perfect model and can compute a
near-optimal policy. Of course, during the learning iterations, our average reward can be
low. Thus, we need to perform an D T -step iterations in order to compensate for our losses
during the L learning episodes. If we choose D = L · Rmax/ε, our average reward will be
ε-close to optimal. Finally, to compensate for the fact that some of our attempts to explore
or to exploit could fail, we will need to actually run the algorithm for D′ episodes, where
D′ is some polynomial function of D.

To understand the actual proof, consider how our learned model differs from the real
model. First, there are states in it which are marked unknown and they behave quite
differently from their corresponding states in the real model. Second, there are states
marked known and they look very similar to the corresponding states in the real model,
although not necessarily identical. The proof handles these differences in two steps. In
Lemma 2, we show that the explore or exploit property discussed above holds when the
known states are identical to their counterparts in the real model. Lemma 1 shows that the
optimal policy with respect to one model leads to near-optimal behavior with respect to
models that are sufficiently similar. By combining them, we can handle both the unknown
states (via Lemma 2) and the similar but not identical known states (via Lemma 1).

Before proving our main lemma, we state and prove an extension of Kearns and Singh’s
Simulation Lemma (Kearns and Singh, 1998) to the context of SGs with a slightly improved
bound.

Definition 3 Let M and M̄ be SGs over the same state and action spaces. We say that
M̄ is an α-approximation of M if for every state s we have:

1. If PM (s, t, a, a′) and PM̄ (s, t, a, a′) are the probabilities of transition from state s to
state t given that the joint action carried out by the agent and the adversary is (a, a′),
in M and M̄ respectively, then, PM (s, t, a, a′)−α ≤ PM̄ (s, t, a, a′) ≤ PM (s, t, a, a′)+α
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2. For every state s, the same stage-game is associated with s in M̄ and in M (and thus,
the rewards will be identical).

Lemma 4 Let M and M̄ be SGs over N states, where M̄ is an ε
NTRmax

-approximation of
M , then for every state s, agent policy π, and adversary policy ρ, we have that

|UM̄ (s, π, ρ, T )− UM (s, π, ρ, T )| ≤ ε.

Proof When we fix both players’ policies we get, both in MDPs and in general SGs, a
probability distribution over T -step paths in the state space. This is not a Markov process
because the player’s policies can be non-stationary. However, the transition probabilities at
each point depend on the current state and the actions taken and the probability of each
path is a product of the probability of each of the transitions. This is true whether the
policies are pure or mixed.

We need to prove that: ∑
p

|Pr
M

(p)UM (p)− Pr̄
M

(p)UM̄ (p)| ≤ ε

where p is a T -step path starting at s, PrM (p) (respectively, PrM̄ (p)) is its probability in the
random process induced by M (resp. by M̄), π, and ρ, and UM (p), (UM̄ (p)) is the average
payoff along this path. Because the average payoff is bounded by Rmax we have:∑

p

|Pr
M

(p)UM (p)− Pr̄
M

(p)UM̄ (p)| ≤
∑
p

|Pr
M

(p)− Pr̄
M

(p)|Rmax.

To conclude our proof, it is sufficient to show that∑
p

|Pr
M

(p)− Pr̄
M

(p)| ≤ ε/Rmax

Let hi define the following random processes: start at state s and follow policies ρ and
π; for the first i steps, the transition probabilities are identical to the process defined above
on M̄ , and for the rest of the steps its transition probabilities are identical to M . Clearly,
when we come to assess the probabilities of T -step path, we have that h0 is identical to
the original process on M , whereas hT is identical to original process on M̄ . The triangle
inequality implies that

∑
p

|Pr
M

(p)− Pr̄
M

(p)| =
∑
p

|Pr
h0

(p)− Pr
hT

(p)| ≤
T−1∑
i=0

∑
p

|Pr
hi

(p)− Pr
hi+1

(p)|

If we show that for any 0 ≤ i < T we have that
∑

p |Prhi(p)−Prhi+1
(p)| ≤ ε/TRmax, it will

follow that
∑

p |PrM (p)− PrM̄ (p)| ≤ ε/Rmax, which is precisely what we need to show.
We are left with the burden of proving that

∑
p |Prhi(p) − Prhi+1

(p)| ≤ ε/TRmax. We
can sum over all paths p as follows: first we sum over the N possible states that can be
reached in i steps. Then we sum over all possible path prefixes that reach each such state.
Next, we sum over all possible states reached after step i + 1, and finally over all possible
suffixes that start from each such state. Now, we note that the probability of each particular
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path p is the product of the probability of its particular prefix, the probability of a transition
from xi to xi+1, and the probability of the suffix. We will use xi to denote the state reached
after i steps, xi+1 to denote the state reached after i+ 1 steps, pre(xi) to denote the i-step
prefixes reaching xi, and suf(xj) to denote the suffixes starting at xj . Thus,∑
p

|Pr
hi

(p)− Pr
hi+1

(p)| =
∑
xi

∑
pre(xi)

∑
xi+1

∑
suf(xi+1)

|(Pr
hi

(pre(xi)) Pr
hi

(xi → xi+1) Pr
hi

(suf(xi+1)))−

( Pr
hi+1

(pre(xi)) Pr
hi+1

(xi → xi+1) Pr
hi+1

(suf(xi+1)))|

However, the prefix and suffix probabilities are identical in hi and hi+1. Thus, this sum is
equal to∑

xi

∑
pre(xi)

∑
xi+1

∑
suf(xi+1)

Pr
hi

(pre(xi)) Pr
hi

(suf(xi+1))|Pr
hi

(xi → xi+1)− Pr
hi+1

(xi → xi+1)| =

∑
xi

∑
pre(xi)

Pr
hi

(pre(xi))
∑
xi+1

∑
suf(xi+1)

Pr
hi

(suf(xi+1))|Pr
hi

(xi → xi+1)− Pr
hi+1

(xi → xi+1)| ≤

[
∑
xi

∑
pre(xi)

Pr
hi

(pre(xi))][
∑
xi+1

∑
suf(xi+1)

Pr
hi

(suf(xi+1))ε/NTRmax]

This last expression is a product of two independent terms. The first term is the sum
over all possible i-step prefixes (i.e., overall all prefixes starting in the given x0 and ending
in xi, for any xi). Hence, it is equal to 1. The second term is a sum over all suffixes starting
at xi+1, for any value of xi+1. For any given value of xi+1 the probability of any suffix
starting at this value is 1. Summing over all possible values of xi+1, we get a value of N .

Thus, ∑
p

|Pr
hi

(p)− Pr
hi+1

(p)| ≤ 1 · ε/NTRmax ·N

This concludes our proof.

Next, we define the notion of an induced SG. The definition is similar to the definition
of an induced MDP given by Kearns and Singh (1998) except for the use of Rmax. The
induced SG is the model used by the agent to determine its policy.

Definition 5 Let M be an SG. Let L be the set of entries (Gi, a, a′) marked unknown.
That is, if (Gi, a, a′) ∈ L then the entry corresponding to the joint action (a, a′) in the
stage-game Gi is marked as unknown. Define ML to be the following SG: ML is identical
to M , except that ML contains an additional state G0. Transitions and rewards associated
with all entries in ML that are not in L are identical to those in M . For any entry in L
or in G0, the transitions are with probability 1 to G0, and the reward is Rmax for the agent
and 0 for the adversary.5

5. Note that the formulation of R-max, implies that for some entries in L, the reward function is known
and can be different from Rmax. This difference does not affect the following result which relies on the
fact that the value of the optimal policy in ML is at least as large as the value of the optimal policy in
M .
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Given an SG M with a set L of unknown states, RML-max denotes the optimal policy
for the induced SG ML. When ML is clear from the context we will simply use the term
R-max policy instead of RML-max policy.

We now state and prove the implicit explore or exploit lemma:

Lemma 6 Let M be an SG, let L and ML be as above. Let ρ be an arbitrary policy
for the adversary, let s be some state, and let 0 < α < 1. Then either (1) VR−max >
Opt(ΠM (ε, T ))− α, where VR−max is the expected T -step average reward for the RML-max
policy on M ; or (2) An unknown entry will be played in the course of running R-max on
M for T steps with a probability of at least α

Rmax
.

In practice, we cannot determine ρ, the adversary’s policy, ahead of time. Thus, we
do not know whether R-max will attain near-optimal reward or whether it will reach an
unknown entry with sufficient probability. The crucial point is that it will do one or the
other, no matter what the adversary does.

The intuitive idea behind Lemma 2 is the following: our behavior is biased towards
exploration (because of the appealing value of unknown states). The value of the exploration
policy in our (fictitious) model is very high. This value is a probabilistic maximin. Thus,
the adversary cannot prevent us from attaining it. When we explore, this value is actually
fictitious, because it overestimates the unknown states. If the adversary tries to prevent
us from learning new information, it forces us to remain in known states. However, these
states are modeled correctly, and so their value is correct, not fictitious. Thus, when the
adversary tries to prevent us from learning, we attain in practice a value that is close to
what we expected to get based on our fictitious world. This value is always near-optimal.
Proof First, notice that the value of R-max in ML will be no less than the value of the
optimal policy in M . This follows from the fact that the rewards for the agent in ML is at
least as large as in M , and that the R-max policy is optimal with respect to ML.

In order to prove the claim, we will show that the difference between the reward obtained
by the agent in M and in ML when R-max is played is smaller than the exploration
probability times Rmax. This will imply that if the exploration probability is small, then
R-max will attain near-optimal payoff. Conversely, if near-optimal payoff is not attained,
the exploration probability will be sufficiently large.

For any policy, we may write:

UM (s, π, ρ, T ) =
∑
p

Prπ,sM [p]UM (p) =
∑
q

Prπ,sM [q]UM (q) +
∑
r

Prπ,sM [r]UM (r)

where the sums are over, respectively, all T -paths p in M , all T -paths q in M such that
every entry visited in q is not in L, and all T -path r in M in which at least one entry visited
is in L. Hence:

|UM (s,R-max, ρ, T )−UML
(s,R-max, ρ, T )| = |

∑
p

PrR-max,ρ,s
M [p]UM (p)−

∑
p

PrR-max,ρ,s
ML

[p]UML
(p)|

= |
∑
q

PrR-max,ρ,s
M [q]UM (q) +

∑
r

PrR-max,ρ,s
M [r]UM (r)−
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∑
q

PrR-max,ρ,s
ML

[q]UML
(q) +

∑
r

PrR-max,ρ,s
ML

[r]UML
(r)|

≤ |
∑
q

PrR-max,ρ,s
M [q]UM (q)−

∑
q

PrR-max,ρ,s
ML

[q]UML
(q)| +

|
∑
r

PrR-max,ρ,s
M [r]UM (r)−

∑
r

PrR-max,ρ,s
ML

[r]UML
(r)|

The first difference:

|
∑
q

PrR-max,ρ,s
M [q]UM (q)−

∑
q

PrR-max,ρ,s
ML

[q]UML
(q)|

must be 0. This follows from the fact that in M and in ML, the rewards obtained in a path
which do not visit an unknown entry are identical. The probability of each such path is
identical as well.

Hence, we have:

|UM (s,R-max, ρ, T )−UML
(s,R-max, ρ, T )| ≤ |

∑
r

PrR-max,ρ,s
M [r]UM (r)−

∑
r

PrR-max,ρ,s
ML

[r]UML
(r)|

≤
∑
r

PrR-max,ρ,s
M [r]Rmax

This last inequality stems from the fact that the average reward in any path is no greater
than Rmax and no smaller than 0. Thus, the maximal difference in the value of a path in
M and ML is Rmax.

The last term is the probability of reaching an unknown entry multiplied by Rmax. If
this probability is greater than or equal to α

Rmax
then we are done (since (2) holds). Thus,

from now on, let us assume ∑
r

PrR-max,ρ,s
M [r] <

α

Rmax
.

This implies that

|UM (s,R-max, ρ, T )− UML
(s,R-max, ρ, T )| ≤ α

Denote by π∗ an optimal T -step policy, and let UM (s, π∗, T ) be its value. (Note
that this value is, by definition, independent of the adversary strategy ρ.) If VR−max =
UM (s,R-max, ρ, T ) ≥ UM (s, π∗, T ), we are done. (Note: it is possible for VR−max to be
greater than UM (s, π∗, T ) because the particular adversary behavior ρ may be sub-optimal.)
Thus, we are left with the case where UM (s,R-max, ρ, T ) < UM (s, π∗, T ). We now use the
fact, noted earlier, that UML

(s,R-max, ρ, T ) ≥ UM (s, π∗, T ) (because every agent reward in
ML is at least as large as its comparable reward in M). Therefore, we have that

|UM (s, π∗, T )− UM (s,R-max, ρ, T )| = UM (s, π∗, T )− UM (s,R-max, ρ, T )

≤ UML
(s,R-max, ρ, T )− UM (s,R-max, ρ, T ) ≤ α
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We are now ready to prove Theorem 1. First, we wish to show that the expected average
reward is as stated. We must consider three models: M , the real model, M ′L the actual
model used, and M ′ where M ′ is an ε/2NTRmax-approximation of M such that the SG
induced by M ′ and L is M ′L. At each T -step iteration of our algorithm we can apply the
Implicit Explore or Exploit Lemma to M ′ and M ′L for the set L applicable at that stage.
Hence, at each step either the current R-max policy leads to an average reward that is
ε/2 close to optimal with respect to the adversary’s behavior and the model M ′ or it leads
to an efficient learning policy with respect to the same model. However, because M ′ is
an ε/2-approximation of M , the simulation lemma guarantees that the policy generated is
either ε close to optimal or explores efficiently. We know that the number of T -step phases
in which we are exploring can be bounded polynomially. This follows from the fact that we
have a polynomial number of parameters to learn (in N and k) and that the probability
that we obtain a new, useful statistic is polynomial in ε, T and N . Thus, if we choose a
large enough (but still polynomial) number of T -step phases, we shall guarantee that our
average reward is as close to optimal as we wish.

The above analysis was done assuming we actually obtain the expected value of each
random variable. This cannot be guaranteed with probability 1. Yet, we can ensure that
the probability that the algorithm fails to attain the expected value of certain parameters
is small enough by sampling it a larger (though still polynomial) number of times. This is
based on the well-known Chernoff bound. Using this technique one can show that when the
variance of some random variable is bounded, we can ensure that we get near its average
with probability 1− δ by using a sufficiently large sample that is polynomial in 1/δ.

In our algorithm, there are three reasons why the algorithm could fail to provide the
agent with near optimal return in polynomial time.

1. First, we have to guarantee that our estimates of the transition probabilities for every
entry are sufficiently accurate. Recall that to ensure a loss of no more than ε/2 our
estimates must be within ε

2NTRmax
of the real probabilities.

Consider a set of trials, where the joint action (a, a′) is performed in state s. Consider
the probability of moving from state s to state t given the joint-action (a, a′) in a
given trial, and denote it by p. Notice that there are Nk2 such probabilities (one
for each game and pair of agent-adversary actions). Therefore, we would like to
show that the probability of failure in estimating p is less than δ

3Nk2 . Let Xi be an
indicator random variable, that is 1 iff we moved to state t when we were in state s
and selected an action a in trial i. Let Zi = Xi − p. Then E(Zi) = 0, and |Zi| ≤ 1.
Chernoff bound implies that given independent random variables Z1, . . . , Zn where
|Zi| ≤ 1, E(Zi) = 0 (1 ≤ i ≤ n), then Prob(

∑n
i=1 Zi > a) < e(−a2/2n). Hence,

Chernoff bound implies that (for any K1) Prob(ΣK1
i=1Zi > K1

2
3 ) < e

−K1

1
3

2 . This

implies that Prob(Σ
K1
i=1Xi
K1

−p > K1
− 1

3 ) < e
−K1

1
3

2 . Similarly, we can define Z ′i = p−Xi,

and get by Chernoff bound that Prob(ΣK1
i=1Z

′
i > K1

2
3 ) < e

−K1

1
3

2 . This implies that

Prob(p− Σ
K1
i=1Xi
K1

> K1
− 1

3 ) < e
−K1

1
3

2 . Hence, we get that Prob(|Σ
K1
i=1Xi
K1

−p| > K1
− 1

3 ) <

2e
−K1

1
3

2 .
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We now choose K1 such that K1
− 1

3 < ε
2NTRmax

, and 2e
−K1

1
3

2 < δ
3Nk2 . This is obtained

by taking K1 = max((4NTRmax)
ε )3,−6ln3( δ

6Nk2 )) + 1.

The above guarantees that if we sample each slot K1 times the probability that our
estimate of the transition probability will be outside our desired bound is less than δ

3 .

Using the pigeon-hole principle we know that total number of visits to slots marked
unknown is Nk2K1. After at most this number of visits all slots will be marked
known.

2. The Implicit Exploit or Explore Lemma gives a probability of α
Rmax

of getting to
explore. We now wish to show that after K2 attempts to explore (i.e. when we do not
exploit), we obtain the K1 required visits. Let Xi be an indicator random variable
which is 1 if we reach the exploration state (G0 in Lemma 2) when we do not exploit,
and 0 otherwise. Let Zi = Xi − α

Rmax
, and let Z ′i = α

Rmax
−Xi, and apply Chernoff

bound to the sum of Zi’s and Z ′is as before. We get that Prob(|ΣK2
i=1Xi − K2α

Rmax
| >

K
1
3
2 ) < 2e

−K2

1
3

2 . We can now choose K2 such that K
1
3
2 + K2

α
Rmax

> k2NK1 and

2e
−K2

1
3

2 < δ
3k2N

to guarantee that we will have a failure probability of less than δ
3 due

to this reason.

3. When we perform a T -step iteration without learning our expected return isOpt(ΠM (T, ε))−
ε. However, the actual return may be lower. This point is handled by the fact that
after polynomially many local exploitations are carried out, Opt(ΠM (T, ε))− 3

2ε (i.e.
a value the is ε

2 close to that expected payoff) can be obtained with a probability of
failure of at most δ

3 . This is obtained by standard Chernoff bounds, and makes use
of the fact that the standard deviation of the expected reward in a T -step policy is
bounded because the maximal reward is bounded by Rmax. More specifically, con-
sider z = MNT exploitation stages for some M > 0. Denote the average return in
an exploitation stage by µ, and let Xi denote the return in the i-th exploitation stage
(1 ≤ i ≤ z). Let Yi = µ−Xi

Rmax
. Notice that |Yi| ≤ 1, and that E(Yi) = 0. Chernoff

bound implies that: Prob(Σz
j=1Yj > z

2
3 ) < e

−z
1
3

2 This implies that the average return

along z iterations is at most Rmax

z
1
3

lower than µ with probability of at least e
−z

1
3

2 . By

choosing M such that z > (2Rmax
ε )3, and z > 6(ln( δ3))−3, we get the desired result:

with probability less than δ
3 the value obtained will not be more than ε

2 lower than
the expected value.

By making the failure probability less than δ
3 for each of the above stages, we are able

to obtain a total failure probability of no more than δ.
From the proof, we can also observe the bounds on running times required to obtain

this result. However, notice that in practice, the only bound that we need to consider when
implementing the algorithm is the sample size K1.
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The algorithm we described requires the ε-return mixing time as part of its input. We
can remove this assumption as follows, using the ideas of Kearns and Singh (1998). Our
proof establishes a concrete number of of steps polynomial in the problem parameters, that
is sufficient to guarantee near-optimal average reward. Fixing all other input parameters,
we can view this number of steps as a function P (T ) of the ε-return mixing time. To obtain
the desired performance when T is unknown, we repeatedly execute the algorithm for P (1)
steps, under the assumption T = 1. Next, we execute it for P (2) steps under the assumption
T = 2. We continue this process, each time raising the value of T by 1. At some point, we
will reach a T value of T0, where T0 is the true ε-return mixing time. Our average reward for
this phase is guaranteed to be near-optimal. However, during our previous phases in which
T was an under-estimate of T0, we may have suffered certain losses. We need to compensate
for them now. This compensation occurs naturally, as from now on, every value of T we
choose will be larger than T0, and hence, will result in near-optimal average reward. In
particular, if T0 is the mixing time, then after D′ = T0Rmax/γ phases, corresponding to
running the algorithm with mixing time candidates T0 + 1, . . . , T0 + D′, our payoff will be
γ close to optimal.

While this approach is quite standard, and has been already adopted in the case of
MDPs by Kearns and Singh (1998), it is worth to notice the following. Consider the three
sources of failure that have been mentioned before, and assume that the agent keeps track
of all information (e,g, visits to entries of the games, etc.) the two first sources of failure
that have to do with “sampling” are not affected by the fact we make repeated use of our
procedure for different candidate mixing times. The third source of failure has to do with
obtaining an actual payoff that is close to the optimal expected payoff. It is dealt with
similarly: We view our collective trials for different values of T greater or equal to the
true mixing time as a larger sequence of independent trials. Each such trial has the desired
expected value. Therefore, Chernoff bound will be applicable in obtaining the desired result
here as well.

There is one caveat to this approach, though. The revised algorithm does not have a
final halting time and will be applied continuously as long as the agent is functioning in its
environment. Thus, at some point our current mixing time candidate T will be exponential
in the actual mixing time T0. At that point, the computation of an optimal policy, which
is performed whenever the model is updated, will require exponentially time. We note that
this is true for the E3 algorithm too.

This problem does not seem too serious, as it arises only after the algorithm is executed
an exponential number of steps, and for the whole prior period, we behave near-optimally.
Moreover, in the context of an MDP, it is likely that, at some point, the agent will be able
to recognize that its model is sufficiently accurate. This will occur either when the whole
model is known, or when a sufficient bound on the contribution of unknown states can be
established (i.e., by bounding the probability of reaching these states). In the context of
an SG, establishing such a bound is more difficult because of the dependence on adversary
behavior.

Another point worth noting is that the agent may never know the values of some of the
slots in the game because of the adversary’s choices. Consequently, if π is the optimal policy
given full information about the game, the agent may actually converge to a policy π′ that
differs from π, but which yields the best return given the adversary’s actual behavior. This
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return will be no smaller than the return guaranteed by π. The mixing π′ will, in general,
differ from the mixing time of π. However, we are guaranteed that if T0 is the ε-return
mixing time of π, and v is its value, then after time polynomial in T0, the agent’s actual
return will be at least v (subject to the deviations afforded by the theorem).

Finally, we believe that one can remove the assumption that Rmax is known by acting
as follows. Initialize Rmax somehow. Whenever you encounter a value that is as large as the
current estimate, make your estimate larger. This approach ensures that the bias towards
exploration remains. However, it requires a more rigorous justification, as it is possible that
too small an estimate may not provide a strong enough bias.

4.1 Repeated Games

A stochastic game in which the set of stage games contains a single game is called a repeated
game. This is an important model in game theory and much work has been devoted to the
study of learning in repeated games (Fudenberg and Levine, 1993). There is large class of
learning problems associated with repeated games, and the problem as a whole is referred
to as repeated games with incomplete information (Aumann and Maschler, 1995). The
particular class of repeated games with incomplete information we are using (i.e., where
the agent gets to observe the adversary’s actions and the payoffs, and it knows the value
of Rmax) is known as an Adaptive Competitive Decision Process and has been studied, e.g.,
by Banos (1968) and Megiddo (1980).

Because a repeated game contains a single stage game, there are no transition proba-
bilities to learn. However, there is still the task of learning to play optimally. In addition,
because there is only a single stage game, the mixing time of any policy is 1 (the agent’s
expected reward after playing a single stage-game is identical to the policy’s expected re-
ward). However, the time required to guarantee this expected reward could be much larger.
This stems from the fact that the optimal policy in a game is often mixed. That is, the
agent chooses probabilistically, and not deterministically, among different options.

In repeated games, we can attain the same guarantees as in the stochastic-games setting,
but with a greatly simplified version of R-max: We do not need to maintain a fictitious
state or the statistics on the frequency of transitions. We describe the precise algorithm
below. Its correctness follows from the more general result for stochastic games.

Initialization Initialize the game model with payoffs of Rmax for every joint action for the
agent and 0 for the adversary. Mark all joint actions as unknown.

Play Repeat the following process:

Policy Computation Compute an optimal policy for the game based on the current
model and play it.

Update If the joint action played is marked unknown, update the game matrix with
its observed payoffs and mark is known.

5. Conclusion

We described R-max, a simple reinforcement learning algorithm that is guaranteed to
lead to polynomial time convergence to near-optimal average reward in zero-sum stochastic

228



General and Efficient Reinforcement Learning

games. In fact, R-max guarantees the safety level (probabilistic maximin) value for the
agent in general non-cooperative stochastic games.

R-max is an optimistic model-based algorithm that formally justifies the optimism-
under-uncertainty bias. Its analysis is inspired by the approach taken by Kearns and Singh
in their E3 algorithm. However, unlike E3, the agent does not need to explicitly contemplate
whether to explore or to exploit. In fact, the agent may never learn an optimal policy for
the game,6 or it may play an optimal policy without knowing that it is optimal. The
“clever” aspect of the agent’s policy is that it “offers” a catch to the adversary: if the
adversary plays well, and leads the agent to low payoffs, then the agent will, with sufficient
probability, learn something that will allow it to improve its policy. Eventually, without
too many “unpleasant” learning phases, the agent will have obtained enough information
to generate an optimal policy.

R-max can be applied to MDPs, repeated games, and SGs. In particular, all single-
controller stochastic game instances covered in Brafman and Tennenholtz (2000) fall into
this category, and R-max can be applied to them. However, R-max is much simpler con-
ceptually and easier to implement than the LSG algorithm described there. Moreover, it
also attains higher payoff: In LSG the agent must pay an additional multiplicative factor φ
that does not appear in R-max.

We analyzed R-max in the context of the average-reward criteria. However, this is
not the only optimality criteria that appears in the literature. In fact, a more commonly
used criteria is that of sum-of-discounted-rewards. The analysis of this criteria is made
problematic by the fact that every learning algorithm is expected to display an initial sub-
optimal behavior. Because of the discounting employed, it is impossible to compensate later
on for the losses incurred initially. Nevertheless, there is a reasonable work-around for this
problem. We refer the reader to Kearns and Singh (1998), where this point is discussed.
We note that their approach can be replicated here, with similar guarantees.

At this point, we have little intuition about how well R-max will perform in practice.
Practical environments are likely to have many states (exponentially many in the number
of state variables) and a large mixing time. Thus, convergence-time polynomial in these
parameters is not likely to be a useful practical guarantee. In that case, algorithms that take
into account the structure of the state space are likely to be required, and the generation
and analysis of such algorithms is an important area of future work. Of course, even when
structure is taken into account, the mixing-time can remain quite high (e.g., see Kearns
& Koller, 1999), and we do not see a direct way of overcoming this problem, as it stems
from the inherent stochasticity of the domain, and not from the learning process. However,
this does not rule out other forms of analysis or guarantees that may be more reflective of
realistic environments. We are currently working on an implementation of R-max with the
view of adopting it into a practical approach for reinforcement learning.

Two other SG learning algorithms appeared in the literature. Littman (1994) describes
a variant of Q-learning, called minimax Q-learning, designed for 2-person zero-sum stochas-
tic games. That paper presents experimental results, asymptotic convergence results are
presented in Littman and Szepesvári (1996). Hu and Wellman (1998) consider a more gen-
eral framework of multi-agent general-sum games. This framework is more general than

6. In a game, an agent can obtain an optimal reward without following the optimal policy if the adversary
plays sub-optimally.
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the framework treated in this paper which dealt with fixed-sum, two-player games. Hu and
Wellman based their algorithm on Q-learning as well. They prove (albeit, under consid-
erable restrictions) that their algorithm converges to the optimal value (defined, in their
case, via the notion of Nash equilibrium). In both cases, convergence is in the limit, i.e.,
provided that every state and every joint action has been visited infinitely often. Note
that an adversary can prevent a learning agent from learning certain aspects of the game
indefinitely and that R-max’s polynomial time convergence to optimal payoff is guaranteed
even if certain states and joint actions have never been encountered.

The class of repeated games is another sub-class of stochastic games for which R-max
is applicable. In repeated games, T = 1, there are no transition probabilities to learn, and
we need not use a fictitious stage-game. Therefore, a much simpler version of R-max can
be used. The resulting algorithm is much simpler and much more efficient than previous
algorithms by Megiddo (1980) and by Banos (1968). Moreover, for these algorithms, only
convergence in the limit is proven. A more recent algorithm by Hart and Mas-Colell (2000)
features an algorithm that is much simpler than the algorithms by Banos and by Megiddo.
Moreover, this algorithm is Hannan-Consistent which means that it not only guarantees
the agent its safety level, but it also guarantees that the agent will obtain the maximal av-
erage reward given the actual strategy used by the adversary. Hence, if the adversary plays
sub-optimally, the agent can get an average reward that is higher than its safety-level. How-
ever, it is only known that this algorithm converges almost-surely, and its convergence rate
is unknown. An interesting open problem is whether a polynomial time Hannan-consistent
near-optimal algorithm exists for repeated games and for stochastic games.

Acknowledgments

We wish to thank Amos Beimel for his help in improving the error bound in Lemma 1
and the anonymous referees for their useful comments. This research was supported by the
Israel Science Foundation under grant #91/02-1. The first author is partially supported by
the Paul Ivanier Center for Robotics and Production Management. The second author is
partially supported by DARPA grant F30602-98-C-0214-P00005.

References

R. Aumann and M. Maschler. Repeated Games with Incomplete Information. MIT Press,
1995.

A. Banos. On pseudo games. The Annals of Mathematical Statistics, 39:1932–1945, 1968.

R. Brafman and M. Tennenholtz. A near-optimal polynomial time algorithm for learning
in certain classes of stochastic games. Artificial Intelligence, 121(1–2):31–47, 2000.

D. Fudenberg and D.K. Levine. Self-confirming equilibrium. Econometrica, 61(3):523–545,
1993.

230



General and Efficient Reinforcement Learning

S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilibrium.
Technical report, Center for Rationality – Hebrew University of Jerusalem, 2000.

A.J. Hoffman and R.M. Karp. On Nonterminating Stochastic Games. Management Science,
12(5):359–370, 1966.

J. Hu and M.P. Wellman. Multi-agent reinforcement learning: Theoretical framework and
an algorithms. In Proc. 15th International Conference on Machine Learning, 1998.

L. P. Kaelbling. Learning in Embedded Systems. The MIT Press, 1993.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of AI Research, 4:237–285, 1996.

M. Kearns and D. Koller. Efficient reinforcement learning in factored mdps. In Proc. 16th
International Joint Conference on Artificial Intelligence (IJCAI), pages 740–747, 1999.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. In Int.
Conf. on Machine Learning, 1998.

M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proc. 11th Intl. Conf. on Machine Learning, pages 157–163, 1994.
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