
Journal of Machine Learning Research 3 (2002) 507-554 Submitted 1/02; Published 11/02

Optimal Structure Identification With Greedy Search

David Maxwell Chickering dmax@microsoft.com

Microsoft Research
One Microsoft Way
Redmond, WA 98052

Editor: Craig Boutilier

Abstract

In this paper we prove the so-called “Meek Conjecture”. In particular, we show that if a
DAG H is an independence map of another DAG G, then there exists a finite sequence of
edge additions and covered edge reversals in G such that (1) after each edge modification
H remains an independence map of G and (2) after all modifications G = H. As shown
by Meek (1997), this result has an important consequence for Bayesian approaches to
learning Bayesian networks from data: in the limit of large sample size, there exists a two-
phase greedy search algorithm that—when applied to a particular sparsely-connected search
space—provably identifies a perfect map of the generative distribution if that perfect map
is a DAG. We provide a new implementation of the search space, using equivalence classes
as states, for which all operators used in the greedy search can be scored efficiently using
local functions of the nodes in the domain. Finally, using both synthetic and real-world
datasets, we demonstrate that the two-phase greedy approach leads to good solutions when
learning with finite sample sizes.

1. Introduction

Over the last decade, there has been an enormous amount of work in the machine-learning
literature on the problem of learning Bayesian networks from data. In a recent Ph.D. disser-
tation on the topic, Meek (1997) put forth a conjecture that, if true, leads to the following
and somewhat surprising result: given that the generative distribution has a perfect map
in a DAG defined over the observables, then there exists a sparse search space (that is, a
space in which each state is connected to a small fraction of the total states) to which we
can apply a greedy search algorithm that, in the limit of large number of training cases,
identifies the generative structure. The so-called “Meek Conjecture” can be stated as fol-
lows. Let H and G denote two DAGs such that H is an independence map of G. In other
words, any independence implied by the structure of H is also implied by the structure of
G. Then there exists a finite sequence of edge additions and covered edge reversals that
can be applied to G with the following properties: (1) after each edge change, G is a DAG
and H remains an independence map of G and (2) after all edge changes G = H. Although
intuitively plausible, the validity of Meek’s Conjecture has, until now, remained unknown.
Koc̆ka, Bouckaert and Studený (2001a) proved that the conjecture is true if G and H differ
by exactly one edge.

In this paper, we prove Meek’s Conjecture. We provide an algorithm for determining a
specific sequence of edge modifications to G that transforms it into H such that after each

c©2002 David Maxwell Chickering.

Chickering

modification, H remains an independence map of G. Assuming that initially there are m
edges in H that do not appear in any orientation in G and r edges in H that appear in the
opposite orientation in G, the sequence includes at most 2m + r edge modifications.

Our algorithm is similar to the one proposed by Koc̆ka, Bouckaert and Studený (2001b).
In particular, the choice of an edge to modify depends on the parents and children of some
node in G that is a sink node (i.e., a node with no children) in H. For some configurations
of parents and children of this node, it is reasonably easy both to (1) identify an edge
modification and (2) prove that H remains an independence map after performing that
modification; for such configurations, our algorithm and proof are essentially the same as
that provided by Koc̆ka et al. (2001b). There is a particular configuration of parents
and children, however, for which it is more difficult to choose an edge to modify. For this
configuration, Koc̆ka et al. (2001b) conjecture that an appropriate edge modification exists,
but are unable to construct a procedure to identify one.

Under the assumption that the conjecture is true, Meek (1997) devised a two-phase
greedy algorithm that applies a Bayesian scoring criterion to identify the (unique) equiv-
alence class of DAGs that is a perfect map of the generative distribution, assuming such
an equivalence class exists. The algorithm can be summarized as follows. We start with
an equivalence class corresponding to no dependencies, and greedily add dependencies by
considering all possible single-edge additions that can be made to all DAGs in the current
equivalence class. Once the greedy algorithm stops at a local maximum, we apply a second-
phase greedy algorithm that considers at each step all possible single-edge deletions that
can be made to all DAGs in the current equivalence class. The algorithm terminates with
the local maximum identified in the second phase. The fact that the algorithm identifies (in
the limit) the optimal equivalence class is rather remarkable given the sparsity of the search
space; each state in the search space is connected to only as many other states as there
are possible single-edge additions to or single-edge deletions from the DAGs in that state.
Assuming that the generative model is small, we expect that this number of additions or
deletions will also be small for those states we encounter during the search.

Given that the two-phase greedy algorithm has theoretical justification in light of Meek’s
Conjecture being true, the obvious question is whether the algorithm works well in practice.
In other words, without regard to whether the generative distribution has a perfect map
in a DAG or to whether there is enough data to support the asymptotic properties of the
Bayesian scoring criterion, does the local maximum reached by the algorithm applied to real-
world data correspond to a model that is close in score to the global maximum? Although
we are unlikely to be able to answer this question without exhaustively enumerating and
scoring all possible equivalence classes, we can compare the two-phase algorithm with other
traditional search algorithms.

In order to perform the desired greedy search, we must be able to score all possible
single-edge additions and deletions from all DAGs contained within an equivalence class. In
principle, this might involve an actual enumeration of the DAGs within an equivalence class,
and for each DAG, all edge changes could be scored. Fortunately, Chickering (2002) has
formulated a search space that allows the efficient traversal of equivalence classes directly,
as opposed to the more traditional approach of traversing in DAG space. Although the
operators defined by Chickering (2002) do not correspond to the connectivity of equivalence
classes necessary for the two-phase search, we can leverage the existing results to derive the

508

Optimal Structure Identification With Greedy Search

appropriate operators with relative ease. We show that all of the operators can be scored
as local functions of the nodes and their neighbors in the equivalence-class representation
of a search state, and thus the space shares the computational advantages of traditional
DAG-based search spaces.

This paper is organized as follows. In Section 2, we describe our notation and introduce
previous relevant work. In Section 3, we discuss Meek’s conjecture and detail the algorithm
we use to identify each edge modification necessary in the transformation. We postpone a
rigorous proof of the conjecture to Appendix A, but provide some intuition for how we prove
the most difficult step. In Section 4, we discuss the asymptotic properties of a Bayesian
scoring criterion and show how these properties, in conjunction with the validity of Meek’s
Conjecture, imply the optimality of the two-phase greedy search algorithm. In Section 5,
we describe a search space where the states of the search correspond to equivalence classes
of DAGs, and for which the operators correspond to single edge additions and deletions to
member DAGs. We show how all operators can be scored as local functions of the nodes
in the search-state representation. In Section 6, we apply the two-phase greedy algorithm
to both synthetic and real-world datasets of different sizes. We compare solution quality
of the algorithm to (1) a traditional DAG-based greedy search algorithm and (2) a greedy
search algorithm applied to an equivalence-class space defined by Chickering (2002). Using
the synthetic data, we show that the two-phase algorithm is superior to the others at the
task of reconstructing the generative structure. Using the real-world data, we show that
the two-phase algorithm is competitive with the others—although slightly slower due to a
more densely connected search space—at the task of identifying high-scoring models. In
Section 7, we conclude with a summary and discussion of future relevant research. Detailed
proofs of the main results of this paper are contained in the appendix.

2. Background and Notation

In this section, we introduce our notation and discuss previous relevant work. Throughout
the paper, we use the following syntactical conventions. We denote a variable by an upper
case letter (e.g., A, Bi, Y,Θ) and a state or value of that variable by the same letter in lower
case (e.g., a, bi, y, θ). We denote a set of variables by a bold-face capitalized letter or letters
(e.g., X,Pai,NAi,j). We use a corresponding bold-face lower-case letter or letters (e.g.,
x,pai,nai,j) to denote an assignment of state or value to each variable in a given set. We
use calligraphic letters (e.g., G,B, E) to denote statistical models (both parameterized and
not).

2.1 Bayesian-Network Models and DAG Models

A parameterized Bayesian-network model B for a set of variables U = {X1, . . . , Xn} is a pair
(G, θ). G = (V,E) is a directed acyclic graph—or DAG for short—consisting of (1) nodes V
in one-to-one correspondence with the variables U, and (2) directed edges E that connect
the nodes. θ is a set of parameter values that specify all of the conditional probability
distributions; we use θi ⊂ θ to denote the subset of these parameter values that define
the conditional probability of node Xi given its parents in G. A parameterized Bayesian
network represents a joint distribution over U that factors according to the structure G as

509

Chickering

follows:

pB(X1 = x1, . . . , Xn = xn) =
n∏

i=1

p(Xi = xi|PaGi = paGi , θi) (1)

where PaGi is the set of parents of node xi in G. The structure G of a Bayesian network
is itself a model that represents the independence constraints that must hold in any distri-
bution that can be represented by a Bayesian network with that structure. The set of all
independence constraints imposed by the structure G via Equation 1 can be characterized
by the Markov conditions, which are the constraints that each variable is independent of its
non-descendants given its parents. That is, any other independence constraint that holds
can be derived from the Markov conditions (see, e.g., Pearl, 1988). We use A⊥⊥GB|S to
denote the assertion that DAG G imposes the constraint that A is independent of B given
set S. When the DAG G is clear from context we use A⊥⊥B|S. When S = ∅, we use A⊥⊥GB
(or A⊥⊥B) instead.

Throughout this paper we make numerous comparisons among statistical models; for
example, we compare DAG models with each other and we compare properties of probability
distributions with corresponding properties of DAGs. To simplify the discussion, we will
assume that when any such comparison is made, the models are defined over the same set
of variables. Thus when we say, for example, that two DAGs G and G′ represent the same
independence constraints, we assume that G and G′ are defined over the same set of nodes.

The descendants of a node Y in G—denoted DeGY —is the set containing Y and all nodes
reachable by a directed path from Y . The ancestors of a node Y in G is the set of nodes
that can reach Y by a directed path of length one or more. For any subset A of the nodes
in G, we say that a node A ∈ A is maximal if there is no other node A′ ∈ A such that A′

is an ancestor of A in G.

2.2 Equivalence and Independence Maps

Two DAGs G and G′ are distributionally equivalent if for every Bayesian network B = (G, θ),
there exists a Bayesian network B′ = (G′, θ′) such that B and B′ define the same proba-
bility distribution, and vice versa. Two DAGs G and G′ are independence equivalent if the
independence constraints in the two DAGs are identical. In most applications, researchers
assume that the conditional distribution for each node in the Bayesian-network model comes
from some specific family of distributions. For example, we might assume that the condi-
tional probability of each continuous variable is a sigmoid distribution. Such distributional
assumptions can sometimes impose non-independence constraints on the joint distribution
that lead to DAGs that are independence equivalent but not distributionally equivalent. For
the remainder of this paper, however, we will adopt the common distribution assumptions
found in the literature on Bayesian-network learning; namely, we assume Gaussian distri-
butions for continuous variables and unconstrained multinomial distributions for discrete
variables. Under these assumptions, the two notions of equivalence are identical, and we will
say that two DAGs G and G′ are equivalent to indicate that they are both distributionally
and independence equivalent.

We use G ≈ G′ to denote that G and G′ are equivalent. Because equivalence is reflexive,
symmetric, and transitive, the relation defines a set of equivalence classes over network
structures. We use E to denote an equivalence class of DAG models. Note that we use

510

Optimal Structure Identification With Greedy Search

the non-bold character E ; although arguably misleading in light of our convention to use
bold-face for sets of variables, we use the non-bold character to emphasize the interpretation
of E as a model for a set of independence constraints as opposed to a set of DAGs. We do,
however, use the set-containment operator to denote DAG-elements of an equivalence class.
Thus, we write G ∈ E to denote that G is in equivalence class E . To denote a particular
equivalence class to which a DAG model G belongs, we sometimes write E(G). Note that
G ≈ G′ implies G′ ∈ E(G) and G ∈ E(G′).

The skeleton of any DAG is the undirected graph resulting from ignoring the direction-
ality of every edge. A v-structure in DAG G is an ordered triple of nodes (X, Y, Z) such
that (1) G contains the edges X → Y and Z → Y , and (2) X and Z are not adjacent in G.
Verma and Pearl (1991) provide the following characterization of equivalent DAG models.

Theorem 1 (Verma and Pearl, 1991) Two DAGs are equivalent if and only if they have
the same skeletons and the same v-structures.

For any DAG G = (V,E), we say an edge X → Y ∈ E is covered in G if X and Y
have identical parents, with the exception that X is not a parent of itself. That is, X → Y
is covered in G if PaGY = PaGX ∪ X. The significance of covered edges is evident from the
following result:

Lemma 2 (Chickering, 1995) Let G be any DAG model, and let G′ be the result of
reversing the edge X → Y in G. Then G′ is a DAG that is equivalent to G if and only if
X → Y is covered in G.

The following transformational characterization of equivalent DAG models will prove to
be important to the main results of this paper.

Theorem 3 (Chickering, 1995) Let G and G′ be any pair of DAG models such that
G ≈ G′ and for which there are δ edges in G that have opposite orientation in G′. Then
there exists a sequence of δ distinct edge reversals in G with the following properties:

1. Each edge reversed in G is covered

2. After each reversal, G is a DAG and G ≈ G′

3. After all reversals G = G′

A DAG H is an independence map of a DAG G if every independence relationship in H
holds in G. We use G ≤ H to denote that H is an independence map of G. The symbol
‘≤’ is meant to express the fact that if G ≤ H then H contains more edges than does G.
We can use the independence-map relation to compare any pair of models—not just DAG
models—that impose independence constraints over a set of variables. We reserve the use
of the symbol ‘≤’, however, to comparisons between DAG models.

An edge X → Y in G is compelled if that edge exists in every DAG that is equivalent to
G. If an edge X → Y in G is not compelled, we say that it is reversible. In light of Theorem
1, for any reversible edge X → Y in G, there exists a DAG G′ equivalent to G in which the
edge is oriented in the opposite direction (i.e., X ← Y).

We say that a distribution p(·) is contained in a DAG G if there exists a set of parameter
values θ such that the parameterized Bayesian-network model (G, θ) represents p exactly.

511

Chickering

2.3 Learning Models from Data

As discussed in Section 1, our proof of Meek’s conjecture leads to an optimal greedy algo-
rithm for learning graphical models from data. We concentrate on Bayesian methods for
learning graphical models, the roots of which date back to the work of Jeffreys (1939). We
refer the reader to Heckerman (1995) or Buntine (1996) for a review of these methods and
a more complete list of relevant references. As we discuss below, however, the algorithm
can be used in conjunction with alternative learning methods.

Approaches to the Bayesian-network learning problem typically concentrate on identi-
fying one or more DAG models that fit a set of observed data D well according to some
scoring criterion S(G,D); once the structure of a Bayesian network is identified, it is usu-
ally straightforward to estimate the parameter values for a corresponding (parameterized)
Bayesian network. In the Bayesian approach to learning DAG models we define, for each
model G, the hypothesis Gh that the observed data is a set of iid samples from a distribution
that contains exactly the independence constraints implied by G. The scoring criterion is
then defined to be the relative posterior (or relative log posterior) of Gh given the observed
data. A more detailed discussion of the Bayesian scoring criterion, as well as a discussion
of alternative definitions of Gh, is given in Section 4.

For any scoring criterion S(G,D), we say that S is decomposable if it can be written as
a sum of measures, each of which is a function only of one node and its parents. In other
words, a decomposable scoring criterion S applied to a DAG G can always be expressed as:

S(G,D) =
n∑

i=1

s(Xi,PaGi) (2)

Note that the data D is implicit in the right-hand side Equation 2. When we say that
s(Xi,PaGi) is only a function of Xi and its parents, we intend this also to mean that the
data on which this measure depends is restricted to those columns corresponding to Xi

and its parents. To be explicit, we could re-write the terms in the sum of Equation 2
as s(Xi,D({Xi}),PaGi ,D(PaGi)), where D(X) denotes the data restricted to the columns
corresponding to the variables in set X. We find it convenient, however, to keep the notation
simple.

Most scoring criteria derived in the literature are decomposable. An important property
of decomposable scoring criteria is that if we want to compare the scores of two DAGs G
and G′, we need only compare those terms in Equation 2 for which the corresponding nodes
have different parent sets in the two graphs. This proves to be particularly convenient for
search algorithms that consider single edge changes to DAGs; in Section 5 we show how
using a decomposable scoring criterion leads to an efficient implementation of the two-phase
greedy search algorithm of Meek (1997).

A scoring criterion S(G,D) is score equivalent if, for any pair of equivalent DAGs G and
G′, it is necessarily the case that S(G,D) = S(G′,D).

2.4 Completed PDAGs

In our implementation of the greedy search algorithm presented in Section 5, we search
through equivalence classes of DAG models as opposed to DAG models themselves. As is

512

Optimal Structure Identification With Greedy Search

done by Chickering (2002), we use completed PDAGs—which we define below—to represent
equivalence classes.

An acyclic partially directed graph, or PDAG for short, is a graph that contains both
directed and undirected edges, and can be used to represent an equivalence class of DAGs.
Let P denote an arbitrary PDAG. We define the equivalence class of DAGs E(P) corre-
sponding to P as follows: G ∈ E(P) if and only if G and P have the same skeleton and the
same set of v-structures.1 From Theorem 1, it follows that a PDAG containing a directed
edge for every edge participating in a v-structure and an undirected edge for every other
edge uniquely identifies an equivalence class of DAGs. There may be many other PDAGs,
however, that correspond to the same equivalence class. For example, any DAG interpreted
as a PDAG can be used to represent its own equivalence class.

If a DAG G has the same skeleton and the same set of v-structures as a PDAG P and
if every directed edge in P has the same orientation in G, we say that G is a consistent
extension of P. Any DAG that is a consistent extension of P must also be contained in
E(P), but not every DAG in E(P) is a consistent extension of P. If there is at least one
consistent extension of a PDAG P, we say that P admits a consistent extension.

We use completed PDAGs to represent equivalence classes of DAGs. Recall that a
compelled edge is an edge that exists in the same orientation for every member of an
equivalence class, and that a reversible edge is an edge that is not compelled. The completed
PDAG corresponding to an equivalence class is the PDAG consisting of a directed edge for
every compelled edge in the equivalence class, and an undirected edge for every reversible
edge in the equivalence class. Given an equivalence class of DAGs, the completed-PDAG
representation is unique. Also, every DAG in an equivalence class is a consistent extension of
the completed PDAG representation for that class. Figure 1a shows a DAG G, and Figure
1b shows the completed PDAG for E(G). PDAGs are called patterns by (e.g.) Spirtes,
Glymour and Scheines (1993) and completed PDAGs are called essential graphs by (e.g.)
Andersson, Madigan and Perlman (1997) and maximally oriented graphs by Meek (1995).

(a) (b)

X

Z

W

U

Y X

Z

W

U

Y

Figure 1: (a) a DAG G and (b) the completed PDAG for E(G)

1. The definitions for the skeleton and set of v-structures for a PDAG are the obvious extensions to these
definitions for DAGs.

513

Chickering

3. Meek’s Conjecture

In this section, we discuss Meek’s conjecture and detail the constructive algorithm used to
prove that the conjecture is true. We provide some examples to help illustrate the algorithm
and to give some insight into why researchers have been unable to solve this problem. The
detailed proof is postponed to Appendix A.

Recall the transformational characterization of equivalence from Section 2.2, which
states that G ≈ G′ if and only if we can transform G into G′ by a sequence of covered edge
reversals. Meek’s conjecture is an analogous characterization of the independence-map re-
lation. In particular, Meek’s conjecture states that G ≤ H if and only if we can transform
G into H by a sequence of (1) covered edge reversals and (2) single edge additions. More
formally, we now state the main result of this paper.

Theorem 4 Let G and H be any pair of DAGs such that G ≤ H. Let r be the number of
edges in H that have opposite orientation in G, and let m be the number of edges in H that
do not exist in either orientation in G. There exists a sequence of at most r + 2m edge
reversals and additions in G with the following properties:

1. Each edge reversed is a covered edge

2. After each reversal and addition G is a DAG and G ≤ H
3. After all reversals and additions G = H

Our proof of Theorem 4 is constructive: we define an algorithm, shown in Figure 2,
that takes as input two DAGs G and H such that G ≤ H, and identifies an edge in G that
can either be added or reversed. We show that after the edge modification is made by the
algorithm (1) H remains an independence map of G and (2) G is “closer” to H in the sense
that it has either fewer adjacency differences or the same number of adjacency differences
and fewer orientation differences. Theorem 4 is an immediate consequence of the validity
of Algorithm Apply-Edge-Operation because we can convert G into H by calling the
algorithm repeatedly, replacing G after each call with the result of the algorithm, until
G = H.

In words, the algorithm works as follows. First, all common sink nodes that have
identical parents in the two DAGs are removed from both DAGs. By “remove” we mean
“remove from consideration”; in practice, the input DAGs need not be modified, and it
is to be understood that Algorithm Apply-Edge-Operation uses a “by value” calling
convention so that both G and H are local variables that the algorithm can modify without
side effects. The algorithm next identifies a sink node Y in H. If Y is also a sink node
in G, the algorithm chooses any parent X of node Y in H that is not a parent of Y in G,
and adds the edge X → Y to G. Otherwise, there is at least one edge Y → Z in G that
is oriented in the opposite direction in H, and the algorithm identifies a unique such edge
via Step 5 (this step will be discussed in more detail below). If the edge Y → Z is covered
in G, the algorithm reverses the edge and terminates. Otherwise, it follows by definition of
a covered edge that in G there is either (1) a parent X of Y that is not a parent of Z, in
which case the algorithm adds the edge X → Z or (2) a parent X of Z that is not a parent
of Y , in which case the algorithm adds the edge X → Y .

514

Optimal Structure Identification With Greedy Search

Algorithm Apply-Edge-Operation(G,H)
Input: DAGs G and H where G ≤ H and G 6= H
Output: DAG G′ that results from adding or reversing an edge in G.

1. Set G′ = G.

2. While G and H contain a node Y that is a sink in both DAGs and for which PaGY =
PaHY , remove Y and all incident edges from both DAGs.

3. Let Y be any sink node in H
4. If Y has no children in G, then let X be any parent of Y in H that is not a parent of

Y in G. Add the edge X → Y to G′ and Return G′.
5. Let DeGY denote the descendants of Y in G, and let D ∈ DeGY denote the (unique)

maximal element from this set within H.2 Let Z be any maximal child of Y in G such
that D is a descendant of Z in G.

6. If Y → Z is covered in G, reverse Y → Z in G′ and Return G′.
7. If there exists a node X that is a parent of Y but not a parent of Z in G, then add

X → Z to G′ and Return G′.
8. Let X be any parent of Z that is not a parent of Y . Add X → Y to G′ and Return
G′.

Figure 2: Algorithm that identifies and applies an edge modification

In the examples to follow, we will assume that the reader is familiar with the d-separation
criterion used to test independence relationships in DAG models. Those who are not familiar
with this criterion can refer to Appendix A for a detailed definition and description. In
Figure 3, we give an example application of the algorithm. Consider the two DAGs G and
H shown in Figure 3a and Figure 3b, respectively. It is easy to verify that G ≤ H by testing
that the unique Markov conditions in H (i.e., A⊥⊥B, A⊥⊥E|{C}, B⊥⊥E|{C}) also hold via
d-separation in G. Now consider a call to Algorithm Apply-Edge-Operation(G,H).
There are no common sink nodes, so the algorithm does not remove any nodes in Step
2. Node E is the only sink node in H, and because C is the only child of E in G, it is
easy to see that the edge tested in Step 6 is E → C. This edge is covered in G, so the
algorithm reverses it and terminates. The resulting DAG is shown in Figure 3c. We can
now call Algorithm Apply-Edge-Operation(G′,H) once again, using the DAG G′ that
was returned from the previous call to the function. For this call, both DAGs contain the
sink node E with the single parent C, and thus node E is removed from consideration
from both DAGs. After this removal, there are no remaining common sinks with the same
parents, so the algorithm proceeds to Step 3 and identifies C as a sink node in H. Again
there is only a single child to identify in Step 5, and thus the edge tested in Step 6 is C → A.
This edge is covered, and thus the algorithm terminates with the DAG shown in Figure 3d.

2. D is guaranteed to be unique by Lemma 29 in Appendix A.

515

Chickering

We call Algorithm Apply-Edge-Operation a final time, with the first DAG equal to
the one that was returned in the previous call. After removing E from both DAGs, the
algorithm adds the edge B → C in Step 4, and the resulting DAG—shown in Figure 3e—is
identical to H.

B

E

C

A B

E

C

A

B

E

C

A B

E

C

A B

E

C

A

(a) (b)

(c) (d) (e)

Figure 3: DAGs in an example application of Algorithm Apply-Edge-Operation. (a)
Original DAG G and (b) DAG H. (c), (d), and (e) show the DAGs resulting from
successive calls to the algorithm.

As mentioned in Section 1, the validity of all but one of the edge modifications can be
proved with relative ease. The difficult case to prove is when there is a child of the sink
node Y that has a parent that is not a parent of Y . In this case, Step 8 will be encountered,
and the key step is the selection of the specific such child Z in Step 5 of the algorithm. If
Step 8 were never encountered, we could use a much simpler method for choosing Z in Step
5. In particular, it would suffice to choose any maximal child of Y . To illustrate the difficult
case, we consider a single step of an example that was given by Koc̆ka et al. (2001b) and
is shown in Figure 4. Given the choice of adding either X1 → T or X2 → T to G, only the
second addition yields a DAG G′ such that H remains an independence map. In particular,
if we add the edge X1 → T , then the independence X1⊥⊥HC2 does not hold in the resulting
DAG. We now show that the correct choice between these two additions is made by a call
to our algorithm. There are no common sink nodes, and the unique sink node from H is
T . The set of descendants of T in G is {T, C1, C2}, and in H the maximal element D in
this set is D = C2. The maximal child of T in G that has D = C2 as a descendant is C2

itself, and thus the edge T → C2 is chosen by the algorithm to be considered for Steps 6 to
8. This edge is not covered in G, and C2 has the parent X2 that is not a parent of T , and
thus the algorithm adds the edge X2 → T in Step 8.

516

Optimal Structure Identification With Greedy Search

(a) (b)

X
1

C
2

C
1

T

X
2

X
1

C
2

C
1

T

X
2

Figure 4: DAGs (a) G and (b) H in an example application of Algorithm Apply-Edge-
Operation.

To fully understand how the selection of Z in Step 5 guarantees that the addition is
valid, the reader should study the proof in Appendix A. For those who would like simply
to gain some intuition, however, we now provide some insight into Step 5. Our discussion
assumes familiarity with the d-separation criterion, as well as familiarity with the concept
of an active path that defines the criterion.3 Again, readers not familiar with these concepts
can consult Appendix A. We provide relevant portions of both G and H in Figure 5a and
Figure 5b, respectively, to help clarify the discussion.

(a) (b)

X

D

Z

Y

A

E=B

X

D

Z

Y

A

E

B

E

Figure 5: Relevant portion of (a) G and (b) H that demonstrate how Step 5 leads to a valid
edge addition in Step 8.

3. We use a non-standard definition of an active path in Appendix A, but the standard definition will suffice
in the present discussion.

517

Chickering

Recall that node D from Step 5 is the maximal element of DeGY with respect to H. That
is, in Step 5 we look at the descendents of Y in G, and then pick the maximal descendant
with respect to H. Note that because Y is a sink in H, D 6= Y .

The potential problem of the addition of the edge X → Y to G is that some active path
between two nodes A and B given a conditioning set S exists in the resulting graph G′,
where no such active path exists in either G or H. It is reasonably easy to show that the
following three properties hold if there exists such an active path in G′: (1) there must exist
at least one such path that includes the edge X → Y , (2) neither Z nor any descendant of Z
(including D) in G can belong to the conditioning set, and (3) Y is not in the conditioning
set.

The first conclusion we make from these three properties (see Figure 5a) is that there
must be a descendant E of Y in G′—and hence E is also a descendant of Y in G—that
is either in S or is one of the endpoints (B in the figure). This follows because any first
non-descendant node along the path after X → Y follows a head-to-head junction (i.e.,
collider) along the path.

The second conclusion we make is that, because of our choice of Z, there must be an
active path between both (1) A and D and (2) B and D in the DAG G (it is easy to show
that there are active paths between both endpoints and Z, and there is a directed path in
G from Z to D that does not pass through any node in S). Thus in H (see Figure 5b),
there must also exist active paths between both endpoints and D. Furthermore, because
D 6∈ S (Property 2), both of these paths must end with an edge into D (i.e., A− . . . → D
and B − . . . → D) or else we could concatenate them together and identify an active path
between A and B in H. But this implies that (*) none of the descendants of D in H can
be in S, or else the concatenation of the active paths would be active, and (**) none of the
descendants of D in H can be an endpoint, or else the concatenation of the directed path
from D to that endpoint (through nodes not in S, where the first edge is away from D) can
be connected with the active path from the other endpoint to form an active path.

Now the logic of the choice of D in Step 5 becomes clear. Because D is the maximal
node in H out of all of the descendants of Y in G, D is an ancestor in H of all of these
nodes as well (see Lemma 29 in Appendix A). This means that D is an ancestor of E in H,
which from (*) and (**) yield a contradiction.

4. The Optimality of Greedy Search

In this section, we describe the two-phase greedy search algorithm proposed by Meek (1997),
and show that in the limit of large samples, the algorithm identifies the DAG corresponding
to the generative model if such a model exists. Here we are concerned with the theoretical
properties of the algorithm; we postpone discussing implementation details to Section 5.

To be more precise about the optimality result in this section, we need the following
notation. Given a DAG G and a probability distribution p(·), we say that G is a perfect
map of p if (1) every independence constraint in p is implied by the structure G and (2)
every independence implied by the structure G holds in p. If there exists some DAG that
is a perfect map of a probability distribution p(·), we say that p is DAG-perfect.

Assumption 1 Each case in the observed data D is an iid sample from some DAG-perfect
probability distribution p(·).

518

Optimal Structure Identification With Greedy Search

We allow there to be missing values in each iid sample, but our results implicitly depend
on the assumption that the parameters of each Bayesian network are identifiable. We will
therefore assume for the remainder of this section that the empirical distribution defined
by the data D converges to p(·) as the number of records grows large.

The remainder of this section is organized as follows. In Section 4.1, we explore the
asymptotic behavior of the Bayesian scoring criterion, and in Section 4.2, we detail the
two-phase greedy algorithm and show how it takes advantage of that asymptotic behavior
to identify the optimal solution. Finally, in Section 4.3, we discuss the applicability of the
algorithm to non-Bayesian scoring criteria and to Bayesian scoring criteria for which the
definition of the structure hypothesis differs from the one we presented in Section 2.3. We
also discuss how violations of Assumption 1 can affect the solution quality of the algorithm.

4.1 Asymptotic Behavior of the Bayesian Scoring Criterion

Recall from Section 2 that the Bayesian scoring criterion for a DAG G measures the relative
posterior or relative log posterior of the hypothesis Gh that the independence constraints in
G are precisely the independence constraints in the generative distribution. Without loss of
generality, we express the Bayesian scoring criterion SB using the relative log posterior of
Gh:

SB(G,D) = log p(Gh) + log p(D|Gh) (3)

where p(Gh) is the prior probability of Gh, and p(D|Gh) is the marginal likelihood. The
marginal likelihood is obtained by integrating the likelihood function (i.e., Equation 1)
applied to each record in D over the unknown parameters of the model.

Definition 5 (Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distribution
p(·). A scoring criterion S is consistent if in the limit as m grows large, the following two
properties hold:

1. If H contains p and G does not contain p, then S(H,D) > S(G,D)

2. If H and G both contain p, and G contains fewer parameters than H, then S(G,D) >
S(H,D)

Geiger, Heckerman, King and Meek (2001) show that the models we consider in this
paper (i.e., those containing Gaussian or multinomial distributions) are curved exponential
models. The details of this class of model are not important for our results, but Haughton
(1988) shows that (under mild assumptions about the parameter prior) the Bayesian scoring
criterion is consistent for curved exponential models. In particular, Haughton (1988) shows
that Equation 3 for curved exponential models can be approximated using Laplace’s method
for integrals, yielding

SB(G,D) = log p(D|θ̂,Gh)− d

2
log m + O(1) (4)

where θ̂ denotes the maximum-likelihood values for the network parameters, d denotes
the dimension (i.e., number of free parameters) of G, and m is the number records in D.

519

Chickering

The first two terms in this approximation are known as the Bayesian information criterion
(or BIC). The presence of the O(1) error means that, even as m approaches infinity, the
approximation can differ from the true relative log posterior by a constant. As shown by
Haughton (1988), however, BIC is consistent. Furthermore, it is easy to show that the
leading term in BIC grows as O(m), and therefore we conclude that because the error term
becomes increasingly less significant as m grows large, Equation 3 is consistent as well.
Because the prior term p(Gh) does not depend on the data, it does not grow with m and
therefore is absorbed into the error term of Equation 4. Thus the asymptotic behavior of
the Bayesian scoring criterion depends only on the marginal likelihood term.

Consistency of the Bayesian scoring criterion leads, from the fact that BIC is decompos-
able, to a more practical property of the criterion that we call local consistency. Intuitively,
if a scoring criterion is locally consistent, then the score of a DAG model G (1) increases
as the result of adding any edge that eliminates an independence constraint that does not
hold in the generative distribution, and (2) decreases as a result of adding any edge that
does not eliminate such a constraint. More formally, we have the following definition.

Definition 6 (Locally Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distribution
p(·). Let G be any DAG, and let G′ be the DAG that results from adding the edge Xi → Xj.
A scoring criterion S(G,D) is locally consistent if the following two properties hold:

1. If Xj 6⊥⊥pXi|PaGj , then S(G′,D) > S(G,D)

2. If Xj⊥⊥pXi|PaGj , then S(G′,D) < S(G,D)

Lemma 7 The Bayesian scoring criterion is locally consistent.

Proof: The proof follows from the fact that in the limit, the criterion ranks models in
the same order as BIC. Because BIC is decomposable, the increase in score that results
from adding the edge Xi → Xj to any DAG G is the same as the increase in score that
results from adding the edge to any other DAG H for which Xj has the same parents.
We can therefore choose a particular H—where PaHj = PaGj —for which adding the edge
Xi → Xj results in a complete DAG H′; that is, H′ has an edge between every pair of
nodes. Because the complete DAG imposes no constraints on the joint distribution, the
lemma follows immediately from the consistency of BIC. ¤

From Lemma 7, we see that as long as there are edges that can be added to a DAG
that eliminate independence constraints not contained in the generative distribution, the
Bayesian scoring criterion will favor such an addition. If the DAG contains the distribution,
then Lemma 7 guarantees that any deletion of an “unnecessary” edge will be favored by the
criterion. These properties allow us to prove the optimality of the greedy search algorithm
presented in the following section.

4.2 A Two-Phase Optimal Greedy Search Algorithm

In this section, we first detail the two-phase greedy search algorithm, called Greedy Equiva-
lence Search or GES by Meek (1997). Then we present—using the results of Section 4.1—a
version of the proof of Meek (1997) that GES is optimal in the limit of large datasets.

520

Optimal Structure Identification With Greedy Search

For the remainder of this section, we will assume that we are using the Bayesian scoring
criterion in conjunction with the search algorithm.

Up to this point, we have concentrated on DAG models in our discussion of learning from
data. We find it convenient now to switch to an equivalence-class interpretation of both
DAG hypotheses and the Bayesian scoring criterion in order to more clearly present the
GES algorithm. From the definition of Gh, it follows that all DAGs in the same equivalence
class correspond to the same hypothesis. That is, if G ≈ H then Gh = Hh. Thus we can
use Eh to denote the hypothesis corresponding to the (identical) hypotheses of the DAGs
contained within E . Furthermore, by definition of the Bayesian scoring criterion, the score
of a DAG model in equivalence class E is the (relative) log posterior of Eh; thus, the Bayesian
scoring criterion is well defined for equivalence classes, and can be evaluated using any DAG
member of the class. We will use SB(E ,D) to denote the score for equivalence class E using
the Bayesian scoring criterion.

Before proceeding, we show that the equivalence class that is a perfect map4 of the
generative distribution is the optimal solution.

Proposition 8 Let E∗ denote the equivalence class that is a perfect map of the generative
distribution p(·), and let m denote the number of records in D. Then in the limit of large
m, SB(E∗,D) > SB(E ,D) for any E 6= E∗.

Proof: Suppose this is not the case, and there exists a higher-scoring equivalence class
E 6= E∗. Because the scoring criterion is consistent, it must be the case that E contains p;
furthermore, because E∗ is a perfect map of p, it follows that E must be an independence
map of E∗. Let G be any DAG in E∗, and let H be any DAG in E . Because G ≤ H, we know
from Theorem 4 that there exists a sequence of covered edge reversals and edge additions
that transforms G into H. After each covered edge reversal, the score of G remains the same
because (by Lemma 2) it remains in the same equivalence class. After each edge addition,
however, the number of parameters in the DAG necessarily increases, and because the
scoring criterion is consistent, the score necessarily decreases. Because E is optimal, there
can therefore be no edge additions in the transformation, which contradicts the supposition
that E 6= E∗. ¤

As suggested by the name, GES is a greedy algorithm that searches over equivalence
classes of DAGs. Greedy search (in general) proceeds at each step by evaluating each
neighbor of the current state, and moving to the one with the highest score if doing so
improves the score. The set of neighbors of each state in the search defines the connectivity
of the search space. GES consists of two phases. In the first phase, a greedy search
is performed over equivalence classes using a particular connectivity between equivalence
classes. Once a local maximum is reached, a second phase proceeds from the previous local
maximum using a second connectivity. When the second phase reaches a local maximum,
that equivalence class is returned as the solution.

We use EEE+(E) to denote the neighbors of state E during the first phase of GES. In words,
an equivalence class E ′ is in EEE+(E) if and only if there is some DAG G ∈ E to which we can
add a single edge that results in a DAG G ∈ E ′. Given Theorem 3, an alternative way of
describing EEE+(E) is as follows. Let G be any DAG in E and let G′ be any DAG in E ′. Then

4. The definition of perfect map for equivalence classes is the obvious extension of the definition for DAGs.

521

Chickering

E ′ ∈ EEE+(E) if and only if there exists a sequence of covered edge reversals followed by a
single edge addition followed by another sequence of covered edge reversals that transform
G into G′. We use EEE−(E) to denote the neighbors of state E during the second phase of GES.
The definition of EEE−(E) is completely analogous to that of EEE+(E), and contains equivalence
classes that are obtained by deleting a single edge from DAGs in E .

In Figure 6a, we show a particular DAG G, and in Figure 6b, we show all members
of E = E(G). In Figure 6c, we show all DAGs reachable by a single edge addition to
a member of E . The union of the corresponding equivalence classes constitutes EEE+(E);
because all of the DAGs in Figure 6c are equivalent, EEE+(E) contains a single equivalence
class (corresponding to the “no independence constraints” hypothesis). In Figure 6d, we
show all DAGs reachable by a single edge deletion from a member of E . The union of the
two corresponding equivalence classes constitutes EEE−(E).

B C

A

(a) (b)

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

(c)

(d)

Figure 6: (a) DAG G, (b) E = E(G), (c) the single member of EEE+(E), and (d) the two
members of EEE−(E).

GES can now be described as follows. We first initialize the state of the search to be
the equivalence class E corresponding to the (unique) DAG with no edges. That is, the
first state of the search corresponds to all possible marginal and conditional independence
constraints. In the first phase of the algorithm, we repeatedly replace E with the member
of EEE+(E) that has the highest score, until no such replacement increases the score. Once a
local maximum is reached, we move to the second phase of the algorithm and repeatedly
replace E with the member of EEE−(E) that has the highest score. Once the algorithm reaches
a local maximum in the second phase, it terminates with its solution equal to the current
state E .

522

Optimal Structure Identification With Greedy Search

We prove that GES correctly identifies the optimal solution in the limit using two steps.
First, we show that the local maximum reached in the first phase of the algorithm contains
the generative distribution. Then, we use Theorem 4 to show that the equivalence class
reached at the end of the second phase must be a perfect map of the generative distribution.

The proof for the first phase of GES relies on the fact that the generative distribution
is DAG-perfect. Any such distribution must obey the composition independence axiom
described in Pearl (1988), the contrapositive of which can be stated as follows: if variable
X is not independent of the set Y given set Z, then there exists a singleton element Y ∈ Y
such that X is not independent of Y given set Z.

Lemma 9 Let E denote the equivalence class that results at the end of the first phase of
GES, let p(·) denote the distribution from which the data D was generated, and let m denote
the number of records in D. Then in the limit of large m, E contains p.

Proof: Suppose not, and consider any G ∈ E . Because G contains some independence
constraint not in p, and because the independence constraints of G are characterized by
the Markov conditions, there must exist some node Xi in G for which Xi 6⊥⊥pY|Pai, where
Y is the set of non-descendants of Xi. Furthermore, because the composition axiom holds
for p(·), there must exist at least one singleton non-descendant Y ∈ Y for which this
dependence holds. By Lemma 7, this implies that the DAG G′ that results from adding the
edge Y → Xi to G (which cannot be cyclic by definition of Y) has a higher score than G.
Clearly, E(G′) ∈ EEE+(E), which contradicts the fact that E is a local maximum. ¤

We now use Theorem 4 to show that in the second phase, GES will add independence
constraints (by “deleting edges”) until the equivalence class corresponding to the generative
distribution is reached.

Lemma 10 Let E denote the equivalence class that results from GES, let p(·) denote the
DAG-perfect distribution from which the data D was generated, and let m denote the number
of records in D. Then in the limit of large m, E is a perfect map of p.

Proof: Given Lemma 9, we know that when the second phase of the algorithm is about to
commence, the current state of the search algorithm contains p. We are guaranteed that
E will continue to contain p throughout the remainder of the algorithm by the following
argument. Consider the first move made by GES to a state that does not contain p. By
definition of EEE−(E), this move corresponds to an edge deletion in some DAG. But it follows
immediately from the fact that the score is consistent that any such deletion would decrease
the score, contradicting the fact that GES is greedy.

To complete the proof, assume that the algorithm terminates with some sub-optimal
equivalence class E , and let E∗ be the optimal equivalence class. From Proposition 8, we
know that E∗ is a perfect map of p, and because E contains p, it follows that E must be an
independence map of E∗. Let H be any DAG in E , and let G be any DAG in E∗. Because
G ≤ H, we know from Theorem 4 that there exists a sequence of covered edge reversals
and edge additions that transforms G into H. There must be at least one edge addition in
the sequence because by assumption E 6= E∗ and hence G 6≈ H. Consider the DAG G′ that
precedes the last edge addition in the sequence. Clearly E(G′) ∈ EEE−(E) and because G′ has
fewer parameters than H, we conclude from the consistency of the scoring criterion that E
cannot be a local maximum, yielding a contradiction. ¤

523

Chickering

4.3 Discussion

In this section, we discuss some subtle issues about the GES algorithm, and consider what
happens when some of our assumptions are violated.

Note that the first phase of GES does not depend on Theorem 4. In fact, the first
phase is not even needed to get the large-sample optimality. It is used only to identify an
equivalence class that contains the generative distribution, so we could simply start with
the complete equivalence class (i.e., no independence constraints) and move immediately to
the second phase. The problem, of course, with starting from the complete model is that
for any realistic domain, the number of parameters in the model will be prohibitively large.
The hope is that the first phase will identify a model that is as simple as possible. There
exist generative distributions (e.g., the distribution with no independence constraints) for
which the first phase will, in fact, have to reach the complete model in order to identify
an appropriate equivalence class, but we hope that in practice the first phase will reach a
local maximum that is reasonably sparse. In Section 6, we will see that for many real-world
domains, this is exactly what happens.

The optimality proofs in the previous section do not depend on the scoring criterion
being the Bayesian criterion. Lemma 9 (the first phase of GES) holds for any scoring
criterion that is locally consistent, which means that the result holds for any consistent
criterion that is decomposable in the limit (recall from Section 4.1 that we used consistency
and decomposability to get local consistency). The proof of Proposition 8 (the optimal
structure is perfect with respect to the generative distribution) and the proof of Lemma 10
(the second phase of GES) used Theorem 4 to compare the score of two equivalence classes
by comparing the scores of two particular DAGs in those equivalence classes. For any score-
equivalent criterion (such as the Bayesian criterion), this approach is clearly justified. Score
equivalence is not needed, however, for the large-sample optimality of GES. In particular, as
long as all DAGs in an equivalence class have the same number of parameters—a property
that is easy to show for the models we consider in this paper (i.e., those containing Gaussian
or multinomial distributions)—these proofs remain valid for any consistent criterion. To
see this, we consider the following result:

Proposition 11 Let G and H be any two DAGs that contain the generative distribution
and for which G has fewer parameters than H, and let S be any consistent (DAG) scoring
criterion. If all DAGs in an equivalence class have the same number of parameters, then
for every G′ ≈ G and for every H′ ≈ H, S(G′,D) > S(H′,D).

Proof: Because G′ andH′ both contain the generative distribution, and given that all DAGs
in an equivalence class have the same number of parameters, the result follows immediately
from the definition of consistency. ¤

Given Proposition 11, it is easy to see that the proofs for Proposition 8 and Lemma 10
hold without modification for any consistent scoring criterion, regardless of whether or not
the criterion is score equivalent. Things get a bit tricky when the scoring criterion is not
score equivalent, however, because if we are interested in the highest-scoring DAG model,
we may still have work to do after identifying the optimal equivalence class. In particular,
there can be an enormous number of DAGs contained within an equivalence class, and we
must search through these DAGs to find the best model. Depending on the particulars of
the scoring criterion, this search problem may or may not be difficult.

524

Optimal Structure Identification With Greedy Search

An example of a popular scoring criterion that is not score equivalent is the (Bayesian)
K2 scoring criterion. Cooper and Herskovitz (1992) derive this closed-form criterion for
multinomial conditional distributions by making some assumptions about network parame-
ter priors. It turns out that for two DAGs G1 and G2 that are in the same equivalence class,
we can get different values for the marginal-likelihood terms p(D|Gh

1) and p(D|Gh
2) in the

K2 criterion. Strictly speaking, this means that the hypothesis corresponding to a DAG in
the K2 score cannot be simply a hypothesis about independence constraints. In fact, the
reason that the K2 scoring criterion is not score equivalent is that Cooper and Herskovits
(1992) constrain the conditional-parameter priors in the DAGs to come from a particular
restricted family of distributions. Researchers often use K2 because it is easy to implement
and is very fast to evaluate. Furthermore, the score differences between members within the
same equivalence class are typically very small compared to the score differences between
members of different equivalence classes. As a result, researchers often use the criterion to
identify a good DAG, and then interpret the result to mean that the algorithm identified
the equivalence class corresponding to that DAG.

As opposed to the “accidental” non-score-equivalence of K2, Heckerman, Geiger, and
Chickering (1995) discuss a Bayesian scoring criterion for learning causal networks. In this
case, they define the hypothesis corresponding to a DAG model to assert, in addition to
the independence properties about the generative distribution, that each edge in the DAG
corresponds to a cause-effect relationship. It turns out that the resulting scoring criterion
is locally consistent, and thus—as described above—we can use GES to identify a single
equivalence class of models in which we can then search for a high-scoring (causal) model.

For most real domains, it is unlikely that the generative distribution will be DAG perfect
in the sense that there is a DAG defined over the observables that is perfect. In this
case, we need to refine our definition of the hypothesis corresponding to a DAG because
otherwise we are admitting that none of these hypotheses are true. We can relax the
hypothesis Gh to denote, for example, the assertion that G is a DAG model with fewest
parameters that can represent the joint distribution over the observables.5 If we make the
assumption that there exists a DAG defined over some set of variables that is a perfect map
of the generative distribution—of which the observables are a subset—then the composition
axiom still holds so we are guaranteed (in the limit) to identify an independence map of the
optimal hypothesis in the first phase of GES. All we know about the second phase in this
case, however, is that the resulting equivalence class will be a minimal independence map of
the optimal solution. That is, there is no DAG in the class for which we can remove an edge
and still contain the generative distribution. In Section 6, we explore the potential problems
with the DAG-perfect assumption by applying the GES algorithm to real-world data. As
we show in that section, the GES algorithm performs well in these domains, regardless of
whether the large-sample guarantees are justified.

5. An Efficient Search Space

In the previous section, we provided a theoretical justification for using the GES algorithm
by proving that in the limit of large datasets, the algorithm will identify the optimal model.

5. A technical difficulty with this definition is that two non-equivalent DAGs might both satisfy these
conditions, and thus the hypotheses are not mutually exclusive.

525

Chickering

Such a result is of little importance unless the search algorithm can be implemented in a rea-
sonably efficient manner. To make this point clear, consider the (provably optimal) search
algorithm that exhaustively enumerates and evaluates every possible structure; because the
number of DAGs grows super-exponentially with the number of variables in the domain,
and recent results from (e.g.) Gillispie and Perlman (2001) suggest that the number of
equivalence classes grows super-exponentially as well, such an algorithm is of no practical
importance except for very small domains (for only eight variables, there are over 700 billion
DAGs and over 200 billion equivalence classes).

The feasibility of applying any search algorithm in practice depends on the complexity
of both the algorithm and the search space to which that algorithm is applied. Because we
are using a greedy search algorithm over edges, it is easy to show that the total number
of search states visited by GES in a domain of n variables can never exceed n · (n − 1).
Furthermore, we have found that in practice the number of states visited generally grows
linearly with n.

Of greater concern to us—given the simplicity of the algorithm—is the complexity of
the search space: for each state visited by the greedy search algorithm, we need to generate
and evaluate all states that are reachable by the application of a single operator. If the
number of such neighbor states grows very large, or if each neighbor state takes too long to
evaluate, even the simple greedy algorithm may not terminate quickly enough. Chickering
(1996) shows that the problem of learning the optimal structure using the Bayesian scoring
criterion is NP-hard; this negative result suggests that in the worst case, the connectivity
of the search space that the algorithm encounters will be a problem. Our hope is that
in practice, this worst-case scenario will not occur, and that for real-world problems the
portion of the search space traversed by GES will be sparse. If we do, in fact, encounter
portions of the search space that are too dense to search efficiently, we can choose to consider
only a heuristically-selected subset of the candidate neighbors at each step, albeit at the
cost of losing the large-sample optimality guarantee. We should point out that the density
of the search space has never been a problem in any of the experiments we have performed,
including those presented in Section 6.

In this section, we describe a method for efficiently generating and evaluating the neigh-
bors of a given search state in the GES algorithm. The approach we take builds upon the
work of Chickering (2002), where completed PDAGs (described in Section 2.4) are used to
represent states in the search, and where operators are defined that can be used (by any
algorithm) to search the space of equivalence classes efficiently.

We now define a search space corresponding to each of the two phases of the GES
algorithm presented in Section 4.2. A search space has three components:

1. A set of states

2. A representation scheme for the states

3. A set of operators

The set of states represents the logical set of solutions to the search problem, the rep-
resentation scheme defines an efficient way to represent the states, and the set of operators
is used by the search algorithm to transform the representation of one state to another in

526

Optimal Structure Identification With Greedy Search

order to traverse the space in a systematic way. The two phases of GES correspond to
a greedy search algorithm applied to two different search spaces that differ by the set of
operators they contain.

In Section 4.2, both the states of GES and the connectivity of the search space in the
two phases are defined. In particular, the states of the search are equivalence classes of
DAGs, and the neighbors of a particular state E are either EEE+(E) or EEE−(E), depending
on whether GES is in the first or second phase, respectively. Furthermore, we will use
completed PDAGs—described in Section 2.4—to represent the states of the search. Thus
all that remains to defining the search space is an implementation of the operators.

Given a state of the search represented as a completed PDAG Pc, we define the following
two sets of operators that can be used to define the connectivity of the two phases of GES.
In these definitions and elsewhere, a pair of nodes X and Y in a PDAG are neighbors if
they are connected by an undirected edge, and they are adjacent if they are connected by
either an undirected edge or a directed edge.

Definition 12 Insert(X, Y,T)
For non-adjacent nodes X and Y in Pc, and for any subset T of the neighbors of Y that are
not adjacent to X, the Insert(X, Y,T) operator modifies Pc by (1) inserting the directed
edge X → Y , and (2) for each T ∈ T, directing the previously undirected edge between T
and Y as T → Y .

Definition 13 Delete(X, Y,H)
For adjacent nodes X and Y in Pc connected either as X−Y or X → Y , and for any subset
H of the neighbors of Y that are adjacent to X, the Delete(X, Y,H) operator modifies Pc

by deleting the edge between X and Y , and for each H ∈ H, (1) directing the previously
undirected edge between Y and H as Y → H and (2) directing any previously undirected
edge between X and H as X → H.

We use Insert operators to implement the connectivity for the first phase of GES, and
we use Delete operators to implement the connectivity for the second phase of GES. We
use ‘T’ to denote the set-argument of the Insert operator because every node in this set
becomes a “tail” node in a new v-structure as a result of the operator. Similarly, we use
‘H’ for the Delete operator because every node in this set becomes a “head” node in a new
v-structure.

After applying an operator to a completed PDAG, the resulting PDAG is not necessarily
completed. Therefore we may need to convert that PDAG to the corresponding completed
PDAG representation of the resulting equivalence class; this is accomplished in two steps by
first extracting a consistent extension from the (not completed) PDAG, and then construct-
ing the completed PDAG from that DAG. In Appendix C, we provide the implementation
of Chickering (2002) for both steps of this conversion algorithm. If the (not completed)
PDAG that results from an operator admits a consistent extension, we say that the opera-
tor is valid. Otherwise, we say the operator is not valid and do not allow its application to
the search space.

The algorithm in Appendix C that converts PDAGs to completed PDAGs takes time
O(|E| · k2) in the worst case—where |E| is the number of edges in the PDAG and k is the
maximum number of parents per node—which could potentially be a problem for domains

527

Chickering

with a large number of variables. As we show below, however, in GES all of the operators
for a given search state can be generated and evaluated efficiently without ever needing to
construct the representation of the resulting states. Thus the only time that the completed
PDAG representation for a state needs to be constructed is when GES “moves” to that state
(i.e., when the best neighbor state is identified and the current state is replaced with that
neighbor state). Furthermore, the algorithm does not depend on the number of records in
the data, and because it is applied infrequently compared to the number of times operators
are evaluated, its contribution to the overall run time of GES is insignificant.

There are easily testable conditions for both Insert and Delete operators to ensure that
they are valid. To define these conditions, we first need to define a semi-directed path.
This is the same as a directed path except that any of the edges may be undirected. More
formally we have:

Definition 14 A semi-directed path from Y to X in a PDAG is a path from Y to X such
that each edge is either undirected or directed away from Y .

The following two theorems and corresponding corollaries demonstrate (1) how to de-
termine efficiently whether or not an Insert or Delete operator is valid and (2) how to score
each such operator. We have simplified our notation to make the results easy to read: PaY

denotes the parents of node Y in the completed PDAG representation of the current state.
We use PaY

+X and PaY
−X as shorthand for PaY ∪{X} and PaY \ {X}, respectively. We

use NAY,X to denote the set of nodes that are neighbors of node Y and are adjacent to
node X in the current state. The proofs of these results, which are summarized in Table 1,
are given in Appendix B.

Theorem 15 Let Pc be any completed PDAG, and let Pc′ denote the result of applying
an Insert(X, Y,T) operator to Pc. There exists a consistent extension G of Pc to which
adding the edge X → Y results in a consistent extension G′ of Pc′ if and only if in Pc

1. NAY,X ∪T is a clique

2. Every semi-directed path from Y to X contains a node in NAY,X ∪T

Corollary 16 For any score-equivalent decomposable scoring criterion, the increase in
score that results from applying a valid operator Insert(X, Y,T) to a completed PDAG
Pc is

s(Y,NAY,X ∪T ∪PaY
+X)− s(Y,NAY,X ∪T ∪PaY)

Theorem 17 Let Pc be any completed PDAG that contains either X → Y or X − Y , and
let Pc′ denote the result of applying the operator Delete(X, Y,H) to Pc. There exists a
consistent extension G of Pc that contains the edge X → Y from which deleting the edge
X → Y results in a consistent extension G′ of Pc′ if and only if NAY,X \H is a clique.

Corollary 18 For any score-equivalent decomposable scoring criterion, the increase in
score that results from applying a valid operator Delete(X, Y,H) to a completed PDAG
Pc is

s(Y, {NAY,X \H} ∪PaY
−X)− s(Y, {NAY,X \H} ∪PaY)

528

Optimal Structure Identification With Greedy Search

Table 1: Necessary and sufficient validity conditions and (local) change in score for each
operator

Operator Validity Tests Change in Score

Insert(X, Y,T)

NAY,X ∪T is a clique

Every semi-directed path
from Y to X contains
a node in NAY,X ∪T

s(Y,NAY,X ∪T ∪PaY
+X)

− s(Y,NAY,X ∪T ∪PaY)

Delete(X, Y,H) NAY,X \H is a clique s(Y, {NAY,X \H}∪PaY
−X)

− s(Y, {NAY,X \H}∪PaY)

The final step in an implementation of GES is a method to generate candidate operators
after each move. We note that the majority of the operators at a given step of the algorithm
both will remain valid and will have the same score at the next step of the algorithm. Given
that we need to generate or re-generate a set of operators corresponding to a pair of nodes
X and Y , the most obvious approach is to use Definition 12 and Definition 13 directly to
generate those operators without regard to the validity conditions, and then test the validity
conditions for every one. This procedure is detailed in the following paragraph.

In the first phase of GES, only those nodes that are not adjacent will have a corre-
sponding set of operators. For such pair X and Y whose corresponding operators need to
be generated, we define T0 to be the set of all neighbors of Y that are not adjacent to
X. Let T0∗ denote the power set of T0; that is, T0∗ contains all possible subsets of T0.
We then test the validity of (and possibly score) the result of Insert(X, Y,T) for every
T ∈ T0∗. In the second phase of GES, only those nodes that are adjacent will have a
corresponding set of operators. For such a pair X and Y whose corresponding operators
need to be generated—and for which there is either an undirected edge between X and Y
or a directed edge from X to Y —we define H0 to be the set of all neighbors of Y that are
adjacent to X. Let H0∗ denote the power set of H0. We then test the validity of (and
possibly score) the result of Delete(X, Y,H) for every H ∈ H0∗.

For a set of nodes S of size k, there are 2k elements in the power set of S. It follows that
the feasibility of this implementation for GES will, to a large degree, depend on the number
of neighbors of the nodes in the completed PDAGs we encounter; if there is a node with too
many neighbors, we may simply have too many operators to test. In particular, during the
first phase of the algorithm, in order to generate the operators for a pair of non-adjacent
nodes X and Y , the implementation can be slow if Y has many neighbors that are not
adjacent to X. Similarly, during the second phase of the algorithm, the implementation
may be slow for (adjacent) X and Y if Y has many neighbors that are adjacent to X.

529

Chickering

There are a number of tricks we can apply to generate more efficiently the candidate
operators corresponding to a pair of nodes. Consider the first validity condition for the
Insert operator given in Table 1: namely, that the set NAY,X ∪ T must be a clique. If
this test fails for some set T, then it will also fail for any T′ that contains T. Thus if we
are careful, we can gain enormous savings by not generating candidates that we know are
not valid. A similar optimization can be made for the Delete operator, except that we save
only the cost of performing the validity test. In particular, if the validity test for the Delete
operator passes for some set H, then we know it will also pass for any set H′ that contains
H as a subset. We can also save time by noting that if the second validity condition for
the Insert operator passes for some T, then it will also pass for any T′ that contains T.
Finally, we note that if we are careful, we can avoid generating distinct operators that result
in the same neighbor state. For example, Delete(X, Y,H) and Delete(Y, X,H) result in
the same state,6 so only one of them need be generated. A similar result for the Insert
operator when the set T is empty is given by Chickering (2002): if X and Y have the same
parents, then Insert(X, Y, ∅) and Insert(Y, X, ∅) result in the same state.

Unfortunately, in the worst case there can be an exponential number of valid operators
for a particular state in the search. As was mentioned above, we can prune neighbors
heuristically in this situation to make the search practical. For example, we might choose
to search only through equivalence classes where the member DAGs have some upper bound
k on the number of parents for each node. In this case, we need consider only a polynomial
number of “v-structure sets” for each pair of nodes. In all of the experiments we have
performed, however, including those presented in the next section, we have yet to encounter
a domain for which GES encounters a state that has too many neighbors.

As is evident from the simplicity of the validity conditions from Table 1, there are a
number of ways to efficiently update (i.e., regenerate) the valid operators after each step of
GES. For example, consider the set of Insert operators corresponding to the nodes X and
Y . Suppose that all the operators have been generated and scored at a given step of (the
first phase of) GES, and we want to know whether these operators remain valid and have
the same score after applying some operator. From Table 1, we see that if the neighbors
of Y have not changed, the first validity condition must still hold for all previously-valid
operators; because we are adding edges in this phase, any clique must remain a clique.
Furthermore, if the parents of node Y have not changed, we need only check the second
validity condition (assuming the first holds) if the score of the operator is higher than the
best score seen so far; otherwise, we know that regardless of whether the operator is valid
or not, it will not be chosen in the next step.

Finally, we note that an obvious optimization that we use for both GES and the alterna-
tive search algorithms described in the next section is to cache away previously-computed
local scores corresponding to a node. Thus when we transition to the second phase of GES,
many of the operators can be scored without an explicit call to the scoring function.

6. These operators are only both defined if the edge between X and Y is undirected; note that the definition
of Delete(X, Y,H) is not symmetric in X and Y .

530

Optimal Structure Identification With Greedy Search

6. Experimental Results

In this section, we evaluate the GES algorithm using both synthetic and real-world data.
In Section 6.1, we use synthetic data to evaluate GES in terms of how well the algorithm
can identify the generative structure given datasets that are finite. In Section 6.2, we use
real-world data to evaluate the solution quality and total search time of GES when it is
applied to real data.

In all of our experiments, we compare GES to two alternative greedy search algorithms.
The first such algorithm, which we call D-space search, is a traditional DAG-space greedy
algorithm that considers adding, removing, and reversing edges at each step. The second
search algorithm, which we call E-space search, is a greedy search through equivalence classes
using the following operators defined by Chickering (2002): (1) all valid Insert operators
for which T is empty (no v-structures are created that contain previously undirected edges),
(2) all valid Delete operators where the set H is empty, (3) a directed edge can be reversed
if the result is a PDAG that admits a consistent extension and (4) for any length-two path
of undirected edges X−Y −Z, if X and Z are not adjacent, then the edges can be directed
as X → Y ← Z if the result is a PDAG that admits a consistent extension. As shown by
Chickering (2002), all of these operators can be tested and scored efficiently.

We use the Bayesian BDeu scoring criterion for discrete variables—derived by Hecker-
man et al. (1995)—in all of our experiments. The BDeu criterion uses a parameter prior
that has uniform means, and requires both a prior equivalence sample size and a structure
prior to specify. For all of our experiments, we use a prior equivalent sample size of ten,
and a structure prior of 0.001f , where f is the number of free parameters in the DAG. Let
qi denote the number of configurations of the parent set Pai, and let ri denote the number
of states of variable Xi. Then the version of the BDeu criterion used in our experiments is:

SBDeu(G,D) = log
n∏

i=1

0.001(ri−1)qi

qi∏

j=1

Γ(10
qi

)

Γ(10
qi

+ Nij)
·

ri∏

k=1

Γ(10
ri·qi

+ Nijk)

Γ(10
ri·qi

)
(5)

where Nijk is the number of records in D for which Xi = k and Pai is in the jth configura-
tion, and Nij =

∑
k Nijk. We also use the (non-Bayesian) constraint that each parameter

needs to have a corresponding sample size of at least five. Note from Equation 5 that our
scoring criterion is decomposable.

6.1 Synthetic-Data Experiments

In our experiments with synthetic data, we generated datasets of various sample sizes from
a gold standard Bayesian network with known structure and parameters. In order to make
the connectivity of the gold standard “realistic”, we constructed each generative network
as follows. First, we took a real-world dataset (the MediaMetrix dataset described in detail
in Section 6.2), consisting of roughly 5000 records in a domain of 13 discrete (three-valued)
variables, and ran the D-space search algorithm to identify a local maximum. Then, we
performed ten random D-space edge operations (i.e., additions, deletions, and reversals) to
that local maximum, and the resulting structure defined the edges in our gold standard.
Finally, we parameterized the gold standard by sampling all of the conditional (multinomial)
parameters from a uniform Dirichlet distribution.

531

Chickering

The synthetic data experiments can be described as follows. We generated 100 ran-
dom gold standards as described above, and considered sample sizes from 500 to 10000 in
increments of 500 samples. For each sample size, we created a dataset with the appro-
priate number of records from each of the 100 gold standards. For each sampled dataset,
we learned three Bayesian networks using each of the three greedy search algorithms, and
checked whether or not these networks were equivalent to the gold standard. Figure 7 con-
tains the results of these experiments. The figure plots, for each of the three algorithms,
the number of the learned networks that were equivalent to the gold standard as a function
of the sample size.

0

50

100

500 2000 3500 5000 6500 8000 9500

Sample Size

N
um

be
r

E
qu

iv
al

en
t t

o
G

ol
d

S
ta

nd
ar

d

GES

D-space

E-space

Figure 7: Number of learned networks that are equivalent to the generative structure as a
function of the sample size.

As we see from the figure, GES proved to be superior to the competing algorithms
when tasked with identifying the generative structure. Rather surprising is that the models
identified using D-space were more often equivalent to the generative structure than those
identified using E-space; one explanation for this is that by virtue of generating the gold
standards using D-space, we may be biasing the experiment in favor of that space. To gauge
the complexity of the domain, we recorded the number of edges, the number of parameters,
and the maximum number of parents for each of the 100 gold-standard models. The averages
of these measurements were 9.1 (±1.1), 98.0 (±36.1), and 2.4 (±0.7), respectively, which
demonstrate that for this experiment, the optimal equivalence classes were sparse.

532

Optimal Structure Identification With Greedy Search

6.2 Real-World Data Experiments

We used the following six real-world datasets in our experiments. For all datasets, we
assume that values are not missing at random. In particular, we treat “missing” as a
distinct, discrete state.

1. Microsoft Web Training Data (MSWeb)

This dataset, which is available via anonymous ftp from the UCI Machine Learning
Repository, contains 32711 instances of users visiting the www.microsoft.com web site
on a day in 1996. For each user, the data contains a variable indicating whether or
not that user visited each of the 292 areas (i.e., “vroots”) of the site. We used the 50
most popular areas and a sample of 5,000 users.

2. Nielsen

The Nielsen dataset contains data about television-watching behavior during a two-
week period in 1995. The data was made available courtesy of Nielsen Media Research.
The data records whether or not each user watched five or more minutes of network
TV shows aired during the given time period. There were 3314 users in the study,
and 402 television shows. We used the most popular 50 shows in our experiments.

3. EachMovie

The EachMovie dataset consists of viewer ratings on movies. The data was collected
during an 18-month period beginning in 1995. We used the ratings of the 50 most
popular movies by a sample of 5,000 viewers. The rating is a discrete variable that is
either missing, or is provided as an integer from one to five.

4. MediaMetrix

This dataset contains demographic and internet-use data for 4808 individuals during
the month of January 1997. We used only the internet-use variables in our experi-
ments; there are 13 such variables that indicate the category of web site visited.

5. 1984 United States Congressional Voting Records (HouseVotes)

This dataset contains the 1984 congressional voting records for 435 representatives
voting on 17 issues, and is available via anonymous ftp from the UCI Machine Learning
Repository. Votes are all three-valued: yes, no, or unknown. For each representative,
the political party is given; this dataset is typically used in a classification setting to
predict the political party of the representative based on the voting record.

6. Mushroom

The Mushroom dataset, available via anonymous ftp from the UCI Machine Learning
Repository, contains physical characteristics of 8124 mushrooms, as well as whether
each mushroom is poisonous or edible. There are 22 physical characteristics for each
mushroom, all of which are discrete.

For our experiments, we considered some variants of the GES algorithm that we deemed
to be better suited for real-world domains. Our inclusion of these variants was motivated

533

Chickering

by a number of observations. First, we found that after running phase two of GES, it was
often the case that we could further increase the score by applying more Insert operators;
in other words, the state reached after phase two was not a local maximum with respect to
the phase-one operators. Second, we found that in the first phase of GES, the best Delete
operator would often have a better score than the best Insert operator, even though the
best Insert operator increased the score; note that this situation is impossible in the large-
sample limit. Finally, we noticed that in practice, the number of v-structures induced by
the sets T and H for the best Insert and Delete operators, respectively, was in almost all
cases either zero or one. Thus we can often restrict the size of T and H to size one and get
the same local maximum as we would with no such restrictions. As discussed in Section 5,
such a restriction reduces the number of operators we need to evaluate and thus will speed
up the implementation.

We ran experiments using three specific variants of GES. The first variant, which we
call GES*, simply applies GES repeatedly until neither phase one nor phase two increases
the score. We use GES* instead of GES in our experiments because it is guaranteed to
find a solution that is at least as good (in terms of the score) as GES. The second variant,
which we call OPS, performs a greedy search using both the Insert operators and the Delete
operators at each step. Finally, the third variant, which we call OPS-1, is identical to OPS
except that we only consider Insert and Delete operators for which |T| ≤ 1 and |H| ≤ 1,
respectively.

The results of our experiments are given in Table 2 and Table 3. In Table 2 we report,
for each dataset, the score of the maximum reached by each algorithm. In Table 3 we
report, for each dataset, the total learning time in seconds for each algorithm.

Table 2: Scores of the model selected by each of the algorithms.
Dataset GES* OPS OPS-1 D-space E-space
MSWeb -38599.7 -38599.7 -38599.7 -38602.0 -38618.4
Nielsen -42787.8 -42787.8 -42787.8 -42800.3 -42916.4
EachMovie -258531.0 -258531.0 -258531.0 -258531.0 -258531.0
MediaMetrix -46341.3 -46341.3 -46341.3 -46369.8 -46341.3
HouseVotes -6061.1 -6061.1 -6061.1 -6061.1 -6061.1
Mushroom -177351 -177351 -177351 -177408 -177351

Table 3: Total learning time in seconds for each algorithm.
Dataset GES* Time OPS Time OPS-1 Time D-space Time E-space Time
MSWeb 54 54 52 28 24
Nielsen 36 36 36 30 12
EachMovie 25 24 24 16 16
MediaMetrix 3 3 3 2 2
HouseVotes 0.5 0.5 0.5 0.3 0.3
Mushroom 14 14 13 5 4

534

Optimal Structure Identification With Greedy Search

Rather surprising, we see from Table 3 that all of the algorithms performed about the
same in terms of the resulting score. Although the GES variants always identified a model
that had the same score or better than the two competing approaches, we do not believe
the differences are significant.7 Upon closer examination of the models, we found some
interesting properties. For HouseVotes and EachMovie, all of the algorithms resulted in the
same local maximum, and this model contained no compelled edges. For MediaMetrix and
Mushroom, all of the algorithms except for D-space resulted in the same local maximum,
and this model contained no compelled edges. For all datasets, the GES variants traversed
the same set of states and resulted in the same local maximum. All of the models learned
were reasonably sparse.

Because the local maxima from the experiments can be identified without applying
many (if any) operators that create v-structures, all algorithms essentially traversed over
the same set of states. We expect that in domains for which there are more complicated
dependencies, the GES-based algorithms will identify different models both from themselves
and the two competing algorithms. Given the results in Section 6.1, we also have reason
to hope that these algorithms will identify better models. From Table 3 we see that the
running times of the GES variants are generally larger than the running times of the two
alternative algorithms. To investigate the source of the increase in time, we recorded the
number of times that the local scoring function was called by each of the algorithms. In
Table 4 we report the total learning time—in milliseconds—divided by the number of times
the evaluation function was called; as we see, for each of the datasets, this time is roughly
constant across all of the algorithms.

Table 4: Total learning time in milliseconds divided by the number of calls to the evaluation
function for each algorithm.

Dataset GES* Time OPS Time OPS-1 Time D-space Time E-space Time
MSWeb 5.01 5.01 4.99 5.27 5.40
Nielsen 4.72 4.77 4.78 4.88 7.31
EachMovie 10.01 9.59 9.73 9.56 9.56
MediaMetrix 5.96 5.96 6.04 6.45 6.40
HouseVotes 0.73 0.70 0.76 1.06 0.95
Mushroom 12.44 12.50 12.29 13.00 12.25

Because we cache the local scores of the nodes during all searches, each operator re-score
(due to a change in the local connectivity of the state) requires on average a single call to
the scoring function. Therefore the times in Table 4 are roughly equal to the time spent
per operator re-score. Because this time is constant, we conclude that the increase in time
is due entirely to the additional operators that we need to score (and re-score) at each
step. Furthermore, we conclude that our validity tests for the Insert and Delete operators

7. Chickering (2002) compared D-space to E-space using a 70% sample of the full datasets, and the winning
algorithm was different than our results for three of them.

535

Chickering

are efficient enough that the time to traverse the search space using the GES variants is
dominated by the time spent scoring the operators.

7. Conclusion

In this paper, we proved the so-called “Meek Conjecture” and showed how the result leads
to the asymptotically optimal two-phase greedy search algorithm GES that was originally
proposed by Meek (1997). We provided a new implementation of the search space to which
GES can be applied such that all operators used by the algorithm can be scored efficiently
using local functions of the nodes in the domain. Using synthetic data, we demonstrated
that (1) the GES algorithm can identify the generative structure when given enough data
and (2) the GES algorithm is superior in this regard to a greedy search using two alternative
search spaces. We applied GES to six real-world datasets and saw that the solution quality
was roughly the same as the two alternative greedy approaches. Although the time per
evaluation-function call was the same as the competing algorithms, we found that the larger
number of neighbors per state for the GES algorithm resulted in slightly slower run times.

An interesting extension to this work would be to investigate whether or not there are
any large-sample optimality guarantees to GES (or a variant of GES) when the generative
structure is not a DAG defined over the observables. As discussed in Section 4.3, if the
generative structure is a DAG that includes hidden variables, the composition axiom of
independence still holds among the observables, and the first phase of GES will lead to an
independence map of the optimal model. We know that result of the second phase of the
algorithm is a minimal such independence map, but can we say anything stronger? In a
recent paper, Chickering and Meek (2002) consider situations when the composition axiom
is guaranteed to hold, and investigate the optimality guarantees of GES in these situations.

It is unfortunate that the real-world dataset experiments did not provide a good test
bed for our algorithms. It does suggest, however, the following search strategy to apply
when faced with real data: First run a simple (and fast) DAG-based greedy algorithm. If
the resulting model is simple (e.g., there are no compelled edges and there are only a few
edges), we probably will not be able to find a better solution with a more sophisticated
algorithm. If the model is reasonably complicated, on the other hand, we may try to apply
GES or one of its variants.

Recall that the OPS algorithm from Section 6.2 considers both the Insert and Delete
operators simultaneously. An interesting extension would be to implement an algorithm that
considers, in addition to these operators, the “extra” operators from the E-space algorithm
of Chickering (2002) that connect states that are not adjacent in the OPS space; these
operators are the edge-reversal operator and the operator that makes a v-structure by
directing two undirected edges. This extension would increase the number of evaluations
that would need to be performed at each state, but perhaps the combined search algorithm
would perform better.

Acknowledgments

Special thanks to Michael Perlman, who revived my interest in Meek’s conjecture; I had
long ago given up after many months in pursuit of a proof. My discussions with Michael

536

Optimal Structure Identification With Greedy Search

Perlman, Milan Studený, Tomás̆ Koc̆ka, Robert Castelo and Steve Gillispie proved to be
extremely useful, and I am grateful to them all. I would also like to thank Chris Meek—who
initially introduced me to his conjecture in 1995—for the many helpful discussions on this
work. Others who provided useful comments on earlier drafts include Remco Bouchaert,
David Heckerman, Rich Neapolitan, and two anonymous reviewers.

Appendix A: Detailed Proof of Theorem 4

In this appendix, we provide a detailed proof of Theorem 4. The theorem is an immediate
consequence of Lemma 30, which demonstrates the correctness of Algorithm Apply-
Edge-Operation.

Almost all of the results presented here are proved using properties of the d-separation
criterion. This criterion—which is detailed by (e.g.) Pearl (1988)—is used to test whether
or not certain independence constraints are implied by a DAG model. In particular, two
nodes A and B are said to be d-separated in a DAG G given a set of nodes S if and only if
there is no active path in G between A and B given S. The standard definition of an active
path is a simple path for which each node W along the path either (1) has converging arrows
and W or a descendant of W is in S or (2) does not have converging arrows and W is not
in S. By simple, we mean that the path never passes through the same node twice.

To simplify our proofs, we use an equivalent definition of an active path—that need not
be simple—where each node W along the path either (1) has converging arrows and W is
in S or (2) does not have converging arrows and W is not in S. In other words, instead
of allowing a segment → W ← to be included in a path by virtue of a descendant of W
belonging to S, we require that the path include the sequence of edges from W to that
descendant and then back again. For those readers familiar with the celebrated “Bayes
ball” algorithm of Shachter (1998) for testing d-separation, our expanded definition of an
active path is simply a valid path that the ball can take between A and B.

More formally, we have the following definitions.

Definition 19 (Collider) Let π(W1, Wn) denote any path between W1 and Wn. A node
Wi is called a collider at position i of the path if Wi 6∈ {W1, Wn} and the path contains the
converging arrows Wi−1 → Wi ← Wi+1 at Wi.

Definition 20 (Active Path) A path π(A, B) between A and B in DAG G is S-active in
G if the following conditions hold:

1. A 6∈ S and B 6∈ S

2. If W ∈ S is an element of π(A, B), then W is a collider at every position in π(A, B)

3. If W 6∈ S is an element of π(A, B), then W is not a collider in any position in π(A, B)

The direction of each terminal edge—that is, the first and last edge encountered in
a traversal from one end of the path to the other—in an active path is important for
determining whether we can append two active paths together to make a third active path.
We say that a path π(A, B) is into A if the terminal edge incident to A is oriented toward

537

Chickering

A (i.e., A ←). Similarly, the path is into B if the terminal edge incident to B is oriented
toward B. If a path is not into an endpoint A, we say that the path is out of A.

The following lemma demonstrates when we can create an active path by simply ap-
pending two other active paths together.

Lemma 21 Let π(A, B) be an S-active path between A and B, and let π(B, C) be an S-
active path between B and C. If either path is out of B, then the concatenation of π(A, B)
and π(B, C) is an S-active path between A and C.

Proof: Because at least one of the paths is out of B, the junction between π(A, B) and
π(B, C) cannot be a collider. Furthermore, because B 6∈ S, the concatenation satisfies all
of the conditions of Definition 20. ¤

For example, consider the DAG shown in Figure 8, and assume S = {C}. If we let
π(A, D) = {A → B → D} and π(D, E) = {D → C ← D ← E, it follows from Lemma 21
that because (1) both paths are S-active and (2) π(D, E) is out of D, the concatenation
π(A, E) = A → B → D → C ← D ← E is S-active.

A E

B C

D

Figure 8: Example DAG with a S-active path between A and E, where S = {C}.

In the proofs that follow, we will make extensive use of Lemma 21, but we will do so
implicitly to simplify the presentation. In many of the results, for example, we prove the
existence of an S-active path between two nodes A and B by showing that (1) there is an
S-active path between A and some node X1, (2) there is an S-active path between B and
X2, and (3) there is an S-active path between X1 and X2 that is out of both X1 and X2.
To conclude from these properties that there is an S-active path between A and B, we need
to make an awkward argument about applying Lemma 21 twice, whereas the conclusion is
obvious given the lemma.

The following lemma and its two corollaries provide the main tools we use to prove
that Algorithm Apply-Edge-Operation is correct. In particular, these results expose
properties about active paths that must hold in light of an edge addition to some DAG.

Lemma 22 Let G be any DAG, and let G′ be the DAG that results by adding the edge
X → Y to G. Let π(A, B) be any S-active path in G′ such that there is no S-active path
between A and B in G. Then the following properties hold:

1. π(A, B) contains the edge X → Y

2. X 6∈ S

3. If Y is an endpoint, then in G there is an active path between the other endpoint and
X

538

Optimal Structure Identification With Greedy Search

4. If Y 6∈ S, then in G either there are active paths between both endpoints and X, or
there is an active path between one endpoint and X and an active path between the
other endpoint and Y .

5. If Y ∈ S, then in G either there are active paths between both endpoints and X, or
there is an active path between one endpoint and X and an active path between the
other endpoint and all other parents of Y that are not in S.

Proof: (1) follows immediately because otherwise the path is active in G. Given (1), (2)
follows because otherwise the path would not be active. (3) follows from (2) and the fact
that every sub-path of an active path between nodes not in S is by definition active.

We now prove (4) and (5) by considering the following two traversals of π(A, B): consider
a traversal of π(A, B) from A along π(A, B) until the edge between X and Y is about to
be traversed for the first time. Similarly, consider the same traversal except starting at B.

First we show that at least one of the traversals ends at X, and thus we establish for
both (4) and (5) that there exists in G an active path between one of the endpoints and
X. Suppose to the contrary that both traversals end at node Y . If Y ∈ S, the last edge in
both traversals must be into Y and thus we could append them together to form an active
path that violates property (1). Similarly, if Y 6∈ S, it follows that because the next edge
(i.e., X → Y) along both traversals is into Y , the last edge in both traversals is out of Y ,
and again we can form an active path in violation of property (1).

Without loss of generality, assume there is an S-active path between A and X in G.
Property (4) now follows immediately because the traversal from B must have ended at X
or at Y ; because Y 6∈ S, this sub-path is active. To prove property (5), we assume Y ∈ S.
If the traversal from B ended at X, the property follows immediately. Otherwise, the last
edge in the traversal must have been into Y , and thus the next-to-last node is some parent
X ′ of Y that is not in S, and thus we conclude that there is an active path between B and
X ′. Now consider any other parent X ′′ of Y that is not in S: we can form an active path
between B and X ′′ by appending the active path between B and X ′ with the (active) path
X ′ → Y ← X ′′ in G that is out of X ′. ¤

Corollary 23 Let G be any DAG, and let G′ be the DAG that results by adding the edge
X → Y to G. Let H be any DAG such that G ≤ H. Then for any S-active path π in G
identified with properties 3, 4, or 5 from Lemma 22, there is a corresponding S-active path
between the endpoints of π in H.

Proof: Follows immediately because G ≤ H. ¤
The following second corollary is convenient for our main proof because two of the

additions made by the algorithm are edges into a node that is a sink in the independence
map.

Corollary 24 Let G be any DAG, and let G′ be the DAG that results from adding the edge
X → Y to G. Let H be any DAG such that (1) G ≤ H, (2) Y is a sink node in H, and (3)
H contains the edge X → Y . Let π(A, B) be any S-active path in G′ such that there is no
S-active path between A and B in G. If Y ∈ S, then there is an S-active path between A
and B in H.

539

Chickering

Proof: From Corollary 23 (Property 5) we know that in H, there is an S-active path
between one of the endpoints and X, and there is an S-active path between the other
endpoint and either X or a parent of Y from G that is not in S. Without loss of generality,
assume there is an S-active path between A and X in H. Given the three preconditions of
the corollary, it follows that every parent of Y in G′ is a parent of Y in H. Thus there is
an S-active path in H between B and some parent W of Y that is not in S (with W = X
a possibility). Consequently we can construct an S-active path between A and B in H by
connecting the two active paths from the endpoints with the active path X → Y ← W that
is out of both X and W . ¤

The next lemma is the key idea of Step 2 of the algorithm: it allows us to remove nodes
from both of the input DAGs in order to simplify the problem.

Lemma 25 Let G and H be two DAGs containing a node Y that is a sink in both DAGs
and for which PaGY = PaHY . Let G′ and H′ denote the subgraphs of G and H, respectively,
that result by removing node Y and all its in-coming edges. Then G ≤ H if and only if
G′ ≤ H′.

Proof: (If) For this case, we assume that G′ ≤ H′, and show that any active path in G
must also exist in H, thus establishing that G ≤ H. Let π(A, B) be any S-active path
between A and B in G.

If Y never appears in π(A, B), then π(A, B) is T-active in G′, where T = S \ {Y }, and
thus by assumption, there is a corresponding T-active path π′(A, B) between A and B in
H′. Furthermore, because H′ is a subgraph of H, and because Y cannot appear in π′(A, B)
(Y does not exist in H′), we conclude that π(A, B) is S-active in H, thus proving the result.
For the remainder of the proof, we assume that Y appears in π(A, B).

Suppose Y ∈ S. This implies that Y occurs as a collider at every position in π(A, B).
Consider a traversal from A to B along π(A, B), and let X → Y ← X ′ and Z ′ → Y ← Z be
the first and last occurrence of Y (as a collider) on the traversal. Because every sub-path
of an S-active path between members not in S is by definition active, and because neither
X nor Z can be in S (else π(A, B) would not be active through the identified colliders),
we conclude that in G there exists (1) an S-active path between A and X that does not
pass through Y and (2) an S-active path between B and Z that does not pass through Y .
Clearly both of these paths are T-active in G′ given T = S \ {Y }, and by assumption that
G′ ≤ H′, it follows that there exist corresponding T-active paths π′(A, X) and π′(B, Z)
in H′. Because H′ is a sub-graph of H, both π′(A, X) and π′(B, Z) are T-active in H.
Furthermore, because neither path contains Y , they are both S-active in H as well. This
means we can append them together with the S-active path X → Y ← Z that is out of
both X and Z to create an S-active path between A and B in H.

Suppose Y 6∈ S. Then because Y is a sink node in G, the only time it can occur in
π(A, B) is as an endpoint. Without loss of generality, assume Y = A. In the degenerate
case when Y is also B, the result follows trivially, so we assume that there is at least one
edge in π(A, B). Because Y is a sink in G, we know the first edge in π(A, B) is into Y : let
X → Y denote this first edge. Clearly X cannot be in S, which means that there is an
S-active path between X and B that does not include Y . This means that the same path is
S-active in G′, and therefore because we are assuming G′ ≤ H′, there must exist an S-active
path π′(B, X) between B and X in H′. Because the parent sets of Y are identical in G and

540

Optimal Structure Identification With Greedy Search

H, it follows that the edge X → Y exists in H and constitutes an S-active path in H that
can be appended to π′(B, X) to create an S-active path between Y = A and B in H.
(Only If) For this case, we assume that G ≤ H, and show that any active path in G′ must
also exist in H′, thus establishing that G′ ≤ H′. Let π′(A, B) be any S-active path between
A and B in G′. Because Y does not exist in G′ we can assume, without loss of generality,
that Y 6∈ S. Because G′ is a subgraph of G, π′(A, B) is S-active in G. By the assumption
that G ≤ H, it follows that there exists a corresponding S-active path π(A, B) between A
and B in H. Because Y 6∈ S and Y is a sink node in H, Y cannot be in π(A, B), and thus
this path is S-active in H′. ¤

We are now almost ready to present the main proof; we first need some simple interme-
diate results, the first of which was proved by Verma and Pearl (1991).

Lemma 26 (Verma and Pearl, 1991) If nodes X and Y are not adjacent in some DAG
G, then for the set S = PaGX ∪PaGY , there is no S-active path between X and Y in G.

Proposition 27 Let G and H be two DAGs such that G ≤ H. If there is an edge between
X and Y in G, then there is an edge between X and Y in H.

Proof: Follows immediately from Lemma 26 and the fact that an edge between X and Y
constitutes an S-active path for any S that does not include X or Y . ¤

Lemma 28 Let G and H be two DAGs such that G ≤ H. If G contains the v-structure
X → Z ← Y , then either H contains the same v-structure or X and Y are adjacent in H.

Proof: Suppose this is not the case and H does not contain the v-structure and X and Y
are not adjacent in H. From Proposition 27, we know that in H, Z must be adjacent to
both X and Y . By our supposition, Z is a parent of either X or Y in H. This implies by
Lemma 26 that there exists a conditioning set S that includes node Z (and does not include
either node X or node Y) for which no active path exists between X and Y in H. But the
path X → Z ← Y in G is active given any conditioning set that includes Z (and excludes
X and Y), including the set S, which contradicts the fact that G ≤ H. ¤

Lemma 28 was also proven by Koc̆ka et al. (2001b). For the next lemma, recall from
the definition of DeGY that Y is included in this set.

Lemma 29 Suppose G ≤ H. For any node Y , there is a unique maximal element in H
from the set DeGY .

Proof: Suppose not, and let D1 and D2 be any two maximal elements in H. Because these
nodes are both descendants of Y in G, there is an S-active path in G between them for any
S that does not contain any node in DeGY . By definition of D1 and D2, in H neither has a
parent from DeGY , and thus by Lemma 26, S = PaHD1

∪ PaHD2
constitutes precisely such a

set that renders them independent in H, contradicting the fact that G ≤ H. ¤
We can now prove that Algorithm Apply-Edge-Orientation is correct.

Lemma 30 Let G and H be two DAGs such that G ≤ H and G 6= H. Let G′ denote the
graph returned by Algorithm Find-Edge-Operation(G,H). Then G′ is a DAG such
that G′ ≤ H and if the operation was an edge reversal, then the edge was covered in G.

541

Chickering

Proof: In Step 2 of the algorithm the input DAGs are simplified by repeatedly removing
common sink nodes that have the same parents in both DAGs. Let GS and HS denote these
simplified versions of the input DAGs. It follows immediately from Lemma 25 that if we
find an edge modification to GS such that HS is an independence map of the resulting DAG,
then H is an independence map of the DAG that results from that same edge modification
in G. Furthermore, because only sink nodes are removed, any covered edge reversal in GS

corresponds to a covered edge reversal in G. Thus we can concentrate on identifying an
edge to modify using the simplified problem. For notational simplicity, we will use G and
H to denote the simplified versions of the input DAGs for the remainder of the proof.

We know that after Step 2, G and H have at least two nodes, else we conclude that
all nodes were removed in Step 2, contradicting the fact that G 6= H. Thus the node Y
identified in Step 3 must exist.

X

Y

X

Y

X

Y

(a) (b) (c)

Figure 9: Relevant portions of the DAGs for the edge addition at Step 4: (a) G, (b) G′
resulting from the edge addition, and (c) H.

If there are no children of Y in G (Step 4), we simply choose any node X that is a parent
of Y in H but not a parent of Y in G (See Figure 9), and we return the DAG G′ that results
from adding X → Y to G. We know that such an X exists, else we would have removed Y
in Step 2. Consider any S-active path π(A, B) in G′ that is not active in G. Recall from
Lemma 22 (Property 1) that Y must be an element of π(A, B). Because Y is a sink in G′,
we know that it must either be an endpoint of π(A, B) or it must be a member of S. If Y
is an endpoint, we know by Corollary 23 (Property 3) that in H there is an S-active path
from the other endpoint and X. Thus by appending this path with the edge X → Y (which
is out of X), we have identified an S-active path between A and B in H. If Y is in S, it
follows immediately from Corollary 24 that there is an S-active path between A and B in
H. Thus we conclude that if G′ is returned by the algorithm at Step 4, then G′ ≤ H.

If we get to Step 5, there is at least one child of Y in G, and we apply a somewhat
complicated rule for choosing a particular child Z on which to concentrate (see Figure 10).
We first use the DAG G to identify the set DeGY of descendants of Y in G. Then, we turn
our attention to DAG H and identify the maximal element D of the set DeGY with respect
to H. From Lemma 29, this maximal element is necessarily unique, and because Y is a sink
node in H, it follows that D 6= Y . Thus in G, D must be a descendant of some maximal
child of Y , and therefore the node Z at Step 5 is well defined.

For Step 6 of the algorithm, if Y → Z is covered in G then by Lemma 2 the DAG G′ that
results from reversing the covered edge Y → Z in G is equivalent to G, and thus G′ ≤ H. If
the edge Y → Z is not covered in G, then by definition of a covered edge there is either a

542

Optimal Structure Identification With Greedy Search

Z

Y

D

Y

D

(a) (b)

Figure 10: Selection of node Z at Step 5: (a) example DAG G and (b) corresponding DAG
H. All nodes (including Y) are members of DeGY .

parent of Y that is not a parent of Z, or there is a parent of Z that is not a parent of Y .
These two cases are tested in Step 7 and Step 8, respectively.

(a) (b) (c)

X

Y

Z X

Y

ZX

Y

Z

Figure 11: Relevant portion of DAGs for the edge addition at Step 7: (a) G, (b) G′ that
results from the edge addition, and (c) H.

If (in Step 7) Y has some parent X that is not a parent of Z in G, then we return the
DAG G′ that results from adding X → Z to G (see Figure 11). First we note that because
there is a directed path from X to Z in G (X is a parent of Y and Z is a child of Y), the
addition will not create a cycle. To see that H remains an independence map, consider any
S-active path π(A, B) between A and B in G′ that is not active in G. Recall from Lemma 22
(Property 1) that π(A, B) must include the edge X → Z. It must be the case that Y ∈ S,
or else we could replace every occurrence of the edge X → Z in π(A, B) with the path
X → Y → Z to construct an S-active path between A and B in G. If Z 6∈ S, we conclude
from Corollary 23 (Property 4) that in H there is an S-active path between each endpoint
and either X or Z. Because Y is a child of both X and Z in H, we can connect these two
active paths together in H (using either X → Y ← X or X → Y ← Z; from property 4 we
know at least one of the paths ends with X) to construct an S-active path between A and
B in H. If Z ∈ S, we know from Corollary 23 (Property 5) that in H there is an active
path between one of the endpoints and X, and an active path between the other endpoint
and either X or some parent of Z not in S. Without loss of generality, assume there is
an S-active path between A and X in H. If the path from B ends at X we establish an
S-active path between A and B in H by connecting these paths together with the active

543

Chickering

path X → Y ← X that is out of X. Otherwise, assume that the path from B ends at node
W , where W 6∈ S is a parent of Z in both G and G′. It must be the case that W is adjacent
to Y in H—and hence because Y is a sink, W must be a parent of Y in H—by the following
argument: if W is not adjacent to Y in G, then Y → Z ← W is a v-structure not in H and
the adjacency is established from Lemma 28; if W is adjacent to Y in G then the adjacency
is established from Proposition 27. Because W is a parent of Y in H, we can construct an
S-active path between A and B by connecting the two paths from A and B with the active
path X → Y ← W . Thus we conclude that if G′ is returned by the algorithm at Step 7,
then G′ ≤ H.

(a) (b) (c)

X

Y

D=Z

Y

D

X

Y

X

D=Z

DeY DeY

Figure 12: Edge addition at Step 8: (a) example DAG G, (b) DAG G′ resulting from the
edge addition and (c) corresponding DAG H.

Finally, if Step 8 is reached, we know that Z must have some parent X that is not a
parent of Y , and we return the DAG G′ that results from adding the edge X → Y to G (see
Figure 12). We now argue that the edge addition cannot form a cycle. If it did, then there
must be a directed path from Y to X in G. The first node W in this path—which is a child
of Y —is either equal to X or is an ancestor of X, which means that W is an ancestor of Z.
But this contradicts the fact that Z is a maximal child of Y that has D as a descendant.

As above, let π(A, B) be any S-active path between A and B in G′ that is not active in
G. Recall from Lemma 22 (Property 1) that π(A, B) must include the edge X → Y . We
will now demonstrate that there must be a corresponding S-active path between A and B
in H.

We first consider the case when Y ∈ S. Because Y is a sink in H, we know that H
cannot include the v-structure X → Z ← Y that exists in G (but not G′), and we conclude
from Lemma 28 (and the fact that Y is a sink node in H) that the edge X → Y must exist
in H. Thus from Corollary 24 it follows that there is an S-active path between A and B in
H. For the remainder of the proof, we consider the case when Y 6∈ S.

It must be the case that no member from DeGZ is in S; otherwise, we could replace each
occurrence of the edge X → Y with an active path X → Z → . . . → S ← . . . ← Z ← Y for
any such descendant S, and thus construct an active path in G between A and B.

We now show that there must be S-active paths between each endpoint and the node
D chosen in Step 5 of the algorithm. First, from Lemma 22 (Property 4), there is an active
path in G from each endpoint to either X or Y . Because D is a descendant of Z (and hence
both X and Y) in G, and because neither Y nor any of the descendants of Z (including
Z itself) are in S, we can append to each of these active paths a directed path to D to

544

Optimal Structure Identification With Greedy Search

construct S-active paths between both endpoints and D in G. Because G ≤ H, it follows
that there exists corresponding S-active paths in H as well.

Given that there is an S-active path between both endpoints and D in H, if we can
identify a directed path in H from D to either (1) one of the endpoints or (2) an element of
S, then we can easily identify an S-active path between A and B in H: consider the shortest
such directed path. If the path reaches an endpoint, then the directed path constitutes an
S-active path in H between D and that endpoint that is out of D, which means we can
append it to the S-active path between the other endpoint and D to create the desired
path. If the path reaches an element S of S, then we can append to that directed path the
same path in the opposite direction to create an S-active path between D and itself that
is out of D on both endpoints (i.e., D → . . . → S ← . . . ← D), which can then be used to
connect the two active paths between the endpoints and D to create the desired path.

All that remains is to show that there must be a descendant of D in H that is either one
of the endpoints or an element of S. To do so, we turn our attention back to the active path
π(A, B) in G′. Consider any segment of π(A, B) that starts with the edge X → Y , and then
continues in the direction of the edge until either the path ends or an edge is encountered
in the other direction. Clearly this directed path (which might end immediately at Y) ends
at either an endpoint (i.e., A or B) or a member of S. In either case, the last node is
a descendant of Y in G. Because D is the unique (Lemma 29) maximal element of DeGY
within H, it follows that any such descendant of Y in G is a descendant of D in H. Thus we
conclude that there is an S-active path between A and B in H, and that if G′ is returned
by the algorithm at Step 8, then G′ ≤ H. ¤

Finally, we can prove the main result of this paper, which we state again below.

Theorem 4 Let G and H be any pair of DAGs such that G ≤ H. Let r be the number of
edges in H that have opposite orientation in G, and let m be the number of edges in H that
do not exist in either orientation in G. There exists a sequence of at most r + 2m edge
reversals and additions in G with the following properties:

1. Each edge reversed is a covered edge

2. After each reversal and addition G is a DAG and G ≤ H
3. After all reversals and additions G = H

Proof: Properties 1 through 3 follow immediately from Lemma 30 if we simply apply the
edge operation from Algorithm Find-Edge-Operation(G,H) until G = H. We now
show that the algorithm is called at most r + 2m times. If a covered edge is reversed in
G by the algorithm, we know (see Step 6) that after the reversal, the edge has the same
orientation as in H, and therefore r is reduced by exactly one and m remains constant;
thus the sum r + 2m is reduced by exactly one. If an edge is added, it follows from Lemma
30 that H is an independence map of the resulting DAG, and thus by Proposition 27 m is
necessarily reduced by one; in this case r either remains constant or is increased by one,
and thus the sum r + 2m is reduced by either two or one. ¤

545

Chickering

Appendix B: Operator Proofs

In this appendix, we provide proofs for the main results in Section 5. We show that the
conditions given in Table 1 are necessary and sufficient for an Insert and Delete operator
to be valid for the first and second phase, respectively, of the GES algorithm. An immediate
corollary of the proof for each operator type is the increase in score that results.

The appendix is organized as follows. In Appendix B.1, we provide numerous prelimi-
nary results, the majority of which are proved by Chickering (2002). Then in Appendix B.2
and B.3, we provide the main results for the Insert and Delete operators, respectively.

B.1 Preliminary Results

The main proofs in this appendix rely on many intermediate results, most of which are
proven by Chickering (2002). In this section, we enumerate all of these intermediate results.

The following proposition characterizes the conditions under which a v-structure exists
in one PDAG but not another.

Proposition 31 Let P and P ′ denote any pair of PDAGs. Let X → Y ← Z be any
v-structure in P ′ that is not in P. Then one of the following conditions must hold: (1)
X 6∈ PaPY , (2) Z 6∈ PaPY , or (3) X and Z are adjacent in P.

Proof: Follows immediately from the definition of a v-structure. ¤
The next several results show how the edge status—either compelled or reversible—of

some of the edges in a PDAG can constrain the status of other edges. An edge is compelled
(reversible) in a PDAG if the corresponding edge is compelled (reversible) in a consistent
extension of that PDAG.

Proposition 32 (Chickering, 2002) Let P be any PDAG that admits a consistent ex-
tension and contains a compelled edge X → Y . If there is an edge, either directed or
undirected, between Y and some node Z such that Z and X are not adjacent, then that edge
is compelled.

Proposition 33 (Chickering, 2002) Let P be any PDAG that admits a consistent exten-
sion such that there is a directed path from X to Y consisting of compelled edges. If there
is an edge between X and Y , it is compelled as X → Y .

Lemma 34 (Chickering, 1995) Let {X, Y, Z} be any three nodes that form a clique of
size three in PDAG P. If any two of the edges in the clique are reversible, then the third
edge is reversible as well.

Lemma 35 (Chickering, 2002) For any directed edge X → Y in a completed PDAG, X
is a parent of every node reachable by Y via undirected edges.

Lemma 36 (Chickering, 2002) Let X = {X1, ..., Xn} be the nodes from any undirected
clique of size n within some undirected component of a completed PDAG Pc, and let τ
denote any total ordering of the nodes in X. There exists a consistent extension of Pc for
which (1) the edge orientations among the nodes in X are consistent with τ , and (2) any
edge between Xi and a neighbor Y that is not in X is oriented as Xi → Y .

546

Optimal Structure Identification With Greedy Search

The final set of results are properties of semi-directed paths (see Definition 14) from a
completed PDAG.

Lemma 37 (Chickering, 2002) Let Pc be a completed PDAG that contains a semi-
directed path from X to Y . If there exists a directed edge Z → W in this path, then
there exists a directed path from Z to Y in Pc.

Corollary 38 (Chickering, 2002) Let Pc be a completed PDAG. If Pc contains a semi-
directed path from X to Y consisting of intermediate nodes contained within some set N,
then the shortest semi-directed path whose intermediate nodes are contained in N consists
of exactly two consecutive segments, where the first segment consists entirely of undirected
edges and the second segment consists entirely of directed edges.

Corollary 39 (Chickering, 2002) Let Pc be a completed PDAG. If Pc contains a semi-
directed path from X to Y consisting of intermediate nodes contained within some set N,
then for any shortest semi-directed path whose intermediate nodes are contained in N, there
is no edge in Pc that connects a pair of non-consecutive nodes along the path.

Lemma 40 Let Pc be a completed PDAG that contains a semi-directed path from X to
Y , and let X −W be the first edge along any shortest such semi-directed path. If the edge
between X and W is directed as X → W in some consistent extension G of Pc, then there
is a directed path from X to Y in G.

Proof: Suppose not, and let B ← C be the first edge that is directed away from Y along
the path. From Corollary 38, we know that this edge must be reversible, as must be the
edge A → B that precedes it. But from Corollary 39, A and C are not adjacent, and thus
A → B ← C is a v-structure, yielding a contradiction. ¤

The conditions from Table 1 include checking that some set of neighbors of a node in
a completed PDAG are a clique. It follows immediately from Lemma 34 that if any set
of neighbors is a clique, then that set of neighbors is a clique of undirected edges. It is to
be understood that in the sections to follow that when we use clique, we mean a clique of
undirected edges.

We say that Y is a reversible parent of X in a PDAG or DAG if the edge Y → X is
reversible. Similarly, we say that Y is a compelled parent of X if Y → X is compelled. We
use analogous definitions for reversible child and compelled child.

B.2 The Insert Operator

In this section, we show that the conditions in Table 1 are necessary and sufficient for
determining whether an Insert operator is valid during the first phase of GES. In particular,
we show in Theorem 15 that the conditions hold if and only if we can extract a consistent
extension G of the completed PDAG Pc to which adding a single directed edge results in a
consistent extension G′ of the completed PDAG Pc′ that results from applying the operator.
The “if” part of the proof is constructive; that is, we identify a specific G to which we can
add the edge. The increase in score that results from the operator thus follows immediately.

First, we need the following result:

547

Chickering

Lemma 41 Let Pc be any completed PDAG with consistent extension G. Let Pc′ denote
the completed PDAG that results from applying the operator Insert(X, Y,T) to Pc, where
T is a clique consisting of nodes that are neighbors of Y that are not adjacent to X. Let G′
denote the graph that results from adding X → Y to G. Then G′ has the same adjacencies
and the same set of v-structures as Pc′ if and only if the set of reversible parents of Y in G
that are not adjacent to X is equal to T.

Proof: Clearly G′ and Pc′ have the same adjacencies. Because G is a consistent extension
of Pc, any difference in v-structures between G′ and Pc′ must have resulted from the modi-
fication to either the completed PDAG or the DAG. From Proposition 31 and the fact that
the Insert operator does not undirect or reverse any directed edges, it is easy to see that
the set of v-structures that are in Pc but not in Pc′ are precisely the set of v-structures
that are in G but not in G′. In other words, the set of v-structures that we lose as a result
of performing the Insert operator to Pc is the same as the set that we lose as a result of
adding X → Y to G; these are precisely the ones whose “tails” are made adjacent as a result
of the edge addition. We establish the result by showing that the set of v-structures that
we gain as a result of the two modifications is the same if and only if the set of reversible
parents of Y in G is equal to T.

Because T is a clique in Pc (and therefore a clique of undirected edges) we know from
Lemma 35 that any parent of a node in T is a parent of every node in T; this implies that
any v-structure that includes a previously undirected edge must have X → Y as the other
edge. It follows that the set of v-structures that are in Pc′ but not in Pc are those of the
form X → Y ← Z, where Z is either a member of T or is a parent of Y that is not adjacent
to X in Pc. It is easy to see that the set of v-structures in G′ that are not in G are of the
form X → Y ← Z, where Z is a parent of Y in G that is not adjacent to X.

Consider the set of parents of Y that are not adjacent to X in G. Clearly this set consists
of the union of (1) compelled parents of Y that are not adjacent to X and (2) reversible
parents of Y that are not adjacent to X. Because this first set is precisely the set of parents
of Y in Pc that are not adjacent to X, the lemma follows. ¤

Theorem 15 Let Pc be any completed PDAG, and let Pc′ denote the result of applying
an Insert(X, Y,T) operator to Pc. There exists a consistent extension G of Pc to which
adding the edge X → Y results in a consistent extension G′ of Pc′ if and only if in Pc

1. NAY,X ∪T is a clique

2. Every semi-directed path from Y to X contains a node in NAY,X ∪T

Proof: (If) Given that the first condition implies that T is a clique, it follows from
Lemma 41 that we need only identify a consistent extension G of Pc with the following two
properties: (*) the reversible parents of Y that are not adjacent to X are precisely the nodes
in T and (**) there is no directed path from Y to X. Because NAY,X ∪T is a clique, and
because Y is a neighbor of all of these nodes, we conclude that NAY,X ∪T ∪ {Y } is also a
clique. Therefore we conclude from Lemma 36 that there exists a consistent extension G of
Pc for which the reversible parents of Y are precisely those nodes in NAY,X∪T. Because all
nodes in NAY,X are adjacent to X, (*) is satisfied for G. It remains to be shown that there
is no directed path from Y to X in G. Suppose there does exist such a path. Clearly any

548

Optimal Structure Identification With Greedy Search

such directed path has a corresponding semi-directed path in Pc. By the second condition
of the lemma, however, this path must pass through a node in NAY,X ∪T, all of which are
parents of Y in G, yielding the contradiction that G is cyclic. Thus we conclude that (**)
is satisfied for G.

(Only if) Suppose NAY,X ∪T is not a clique in Pc. Then there are two nodes A and B
in this set for which (1) A − Y − B is in Pc and (2) A and B are not adjacent. Thus in
any consistent extension G, at least one of the corresponding edges must be directed away
from Y , else G would contain a v-structure not in Pc. Without loss of generality, assume
the edge Y → A is in G. If A ∈ NAY,X , we know that the edge between A and X must
be directed toward X, else G would contain the v-structure X → A ← Y that is not in Pc.
But this implies that the graph that results from adding X → Y to G is cyclic. If A ∈ T,
then the result of adding X → Y to G cannot include the v-structure X → Y ← A; because
this v-structure exists in Pc′ as a result of the Insert operator, G′ cannot be a consistent
extension of Pc′.

Suppose that there exists a semi-directed path from Y to X that does not pass through
a node in NAY,X ∪ T, and consider the shortest such path. If the first edge is directed
away from Y , we conclude from Lemma 37 that there is a directed path from Y to X in Pc

and thus the Insert operator results—before converting to the resulting completed PDAG
representation—in a PDAG that contains a cycle; this PDAG does not admit a consistent
extension. Otherwise, let Y − A be the first edge in this path. By assumption, A is in
neither NAY,X nor T, and thus if G contains the edge A → Y , G′ contains the v-structure
X → Y ← A that is not in Pc′. If G contains the edge Y → A, we conclude by Lemma 40
that there is a directed path from Y to X in G and consequently G′ is cyclic. ¤

Corollary 16 For any score-equivalent decomposable scoring criterion, the increase in score
that results from applying a valid operator Insert(X, Y,T) to a completed PDAG Pc is

s(Y,NAY,X ∪T ∪PaY
+X)− s(Y,NAY,X ∪T ∪PaY)

Proof: Follows immediately from subtracting the score of G from the score of G′, where G
is defined in the “if” part of Theorem 15, and G′ denotes the DAG that results from adding
the edge X → Y to G. ¤

B.3 The Delete Operator

In this section, we show that the conditions in Table 1 are necessary and sufficient for deter-
mining whether a Delete operator is valid during the second phase of GES. In particular,
we show in Theorem 17 that the conditions hold if and only if we can extract a consistent
extension G of the completed PDAG Pc to which deleting a single directed edge results
in a consistent extension G′ of the completed PDAG Pc′ that results from applying the
operator. The “if” part of the proof is constructive; that is, we identify a specific G from
which we can delete the edge. The increase in score that results from the operator thus
follows immediately.

First, we need the following result:

549

Chickering

Lemma 42 Let Pc be any completed PDAG with consistent extension G that includes the
edge X → Y . Let Pc′ denote the completed PDAG that results from applying the operator
Delete(X, Y,H) to Pc, where H consists of nodes that are neighbors of Y that are adjacent
to X. Let G′ denote the graph that results from deleting X → Y from G. Then G′ has the
same adjacencies and same v-structures as Pc′ if and only if the set of reversible children
of Y in G that are children of X is equal to H.

Proof: Clearly G′ and Pc′ have the same adjacencies. Because G is a consistent exten-
sion of Pc, any difference in v-structures between G′ and Pc′ must have resulted from the
modification to either the completed PDAG or the DAG. From Proposition 31 and the fact
that that the Delete operator does not undirect or reverse any directed edges, it is easy
to see that the set of v-structures that are in Pc but not in Pc′ are precisely the set of
v-structures that are in G but not in G′. In particular, the set of v-structures that we lose
in both Pc or G are simply those v-structures that contain the edge between X and Y . We
establish the result by showing that the set of v-structures that we gain as a result of the
two modifications is the same if and only if the set of reversible children of Y in G that are
children of X is equal to T.

From Proposition 31 and the definition of the Delete operator, we immediately conclude
that the set of v-structure in Pc′ that are not in Pc are characterized by those v-structures
in one of the two following forms: (1) X → Z ← Y , where Z is either in H or both edges
also exist in Pc (that is, the v-structure is formed because the adjacency between X and Y
was removed, and zero or more of the edges were directed by the Delete operator) or (2)
A → Z ← B, where Z ∈ H, and exactly one of the nodes A or B is either X or Y .

We now demonstrate that v-structures of form (2) never occur. Without loss of general-
ity, assume that A is not a member of {X, Y }, and that B = X. By definition of the Delete
operator, we know that A → Z must be directed in Pc (only edges incident to X or Y are
made directed). Because the v-structure does not exist in Pc, and the adjacency between A
and B did not change as a result of the Delete, we conclude that the edge between Z and
X must be undirected in Pc. But from Proposition 32, this is impossible, and therefore we
conclude that A → Z ← B must exist in Pc.

Clearly, the set of v-structures gained as a result of deleting X → Y from G is charac-
terized by those v-structures of the form X → Z ← Y , where each Z in this case is simply
a common child of both X and Y in G. Thus the lemma follows if we can demonstrate that
in G, the common children of X and Y are precisely the common compelled children of X
and Y unioned with the reversible children of Y .

Suppose that in G there exists a child Z of X and Y that is not a common compelled
child and for which Y → Z is compelled. Because X → Z is not compelled, we conclude
by Lemma 34 that X → Y is compelled. But this implies by Proposition 33 that X → Z
is compelled, yielding a contradiction. ¤

Theorem 17 Let Pc be any completed PDAG that contains either X → Y or X − Y , and
let Pc′ denote the result of applying the operator Delete(X, Y,H) to Pc. There exists a
consistent extension G of Pc that contains the edge X → Y from which deleting the edge
X → Y results in a consistent extension G′ of Pc′ if and only if NAY,X \H is a clique.

550

Optimal Structure Identification With Greedy Search

Proof: (If) Suppose NAY,X \ H is a clique. By definition of NAY,X , it follows that
{NAY,X \H}∪{Y } is also a clique. If X −Y exists in Pc, then {NAY,X \H}∪{Y }∪{X}
is a clique; otherwise, we know that X → Y is in Pc. In either case, we conclude from
Lemma 36 that we can extract a consistent extension G from Pc—where G contains the
edge X → Y —whose directed edges are consistent with the following ordering: NAY,X \H,
then X, then Y , then the remaining nodes. Clearly in G the reversible children of Y that
are adjacent to X are precisely the nodes in H. Furthermore, because G contains the edge
X → Y , any child of Y that is adjacent to X is also a child of X. Thus we conclude
from Lemma 42 that the result of deleting X → Y from G is a DAG G′ that has the same
adjacencies and v-structures as Pc′. Because G is a DAG, G′ must also be a DAG, and
therefore the lemma follows.

(Only if) Suppose there exists a consistent extension G of Pc that contains the edge
X → Y from which deleting the edge X → Y results in a consistent extension G′ of Pc′.
From Lemma 42 we conclude that the set of reversible children of Y that are adjacent to
X in G is precisely the set H. Thus every element in NAY,X \ H is a parent of Y in G.
Any pair of such parents A and B that were not adjacent would constitute the v-structure
A → Y ← B, which contradicts the fact that both these edges are reversible. ¤

Corollary 18 For any score-equivalent decomposable scoring criterion, the increase in score
that results from applying a valid operator Delete(X, Y,H) to a completed PDAG Pc is

s(Y, {NAY,X \H} ∪PaY
−X)− s(Y, {NAY,X \H} ∪PaY)

Proof: Follows immediately from subtracting the score of G from the score of G′, where G is
defined in the “if” part of Theorem 17, and G′ denotes the DAG that results from deleting
the edge X → Y from G. ¤

Appendix C: Converting to a Completed PDAG

In Section 5, we defined the Insert and Delete operators to be local modifications to the
completed PDAG representation of the current state. As described in that section, the
result of applying an operator to a completed PDAG is a PDAG that is not necessarily
completed. In this appendix, we describe a conversion algorithm that converts a PDAG
to the completed PDAG representation of the corresponding equivalence class. Recall that
this conversion algorithm—in light of the results of Section 5—need only be applied once
for each state visited by GES; we can evaluate efficiently all adjacent states in the greedy
search without using the conversion.

The conversion algorithm is, in fact, the combination of two algorithms described in
much more detail by Chickering (2002). The first algorithm, which we refer to as PDAG-to-
DAG, takes as input a PDAG representation for an equivalence class, and outputs a (DAG)
member of that class. The second algorithm, which we refer to as DAG-to-CPDAG, takes
as input a Bayesian-network structure, and outputs a completed PDAG representation of
the equivalence class to which that structure belongs. Clearly, we can implement the desired
conversion by first calling PDAG-to-DAG on the PDAG that results from applying an

551

Chickering

operator, and then calling DAG-to-CPDAG on the consistent extension obtained by the
first algorithm.

We first consider a simple implementation of PDAG-to-DAG due to Dor and Tarsi
(1992). Let NX denote the neighbors of node X in a PDAG P. We first create a DAG
G that contains all of the directed edges from P, and no other edges. We then repeat the
following procedure: First, select a node X in P such that (1) X has no out-going edges
and (2) if NX is non-empty, then NX ∪PaX is a clique. If P admits a consistent extension,
the node X is guaranteed to exist. Next, for each undirected edge Y −X incident to X in
P, insert a directed edge Y → X to G. Finally, remove X and all incident edges from the
P and continue with the next node. The algorithm terminates when all nodes have been
deleted from P.

Algorithm Order-Edges(G)
Input: DAG G
Output: DAG G with labeled total order on edges
1. Perform a topological sort on the NODES in G
2. Set i = 0
3. While there are unordered EDGES in G
4. Let Y be the lowest ordered NODE that has an unordered EDGE incident into it
5. Let X be the highest ordered NODE for which X → Y is not ordered
6. Label X → Y with order i
7. i = i + 1

Figure 13: Algorithm to produce a total ordering over the edges in a DAG. The algorithm
is used by Algorithm Label-Edges.

The version of DAG-to-CPDAG that we provide was originally derived by Chickering
(1995), and is asymptotically optimal on average. The algorithm labels all of the edges in a
DAG as either “compelled” or “reversible”; given such a labeling, it is trivial to construct
the corresponding completed PDAG. The first step of the algorithm is to define a total
ordering over the edges in the given DAG. For simplicity, we present this step as a separate
procedure listed in Figure 13. In Figure 13, a topological sort refers to any total ordering of
the nodes where if Xi is an ancestor of Xj , then Xi must precede Xj in the ordering. To
avoid confusion between ordered nodes and ordered edges, we have capitalized “node” and
“edge” in the figure. In Figure 14, we show an algorithm of Chickering (1995) that labels
the edges.

References

Andersson, S. A., Madigan, D., and Perlman, M. D. (1997). A characterization of Markov
equivalence classes for acyclic digraphs. Annals of Statistics, 25:505–541.

Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering, 8:195–210.

552

Optimal Structure Identification With Greedy Search

Algorithm Label-Edges(G)
Input: DAG G
Output: DAG G with each edge labeled either “compelled” or “reversible”

1. Order the edges in G using Algorithm Order-Edges
2. Label every edge in G as “unknown”
3. While there are edges labeled “unknown” in G
4. Let X → Y be the lowest ordered edge that is labeled “unknown”
5. For every edge W → X labeled “compelled”
6. If W is not a parent of Y
7. Label X → Y and every edge incident into Y with “compelled”
8. Goto 3
9. Else
10. Label W → Y with “compelled”
11. If there exists an edge Z → Y such that Z 6= X and Z is not a parent of X
12. Label X → Y and all “unknown” edges incident into Y with “compelled”
13. Else
14. Label X → Y and all “unknown” edges incident into Y with “reversible”

Figure 14: Algorithm to label each edge in a DAG with “compelled” or “reversible”, which
leads to an immediate implementation of DAG-to-CPDAG.

Chickering, D. M. (1995). A transformational characterization of Bayesian network struc-
tures. In Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, pages 87–98. Morgan Kaufmann.

Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete. In Fisher, D.
and Lenz, H., editors, Learning from Data: Artificial Intelligence and Statistics V, pages
121–130. Springer-Verlag.

Chickering, D. M. (2002). Learning equivalence classes of Bayesian-network structures.
Journal of Machine Learning Research, 2:445–498.

Chickering, D. M. and Meek, C. (2002). Finding optimal Bayesian networks. In Darwiche,
A. and Friedman, N., editors, Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence, pages 94–102. Morgan Kaufmann.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309–347.

Dor, D. and Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a
partially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA
Computer Science Department.

553

Chickering

Geiger, D., Heckerman, D., King, H., and Meek, C. (2001). Stratified exponential families:
graphical models and model selection. Annals of Statistics, 29(2):505–529.

Gillispie, S. B. and Perlman, M. D. (2001). Enumerating Markov equivalence classes of
acyclic digraph models. In Goldszmidt, M., Breese, J., and Koller, D., editors, Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 171–177.
Morgan Kaufmann.

Haughton, D. M. A. (1988). On the choice of a model to fit data from an exponential family.
The Annals of Statistics, 16(1):342–355.

Heckerman, D. (1996). A tutorial on learning Bayesian networks. Technical Report MSR-
TR-95-06, Microsoft Research.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243.

Jeffreys, H. (1939). Theory of Probability. Oxford University Press.

Koc̆ka, T., Bouckaert, R. R., and Studený, M. (2001a). On characterizing inclusion of
Bayesian networks. In Breese, J. and Koller, D., editors, Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence, pages 261–268. Morgan Kaufmann.

Koc̆ka, T., Bouckaert, R. R., and Studený, M. (2001b). On the inclusion problem. Technical
Report 2010, Academy of Sciences of the Czech Republic, Institute of Information Theory
and Automation.

Meek, C. (1995). Causal inference and causal explanation with background knowledge. In
Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, pages 403–410. Morgan Kaufmann.

Meek, C. (1997). Graphical Models: Selecting causal and statistical models. PhD thesis,
Carnegie Mellon University.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA.

Shachter, R. (1998). Bayes-ball: The rational pastime (for determining irrelevance and
requisite information in belief networks and influence diagrams). In Cooper, G. and
Moral, S., editors, Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 480–487. Morgan Kaufmann.

Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Prediction, and Search.
Springer-Verlag, New York.

Verma, T. and Pearl, J. (1991). Equivalence and synthesis of causal models. In Henrion,
M., Shachter, R., Kanal, L., and Lemmer, J., editors, Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, pages 220–227.

554

