
Journal of Machine Learning Research 3 (2002) 507-552 Submitted 1/02; Published 11/02

Optimal Structure Identification With Greedy Search

David Maxwell Chickering DMAX @MICROSOFT.COM

Microsoft Research
One Microsoft Way
Redmond, WA 98052

Editor: Craig Boutilier

Abstract
In this paper we prove the so-called “Meek Conjecture”. In particular, we show that if a DAGH is
an independence map of another DAGG , then there exists a finite sequence of edge additions and
covered edge reversals inG such that (1) after each edge modificationH remains an independence
map ofG and (2) after all modificationsG = H . As shown by Meek (1997), this result has an
important consequence for Bayesian approaches to learning Bayesian networks from data: in the
limit of large sample size, there exists a two-phasegreedysearch algorithm that—when applied to
a particular sparsely-connected search space—provably identifies a perfect map of the generative
distribution if that perfect map is a DAG. We provide a new implementation of the search space,
using equivalence classes as states, for which all operators used in the greedy search can be scored
efficiently usinglocal functions of the nodes in the domain. Finally, using both synthetic and real-
world datasets, we demonstrate that the two-phase greedy approach leads to good solutions when
learning with finite sample sizes.

1. Introduction

Over the last decade, there has been an enormous amount of work in the machine-learning literature
on the problem of learning Bayesian networks from data. In a recent Ph.D. dissertation on the topic,
Meek (1997) put forth a conjecture that, if true, leads to the following and somewhat surprising re-
sult: given that the generative distribution has a perfect map in a DAG defined over the observables,
then there exists a sparse search space (that is, a space in which each state is connected to a small
fraction of the total states) to which we can apply agreedysearch algorithm that, in the limit of large
number of training cases, identifies the generative structure. The so-called “Meek Conjecture” can
be stated as follows. LetH andG denote two DAGs such thatH is anindependence mapof G . In
other words, any independence implied by the structure ofH is also implied by the structure ofG .
Then there exists a finite sequence of edge additions and covered edge reversals that can be applied
to G with the following properties: (1) after each edge change,G is a DAG andH remains an
independence map ofG and (2) after all edge changesG = H . Although intuitively plausible, the
validity of Meek’s Conjecture has, until now, remained unknown. Ko˘cka, Bouckaert and Studen´y
(2001a) proved that the conjecture is true ifG andH differ by exactly one edge.

In this paper, we prove Meek’s Conjecture. We provide an algorithm for determining a specific
sequence of edge modifications toG that transforms it intoH such that after each modification,
H remains an independence map ofG . Assuming that initially there arem edges inH that do not
appear in any orientation inG and r edges inH that appear in the opposite orientation inG , the
sequence includes at most 2m+ r edge modifications.

c©2002 David Maxwell Chickering.



CHICKERING

Our algorithm is similar to the one proposed by Ko˘cka, Bouckaert and Studen´y (2001b). In
particular, the choice of an edge to modify depends on the parents and children of some node in
G that is a sink node (i.e., a node with no children) inH . For some configurations of parents and
children of this node, it is reasonably easy both to (1) identify an edge modification and (2) prove
that H remains an independence map after performing that modification; for such configurations,
our algorithm and proof are essentially the same as that provided by Ko˘cka et al. (2001b). There is
a particular configuration of parents and children, however, for which it is more difficult to choose
an edge to modify. For this configuration, Ko˘cka et al. (2001b) conjecture that an appropriate edge
modification exists, but are unable to construct a procedure to identify one.

Under the assumption that the conjecture is true, Meek (1997) devised a two-phase greedy
algorithm that applies a Bayesian scoring criterion to identify the (unique) equivalence class of
DAGs that is a perfect map of the generative distribution, assuming such an equivalence class exists.
The algorithm can be summarized as follows. We start with an equivalence class corresponding to
no dependencies, and greedily add dependencies by considering all possible single-edge additions
that can be made to all DAGs in the current equivalence class. Once the greedy algorithm stops at a
local maximum, we apply a second-phase greedy algorithm that considers at each step all possible
single-edge deletions that can be made to all DAGs in the current equivalence class. The algorithm
terminates with the local maximum identified in the second phase. The fact that the algorithm
identifies (in the limit) the optimal equivalence class is rather remarkable given the sparsity of the
search space; each state in the search space is connected to only as many other states as there are
possible single-edge additions to or single-edge deletions from the DAGs in that state. Assuming
that the generative model is small, we expect that this number of additions or deletions will also be
small for those states we encounter during the search.

Given that the two-phase greedy algorithm has theoretical justification in light of Meek’s Con-
jecture being true, the obvious question is whether the algorithm works well in practice. In other
words, without regard to whether the generative distribution has a perfect map in a DAG or to
whether there is enough data to support the asymptotic properties of the Bayesian scoring crite-
rion, does the local maximum reached by the algorithm applied to real-world data correspond to a
model that is close in score to the global maximum? Although we are unlikely to be able to answer
this question without exhaustively enumerating and scoring all possible equivalence classes, we can
compare the two-phase algorithm with other traditional search algorithms.

In order to perform the desired greedy search, we must be able to score all possible single-edge
additions and deletions from all DAGs contained within an equivalence class. In principle, this
might involve an actual enumeration of the DAGs within an equivalence class, and for each DAG,
all edge changes could be scored. Fortunately, Chickering (2002) has formulated a search space
that allows the efficient traversal of equivalence classes directly, as opposed to the more traditional
approach of traversing in DAG space. Although the operators defined by Chickering (2002) do not
correspond to the connectivity of equivalence classes necessary for the two-phase search, we can
leverage the existing results to derive the appropriate operators with relative ease. We show that all
of the operators can be scored as local functions of the nodes and their neighbors in the equivalence-
class representation of a search state, and thus the space shares the computational advantages of
traditional DAG-based search spaces.

This paper is organized as follows. In Section 2, we describe our notation and introduce previous
relevant work. In Section 3, we discuss Meek’s conjecture and detail the algorithm we use to
identify each edge modification necessary in the transformation. We postpone a rigorous proof of

508



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

the conjecture to Appendix A, but provide some intuition for how we prove the most difficult step.
In Section 4, we discuss the asymptotic properties of a Bayesian scoring criterion and show how
these properties, in conjunction with the validity of Meek’s Conjecture, imply the optimality of the
two-phase greedy search algorithm. In Section 5, we describe a search space where the states of
the search correspond to equivalence classes of DAGs, and for which the operators correspond to
single edge additions and deletions to member DAGs. We show how all operators can be scored
as local functions of the nodes in the search-state representation. In Section 6, we apply the two-
phase greedy algorithm to both synthetic and real-world datasets of different sizes. We compare
solution quality of the algorithm to (1) a traditional DAG-based greedy search algorithm and (2) a
greedy search algorithm applied to an equivalence-class space defined by Chickering (2002). Using
the synthetic data, we show that the two-phase algorithm is superior to the others at the task of
reconstructing the generative structure. Using the real-world data, we show that the two-phase
algorithm is competitive with the others—although slightly slower due to a more densely connected
search space—at the task of identifying high-scoring models. In Section 7, we conclude with a
summary and discussion of future relevant research. Detailed proofs of the main results of this
paper are contained in the appendix.

2. Background and Notation

In this section, we introduce our notation and discuss previous relevant work. Throughout the paper,
we use the following syntactical conventions. We denote a variable by an upper case letter (e.g.,
A,Bi,Y,Θ) and a state or value of that variable by the same letter in lower case (e.g.,a,bi ,y,θ). We
denote a set of variables by a bold-face capitalized letter or letters (e.g.,X,Pai,NA i, j ). We use a
corresponding bold-face lower-case letter or letters (e.g.,x,pai ,nai, j ) to denote an assignment of
state or value to each variable in a given set. We use calligraphic letters (e.g.,G ,B ,E ) to denote
statistical models (both parameterized and not).

2.1 Bayesian-Network Models and DAG Models

A parameterized Bayesian-network modelB for a set of variablesU = {X1, . . . ,Xn} is a pair(G ,θ).
G = (V,E) is a directed acyclic graph—orDAG for short—consisting of (1) nodesV in one-to-
one correspondence with the variablesU, and (2) directed edgesE that connect the nodes.θ is a
set of parameter values that specify all of the conditional probability distributions; we useθi ⊂ θ
to denote the subset of these parameter values that define the conditional probability of nodeXi

given its parents inG . A parameterized Bayesian network represents a joint distribution overU that
factors according to the structureG as follows:

pB (X1 = x1, . . . ,Xn = xn) =
n

∏
i=1

p(Xi = xi |PaG
i = paG

i ,θi) (1)

wherePaG
i is the set of parents of nodexi in G . The structureG of a Bayesian network is itself

a model that represents the independence constraints that must hold in any distribution that can
be represented by a Bayesian network with that structure. The set of all independence constraints
imposed by the structureG via Equation 1 can be characterized by theMarkov conditions, which
are the constraints that each variable is independent of its non-descendants given its parents. That
is, any other independence constraint that holds can be derived from the Markov conditions (see,

509



CHICKERING

e.g., Pearl, 1988). We useA⊥⊥G B|S to denote the assertion that DAGG imposes the constraint that
A is independent ofB given setS. When the DAGG is clear from context we useA⊥⊥B|S. When
S= /0, we useA⊥⊥G B (or A⊥⊥B) instead.

Throughout this paper we make numerous comparisons among statistical models; for example,
we compare DAG models with each other and we compare properties of probability distributions
with corresponding properties of DAGs. To simplify the discussion, we will assume that when any
such comparison is made, the models are defined over the same set of variables. Thus when we say,
for example, that two DAGsG andG ′ represent the same independence constraints, we assume that
G andG ′ are defined over the same set of nodes.

Thedescendantsof a nodeY in G—denotedDeG
Y —is the set containingY and all nodes reach-

able by a directed path fromY. Theancestorsof a nodeY in G is the set of nodes that can reachY
by a directed path of length one or more. For any subsetA of the nodes inG , we say that a node
A∈ A is maximalif there is no other nodeA′ ∈ A such thatA′ is an ancestor ofA in G .

2.2 Equivalence and Independence Maps

Two DAGsG andG ′ aredistributionally equivalentif for every Bayesian networkB = (G ,θ), there
exists a Bayesian networkB ′ = (G ′,θ′) such thatB andB ′ define the same probability distribution,
and vice versa. Two DAGsG andG ′ are independence equivalentif the independence constraints
in the two DAGs are identical. In most applications, researchers assume that the conditional distri-
bution for each node in the Bayesian-network model comes from some specific family of distribu-
tions. For example, we might assume that the conditional probability of each continuous variable is
a sigmoid distribution. Such distributional assumptions can sometimes impose non-independence
constraints on the joint distribution that lead to DAGs that are independence equivalent but not
distributionally equivalent. For the remainder of this paper, however, we will adopt the common
distribution assumptions found in the literature on Bayesian-network learning; namely, we assume
Gaussian distributions for continuous variables and unconstrained multinomial distributions for dis-
crete variables. Under these assumptions, the two notions of equivalence are identical, and we
will say that two DAGsG andG ′ areequivalentto indicate that they are both distributionally and
independence equivalent.

We useG ≈ G ′ to denote thatG and G ′ are equivalent. Because equivalence is reflexive,
symmetric, and transitive, the relation defines a set of equivalence classes over network structures.
We useE to denote an equivalence class of DAG models. Note that we use thenon-boldcharacter
E ; although arguably misleading in light of our convention to use bold-face for sets of variables, we
use the non-bold character to emphasize the interpretation ofE as a model for a set of independence
constraints as opposed to a set of DAGs. We do, however, use the set-containment operator to denote
DAG-elements of an equivalence class. Thus, we writeG ∈ E to denote thatG is in equivalence
classE . To denote a particular equivalence class to which a DAG modelG belongs, we sometimes
write E(G). Note thatG ≈ G ′ impliesG ′ ∈ E(G) andG ∈ E(G ′).

Theskeletonof any DAG is the undirected graph resulting from ignoring the directionality of
every edge. Av-structurein DAG G is an ordered triple of nodes(X,Y,Z) such that (1)G contains
the edgesX→Y andZ→Y, and (2)X andZ are not adjacent inG . Verma and Pearl (1991) provide
the following characterization of equivalent DAG models.

Theorem 1 (Verma and Pearl, 1991)Two DAGs are equivalent if and only if they have the same
skeletons and the same v-structures.

510



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

For any DAGG = (V,E), we say an edgeX→Y ∈ E is coveredin G if X andY have identical
parents, with the exception thatX is not a parent of itself. That is,X → Y is covered inG if

PaG
Y = PaG

X ∪X. The significance of covered edges is evident from the following result:

Lemma 2 (Chickering, 1995)Let G be any DAG model, and letG ′ be the result of reversing the
edge X→Y in G . ThenG ′ is a DAG that is equivalent toG if and only if X→Y is covered inG .

The following transformationalcharacterization of equivalent DAG models will prove to be
important to the main results of this paper.

Theorem 3 (Chickering, 1995)Let G and G ′ be any pair of DAG models such thatG ≈ G ′ and
for which there areδ edges inG that have opposite orientation inG ′. Then there exists a sequence
of δ distinct edge reversals inG with the following properties:

1. Each edge reversed inG is covered

2. After each reversal,G is a DAG andG ≈ G ′

3. After all reversalsG = G ′

A DAG H is anindependence mapof a DAG G if every independence relationship inH holds
in G . We useG ≤ H to denote thatH is an independence map ofG . The symbol ‘≤’ is meant
to express the fact that ifG ≤ H then H contains more edges than doesG . We can use the
independence-map relation to compareany pair of models—not just DAG models—that impose
independence constraints over a set of variables. We reserve the use of the symbol ‘≤’, however, to
comparisons between DAG models.

An edgeX→Y in G is compelledif that edge exists in every DAG that is equivalent toG . If
an edgeX→Y in G is not compelled, we say that it isreversible. In light of Theorem 1, for any
reversible edgeX→Y in G , there exists a DAGG ′ equivalent toG in which the edge is oriented in
the opposite direction (i.e.,X←Y).

We say that a distributionp(·) is containedin a DAG G if there exists a set of parameter values
θ such that the parameterized Bayesian-network model(G ,θ) representsp exactly.

2.3 Learning Models from Data

As discussed in Section 1, our proof of Meek’s conjecture leads to an optimal greedy algorithm for
learning graphical models from data. We concentrate on Bayesian methods for learning graphical
models, the roots of which date back to the work of Jeffreys (1939). We refer the reader to Heck-
erman (1995) or Buntine (1996) for a review of these methods and a more complete list of relevant
references. As we discuss below, however, the algorithm can be used in conjunction with alternative
learning methods.

Approaches to the Bayesian-network learning problem typically concentrate on identifying one
or more DAG models that fit a set of observed dataD well according to some scoring criterion
S(G ,D); once the structure of a Bayesian network is identified, it is usually straightforward to esti-
mate the parameter values for a corresponding (parameterized) Bayesian network. In the Bayesian
approach to learning DAG models we define, for each modelG , thehypothesisGh that the observed
data is a set of iid samples from a distribution that contains exactly the independence constraints

511



CHICKERING

implied byG . The scoring criterion is then defined to be the relative posterior (or relative log pos-
terior) of Gh given the observed data. A more detailed discussion of the Bayesian scoring criterion,
as well as a discussion of alternative definitions ofGh, is given in Section 4.

For any scoring criterionS(G ,D), we say thatS is decomposableif it can be written as a sum
of measures, each of which is a function only of one node and its parents. In other words, a decom-
posable scoring criterionSapplied to a DAGG can always be expressed as:

S(G ,D) =
n

∑
i=1

s(Xi ,PaG
i ) (2)

Note that the dataD is implicit in the right-hand side Equation 2. When we say thats(Xi ,PaG
i ) is

only a function ofXi and its parents, we intend this also to mean that thedataon which this measure
depends is restricted to those columns corresponding toXi and its parents. To be explicit, we could
re-write the terms in the sum of Equation 2 ass(Xi,D({Xi}),PaG

i ,D(PaG
i )), whereD(X) denotes

the data restricted to the columns corresponding to the variables in setX. We find it convenient,
however, to keep the notation simple.

Most scoring criteria derived in the literature are decomposable. An important property of
decomposable scoring criteria is that if we want to compare the scores of two DAGsG and G ′,
we need only compare those terms in Equation 2 for which the corresponding nodes have different
parent sets in the two graphs. This proves to be particularly convenient for search algorithms that
consider single edge changes to DAGs; in Section 5 we show how using a decomposable scoring
criterion leads to an efficient implementation of the two-phase greedy search algorithm of Meek
(1997).

A scoring criterionS(G ,D) is score equivalentif, for any pair of equivalent DAGsG andG ′, it
is necessarily the case thatS(G ,D) = S(G ′,D).

2.4 Completed PDAGs

In our implementation of the greedy search algorithm presented in Section 5, we search through
equivalence classes of DAG models as opposed to DAG models themselves. As is done by Chicker-
ing (2002), we usecompleted PDAGs—which we define below—to represent equivalence classes.

An acyclic partially directed graph, orPDAG for short, is a graph that contains both directed
and undirected edges, and can be used to represent an equivalence class of DAGs. LetP denote
an arbitrary PDAG. We define the equivalence class of DAGsE(P ) corresponding toP as follows:
G ∈ E(P ) if and only if G andP have the same skeleton and the same set of v-structures.1 From
Theorem 1, it follows that a PDAG containing a directed edge for every edge participating in a
v-structure and an undirected edge for every other edge uniquely identifies an equivalence class of
DAGs. There may be many other PDAGs, however, that correspond to the same equivalence class.
For example, any DAG interpreted as a PDAG can be used to represent its own equivalence class.

If a DAG G has the same skeleton and the same set of v-structures as a PDAGP and if every
directed edge inP has the same orientation inG , we say thatG is aconsistent extensionof P . Any
DAG that is a consistent extension ofP must also be contained inE(P ), but not every DAG in
E(P ) is a consistent extension ofP . If there is at least one consistent extension of a PDAGP , we
say thatP admits a consistent extension.

1. The definitions for the skeleton and set of v-structures for a PDAG are the obvious extensions to these definitions for
DAGs.

512



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

We usecompletedPDAGs to represent equivalence classes of DAGs. Recall that a compelled
edge is an edge that exists in the same orientation for every member of an equivalence class, and
that a reversible edge is an edge that is not compelled. The completed PDAG corresponding to
an equivalence class is the PDAG consisting of a directed edge for every compelled edge in the
equivalence class, and an undirected edge for every reversible edge in the equivalence class. Given
an equivalence class of DAGs, the completed-PDAG representation is unique. Also, every DAG in
an equivalence class is a consistent extension of the completed PDAG representation for that class.
Figure 1a shows a DAGG , and Figure 1b shows the completed PDAG forE(G). PDAGs are called
patternsby (e.g.) Spirtes, Glymour and Scheines (1993) and completed PDAGs are calledessential
graphsby (e.g.) Andersson, Madigan and Perlman (1997) andmaximally oriented graphsby Meek
(1995).

(a) (b)

X

Z

W

U

Y X

Z

W

U

Y

Figure 1: (a) a DAGG and (b) the completed PDAG forE(G)

3. Meek’s Conjecture

In this section, we discuss Meek’s conjecture and detail the constructive algorithm used to prove
that the conjecture is true. We provide some examples to help illustrate the algorithm and to give
some insight into why researchers have been unable to solve this problem. The detailed proof is
postponed to Appendix A.

Recall the transformational characterization of equivalence from Section 2.2, which states that
G ≈ G ′ if and only if we can transformG into G ′ by a sequence of covered edge reversals. Meek’s
conjecture is an analogous characterization of the independence-map relation. In particular, Meek’s
conjecture states thatG ≤H if and only if we can transformG into H by a sequence of (1) covered
edge reversals and (2) single edge additions. More formally, we now state the main result of this
paper.

Theorem 4 Let G andH be any pair of DAGs such thatG ≤ H . Let r be the number of edges in
H that have opposite orientation inG , and let m be the number of edges inH that do not exist in
either orientation inG . There exists a sequence of at most r+ 2m edge reversals and additions in
G with the following properties:

1. Each edge reversed is a covered edge

2. After each reversal and additionG is a DAG andG ≤H

3. After all reversals and additionsG = H

513



CHICKERING

Our proof of Theorem 4 is constructive: we define an algorithm, shown in Figure 2, that takes
as input two DAGsG andH such thatG ≤H , and identifies an edge inG that can either be added
or reversed. We show that after the edge modification is made by the algorithm (1)H remains an
independence map ofG and (2)G is “closer” to H in the sense that it has either fewer adjacency
differences or the same number of adjacency differences and fewer orientation differences. Theorem
4 is an immediate consequence of the validity of ALGORITHM APPLY-EDGE-OPERATION because
we can convertG into H by calling the algorithm repeatedly, replacingG after each call with the
result of the algorithm, untilG = H .

In words, the algorithm works as follows. First, all common sink nodes that have identical
parents in the two DAGs are removed from both DAGs. By “remove” we mean “remove from
consideration”; in practice, the input DAGs need not be modified, and it is to be understood that
ALGORITHM APPLY-EDGE-OPERATION uses a “by value” calling convention so that bothG andH
are local variables that the algorithm can modify without side effects. The algorithm next identifies
a sink nodeY in H . If Y is also a sink node inG , the algorithm chooses any parentX of nodeY
in H that is not a parent ofY in G , and adds the edgeX → Y to G . Otherwise, there is at least
one edgeY→ Z in G that is oriented in the opposite direction inH , and the algorithm identifies a
unique such edge via Step 5 (this step will be discussed in more detail below). If the edgeY→ Z is
covered inG , the algorithm reverses the edge and terminates. Otherwise, it follows by definition of
a covered edge that inG there is either (1) a parentX of Y that is not a parent ofZ, in which case
the algorithm adds the edgeX→ Z or (2) a parentX of Z that is not a parent ofY, in which case the
algorithm adds the edgeX→Y.

In the examples to follow, we will assume that the reader is familiar with thed-separation
criterion used to test independence relationships in DAG models. Those who are not familiar with
this criterion can refer to Appendix A for a detailed definition and description. In Figure 3, we
give an example application of the algorithm. Consider the two DAGsG andH shown in Figure
3a and Figure 3b, respectively. It is easy to verify thatG ≤ H by testing that the unique Markov
conditions inH (i.e.,A⊥⊥B,A⊥⊥E|{C},B⊥⊥E|{C}) also hold via d-separation inG . Now consider
a call to ALGORITHM APPLY-EDGE-OPERATION(G ,H ). There are no common sink nodes, so the
algorithm does not remove any nodes in Step 2. NodeE is the only sink node inH , and because
C is the only child ofE in G , it is easy to see that the edge tested in Step 6 isE→C. This edge is
covered inG , so the algorithm reverses it and terminates. The resulting DAG is shown in Figure 3c.
We can now call ALGORITHM APPLY-EDGE-OPERATION(G ′ ,H ) once again, using the DAGG ′
that was returned from the previous call to the function. For this call, both DAGs contain the sink
nodeE with the single parentC, and thus nodeE is removed from consideration from both DAGs.
After this removal, there are no remaining common sinks with the same parents, so the algorithm
proceeds to Step 3 and identifiesC as a sink node inH . Again there is only a single child to identify
in Step 5, and thus the edge tested in Step 6 isC→ A. This edge is covered, and thus the algorithm
terminates with the DAG shown in Figure 3d. We call ALGORITHM APPLY-EDGE-OPERATION a
final time, with the first DAG equal to the one that was returned in the previous call. After removing
E from both DAGs, the algorithm adds the edgeB→C in Step 4, and the resulting DAG—shown
in Figure 3e—is identical toH .

As mentioned in Section 1, the validity of all but one of the edge modifications can be proved
with relative ease. The difficult case to prove is when there is a child of the sink nodeY that has

2. D is guaranteed to be unique by Lemma 29 in Appendix A.

514



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

ALGORITHM APPLY-EDGE-OPERATION(G ,H )
Input: DAGsG andH whereG ≤H andG 6= H
Output: DAG G ′ that results from adding or reversing an edge inG .

1. SetG ′ = G .

2. While G andH contain a nodeY that is a sink in both DAGs and for whichPaG
Y = PaH

Y ,
removeY and all incident edges from both DAGs.

3. LetY be any sink node inH

4. If Y has no children inG , then letX be any parent ofY in H that is not a parent ofY in G .
Add the edgeX→Y to G ′ andReturn G ′.

5. Let DeG
Y denote the descendants ofY in G , and letD ∈ DeG

Y denote the (unique) maximal
element from this set withinH .2 Let Z be any maximal child ofY in G such thatD is a
descendant ofZ in G .

6. If Y→ Z is covered inG , reverseY→ Z in G ′ andReturn G ′.

7. If there exists a nodeX that is a parent ofY but not a parent ofZ in G , then addX→ Z to G ′
andReturn G ′.

8. LetX be any parent ofZ that is not a parent ofY. Add X→Y to G ′ andReturn G ′.

Figure 2: Algorithm that identifies and applies an edge modification

a parent that is not a parent ofY. In this case, Step 8 will be encountered, and the key step is the
selection of the specific such childZ in Step 5 of the algorithm. If Step 8 were never encountered,
we could use amuchsimpler method for choosingZ in Step 5. In particular, it would suffice to
choose any maximal child ofY. To illustrate the difficult case, we consider a single step of an
example that was given by Ko˘cka et al. (2001b) and is shown in Figure 4. Given the choice of
adding eitherX1→ T or X2→ T to G , only the second addition yields a DAGG ′ such thatH
remains an independence map. In particular, if we add the edgeX1→ T, then the independence
X1⊥⊥H C2 does not hold in the resulting DAG. We now show that the correct choice between these
two additions is made by a call to our algorithm. There are no common sink nodes, and the unique
sink node fromH is T. The set of descendants ofT in G is {T,C1,C2}, and inH the maximal
elementD in this set isD = C2. The maximal child ofT in G that hasD = C2 as a descendant isC2

itself, and thus the edgeT →C2 is chosen by the algorithm to be considered for Steps 6 to 8. This
edge is not covered inG , andC2 has the parentX2 that is not a parent ofT, and thus the algorithm
adds the edgeX2→ T in Step 8.

To fully understand how the selection ofZ in Step 5 guarantees that the addition is valid, the
reader should study the proof in Appendix A. For those who would like simply to gain some intu-
ition, however, we now provide some insight into Step 5. Our discussion assumes familiarity with
the d-separation criterion, as well as familiarity with the concept of anactive paththat defines the

515



CHICKERING

B

E

C

A B

E

C

A

B

E

C

A B

E

C

A B

E

C

A

(a) (b)

(c) (d) (e)

Figure 3: DAGs in an example application of ALGORITHM APPLY-EDGE-OPERATION. (a) Origi-
nal DAG G and (b) DAGH . (c), (d), and (e) show the DAGs resulting from successive
calls to the algorithm.

(a) (b)

X
1

C
2

C
1

T

X
2

X
1

C
2

C
1

T

X
2

Figure 4: DAGs (a)G and (b) H in an example application of ALGORITHM APPLY-EDGE-
OPERATION.

criterion.3 Again, readers not familiar with these concepts can consult Appendix A. We provide
relevant portions of bothG and H in Figure 5a and Figure 5b, respectively, to help clarify the
discussion.

3. We use a non-standard definition of an active path in Appendix A, but the standard definition will suffice in the
present discussion.

516



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

(a) (b)

X

D

Z

Y

A

E=B

X

D

Z

Y

A

E

B

E

Figure 5: Relevant portion of (a)G and (b)H that demonstrate how Step 5 leads to a valid edge
addition in Step 8.

Recall that nodeD from Step 5 is the maximal element ofDeG
Y with respect toH . That is, in

Step 5 we look at the descendents ofY in G , and then pick the maximal descendant with respect to
H . Note that becauseY is a sink inH , D 6= Y.

The potential problem of the addition of the edgeX→Y to G is that some active path between
two nodesA andB given a conditioning setS exists in the resulting graphG ′, where no such active
path exists in eitherG or H . It is reasonably easy to show that the following three properties hold
if there exists such an active path inG ′: (1) there must exist at least one such path that includes the
edgeX→Y, (2) neitherZ nor any descendant ofZ (includingD) in G can belong to the conditioning
set, and (3)Y is not in the conditioning set.

The first conclusion we make from these three properties (see Figure 5a) is that there must be
a descendantE of Y in G ′—and henceE is also a descendant ofY in G—that is either inS or is
one of the endpoints (B in the figure). This follows because any first non-descendant node along the
path afterX→Y follows a head-to-head junction (i.e., collider) along the path.

The second conclusion we make is that, because of our choice ofZ, there must be an active path
between both (1)A andD and (2)B andD in the DAG G (it is easy to show that there are active
paths between both endpoints andZ, and there is a directed path inG from Z to D that does not
pass through any node inS). Thus inH (see Figure 5b), there must also exist active paths between
both endpoints andD. Furthermore, becauseD 6∈ S (Property 2), both of these paths must end with
an edgeinto D (i.e.,A− . . .→ D andB− . . .→ D) or else we could concatenate them together and
identify an active path betweenA andB in H . But this implies that (*) none of the descendants of
D in H can be inS, or else the concatenation of the active paths would be active, and (**) none of
the descendants ofD in H can be an endpoint, or else the concatenation of the directed path from
D to that endpoint (through nodes not inS, where the first edge isawayfrom D) can be connected
with the active path from theotherendpoint to form an active path.

517



CHICKERING

Now the logic of the choice ofD in Step 5 becomes clear. BecauseD is the maximal node in
H out of all of the descendants ofY in G , D is anancestorin H of all of these nodes as well (see
Lemma 29 in Appendix A). This means thatD is an ancestor ofE in H , which from (*) and (**)
yield a contradiction.

4. The Optimality of Greedy Search

In this section, we describe the two-phase greedy search algorithm proposed by Meek (1997), and
show that in the limit of large samples, the algorithm identifies the DAG corresponding to the
generative model if such a model exists. Here we are concerned with the theoretical properties of
the algorithm; we postpone discussing implementation details to Section 5.

To be more precise about the optimality result in this section, we need the following notation.
Given a DAGG and a probability distributionp(·), we say thatG is aperfect mapof p if (1) every
independence constraint inp is implied by the structureG and (2) every independence implied by
the structureG holds inp. If there exists some DAG that is a perfect map of a probability distribution
p(·), we say thatp is DAG-perfect.

Assumption 1 Each case in the observed dataD is an iid sample from some DAG-perfect proba-
bility distribution p(·).

We allow there to be missing values in each iid sample, but our results implicitly depend on the
assumption that the parameters of each Bayesian network are identifiable. We will therefore assume
for the remainder of this section that the empirical distribution defined by the dataD converges to
p(·) as the number of records grows large.

The remainder of this section is organized as follows. In Section 4.1, we explore the asymptotic
behavior of the Bayesian scoring criterion, and in Section 4.2, we detail the two-phase greedy
algorithm and show how it takes advantage of that asymptotic behavior to identify the optimal
solution. Finally, in Section 4.3, we discuss the applicability of the algorithm to non-Bayesian
scoring criteria and to Bayesian scoring criteria for which the definition of the structure hypothesis
differs from the one we presented in Section 2.3. We also discuss how violations of Assumption 1
can affect the solution quality of the algorithm.

4.1 Asymptotic Behavior of the Bayesian Scoring Criterion

Recall from Section 2 that the Bayesian scoring criterion for a DAGG measures the relative pos-
terior or relative log posterior of the hypothesisGh that the independence constraints inG are
precisely the independence constraints in the generative distribution. Without loss of generality, we
express the Bayesian scoring criterionSB using the relative log posterior ofGh:

SB(G ,D) = log p(Gh)+ logp(D|Gh) (3)

wherep(Gh) is the prior probability ofGh, andp(D|Gh) is themarginal likelihood. The marginal
likelihood is obtained by integrating the likelihood function (i.e., Equation 1) applied to each record
in D over the unknown parameters of the model.

Definition 5 (Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distribution p(·). A
scoring criterion S isconsistentif in the limit as m grows large, the following two properties hold:

518



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

1. If H contains p andG does not contain p, then S(H ,D) > S(G ,D)

2. If H and G both contain p, andG contains fewer parameters thanH , then S(G ,D) >
S(H ,D)

Geiger, Heckerman, King and Meek (2001) show that the models we consider in this paper (i.e.,
those containing Gaussian or multinomial distributions) arecurved exponential models. The details
of this class of model are not important for our results, but Haughton (1988) shows that (under
mild assumptions about the parameter prior) the Bayesian scoring criterion is consistent for curved
exponential models. In particular, Haughton (1988) shows that Equation 3 for curved exponential
models can be approximated using Laplace’s method for integrals, yielding

SB(G ,D) = logp(D|θ̂,Gh)− d
2

logm+O(1) (4)

whereθ̂ denotes the maximum-likelihood values for the network parameters,d denotes the dimen-
sion (i.e., number of free parameters) ofG , andm is the number records inD. The first two terms
in this approximation are known as theBayesian information criterion(or BIC). The presence of
theO(1) error means that, even asmapproaches infinity, the approximation can differ from the true
relative log posterior by a constant. As shown by Haughton (1988), however, BIC is consistent.
Furthermore, it is easy to show that the leading term in BIC grows asO(m), and therefore we con-
clude that because the error term becomes increasingly less significant asm grows large, Equation
3 is consistent as well. Because the prior termp(Gh) does not depend on the data, it does not grow
with mand therefore is absorbed into the error term of Equation 4. Thus the asymptotic behavior of
the Bayesian scoring criterion depends only on the marginal likelihood term.

Consistency of the Bayesian scoring criterion leads, from the fact that BIC is decomposable,
to a more practical property of the criterion that we calllocal consistency. Intuitively, if a scoring
criterion is locally consistent, then the score of a DAG modelG (1) increasesas the result of adding
any edge that eliminates an independence constraint that does not hold in the generative distribution,
and (2)decreasesas a result of adding any edge that does not eliminate such a constraint. More
formally, we have the following definition.

Definition 6 (Locally Consistent Scoring Criterion)
LetD be a set of data consisting of m records that are iid samples from some distribution p(·). LetG
be any DAG, and letG ′ be the DAG that results from adding the edge Xi→ Xj. A scoring criterion
S(G ,D) is locally consistentif the following two properties hold:

1. If Xj 6⊥⊥pXi|PaG
j , then S(G ′,D) > S(G ,D)

2. If Xj⊥⊥pXi|PaG
j , then S(G ′,D) < S(G ,D)

Lemma 7 The Bayesian scoring criterion is locally consistent.

Proof: The proof follows from the fact that in the limit, the criterion ranks models in the same
order as BIC. Because BIC is decomposable, the increase in score that results from adding the edge
Xi→ Xj to any DAGG is the sameas the increase in score that results from adding the edge to any
other DAGH for which Xj has the same parents. We can therefore choose a particularH —where

519



CHICKERING

PaH
j = PaG

j —for which adding the edgeXi→ Xj results in acompleteDAG H ′; that is,H ′ has an
edge between every pair of nodes. Because the complete DAG imposes no constraints on the joint
distribution, the lemma follows immediately from the consistency of BIC.�

From Lemma 7, we see that as long as there are edges that can be added to a DAG that eliminate
independence constraints not contained in the generative distribution, the Bayesian scoring criterion
will favor such an addition. If the DAG contains the distribution, then Lemma 7 guarantees that any
deletion of an “unnecessary” edge will be favored by the criterion. These properties allow us to
prove the optimality of the greedy search algorithm presented in the following section.

4.2 A Two-Phase Optimal Greedy Search Algorithm

In this section, we first detail the two-phase greedy search algorithm, calledGreedy Equivalence
Searchor GES by Meek (1997). Then we present—using the results of Section 4.1—a version of
the proof of Meek (1997) that GES is optimal in the limit of large datasets. For the remainder of
this section, we will assume that we are using the Bayesian scoring criterion in conjunction with the
search algorithm.

Up to this point, we have concentrated on DAG models in our discussion of learning from data.
We find it convenient now to switch to an equivalence-class interpretation of both DAG hypotheses
and the Bayesian scoring criterion in order to more clearly present the GES algorithm. From the
definition of Gh, it follows that all DAGs in the same equivalence class correspond to the same
hypothesis. That is, ifG ≈ H then Gh = H h. Thus we can useEh to denote the hypothesis
corresponding to the (identical) hypotheses of the DAGs contained withinE . Furthermore, by
definition of the Bayesian scoring criterion, the score of a DAG model in equivalence classE is the
(relative) log posterior ofEh; thus, the Bayesian scoring criterion is well defined for equivalence
classes, and can be evaluated using any DAG member of the class. We will useSB(E ,D) to denote
the score for equivalence classE using the Bayesian scoring criterion.

Before proceeding, we show that the equivalence class that is a perfect map4 of the generative
distribution is the optimal solution.

Proposition 8 LetE∗ denote the equivalence class that is a perfect map of the generative distribu-
tion p(·), and let m denote the number of records inD. Then in the limit of large m, SB(E∗,D) >
SB(E ,D) for anyE 6= E∗.

Proof: Suppose this is not the case, and there exists a higher-scoring equivalence classE 6= E∗.
Because the scoring criterion is consistent, it must be the case thatE containsp; furthermore,
becauseE∗ is a perfect map ofp, it follows thatE must be an independence map ofE∗. Let G be
any DAG inE∗, and letH be any DAG inE . BecauseG ≤H , we know from Theorem 4 that there
exists a sequence of covered edge reversals and edge additions that transformsG into H . After
each covered edge reversal, the score ofG remains the same because (by Lemma 2) it remains in
the same equivalence class. After each edge addition, however, the number of parameters in the
DAG necessarily increases, and because the scoring criterion is consistent, the score necessarily
decreases. BecauseE is optimal, there can therefore be no edge additions in the transformation,
which contradicts the supposition thatE 6= E∗. �

As suggested by the name, GES is a greedy algorithm that searches over equivalence classes
of DAGs. Greedy search (in general) proceeds at each step by evaluating eachneighborof the

4. The definition ofperfect mapfor equivalence classes is the obvious extension of the definition for DAGs.

520



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

current state, and moving to the one with the highest score if doing so improves the score. The set
of neighbors of each state in the search defines the connectivity of the search space. GES consists
of two phases. In the first phase, a greedy search is performed over equivalence classes using a
particular connectivity between equivalence classes. Once a local maximum is reached, a second
phase proceeds from the previous local maximum using a second connectivity. When the second
phase reaches a local maximum, that equivalence class is returned as the solution.

We useEEE+(E) to denote the neighbors of stateE during the first phase of GES. In words,
an equivalence classE ′ is in EEE+(E) if and only if there is some DAGG ∈ E to which we can
add a single edge that results in a DAGG ∈ E ′. Given Theorem 3, an alternative way of describing
EEE+(E) is as follows. LetG be any DAG inE and letG ′ be any DAG inE ′. ThenE ′ ∈ EEE+(E)
if and only if there exists a sequence of covered edge reversals followed by a single edge addition
followed by another sequence of covered edge reversals that transformG into G ′. We useEEE−(E)
to denote the neighbors of stateE during the second phase of GES. The definition ofEEE−(E) is
completely analogous to that ofEEE+(E), and contains equivalence classes that are obtained by
deletinga single edge from DAGs inE .

In Figure 6a, we show a particular DAGG , and in Figure 6b, we show all members ofE =
E(G). In Figure 6c, we show all DAGs reachable by a single edge addition to a member ofE . The
union of the corresponding equivalence classes constitutesEEE+(E); because all of the DAGs in
Figure 6c are equivalent,EEE+(E) contains a single equivalence class (corresponding to the “no
independence constraints” hypothesis). In Figure 6d, we show all DAGs reachable by a single edge
deletion from a member ofE . The union of the two corresponding equivalence classes constitutes
EEE−(E).

B C

A

(a) (b)

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

(c)

(d)

Figure 6: (a) DAGG , (b) E = E(G), (c) the single member ofEEE+(E), and (d) the two members
of EEE−(E).

521



CHICKERING

GES can now be described as follows. We first initialize the state of the search to be the equiva-
lence classE corresponding to the (unique) DAG with no edges. That is, the first state of the search
corresponds to all possible marginal and conditional independence constraints. In the first phase of
the algorithm, we repeatedly replaceE with the member ofEEE+(E) that has the highest score,
until no such replacement increases the score. Once a local maximum is reached, we move to the
second phase of the algorithm and repeatedly replaceE with the member ofEEE−(E) that has the
highest score. Once the algorithm reaches a local maximum in the second phase, it terminates with
its solution equal to the current stateE .

We prove that GES correctly identifies the optimal solution in the limit using two steps. First,
we show that the local maximum reached in the first phase of the algorithm contains the generative
distribution. Then, we use Theorem 4 to show that the equivalence class reached at the end of the
second phase must be a perfect map of the generative distribution.

The proof for the first phase of GES relies on the fact that the generative distribution is DAG-
perfect. Any such distribution must obey thecompositionindependence axiom described in Pearl
(1988), the contrapositive of which can be stated as follows: if variableX is not independent of the
setY given setZ, then there exists a singleton elementY ∈ Y such thatX is not independent ofY
given setZ.

Lemma 9 Let E denote the equivalence class that results at the end of the first phase of GES, let
p(·) denote the distribution from which the dataD was generated, and let m denote the number of
records inD. Then in the limit of large m,E contains p.

Proof: Suppose not, and consider anyG ∈ E . BecauseG contains some independence constraint
not in p, and because the independence constraints ofG are characterized by the Markov conditions,
there must exist some nodeXi in G for which Xi 6⊥⊥pY|Pai, whereY is the set of non-descendants
of Xi. Furthermore, because the composition axiom holds forp(·), there must exist at least one
singleton non-descendantY ∈ Y for which this dependence holds. By Lemma 7, this implies that
the DAG G ′ that results from adding the edgeY→ Xi to G (which cannot be cyclic by definition
of Y) has a higher score thanG . Clearly,E(G ′) ∈ EEE+(E), which contradicts the fact thatE is a
local maximum.�

We now use Theorem 4 to show that in the second phase, GES will add independence constraints
(by “deleting edges”) until the equivalence class corresponding to the generative distribution is
reached.

Lemma 10 Let E denote the equivalence class that results from GES, let p(·) denote the DAG-
perfect distribution from which the dataD was generated, and let m denote the number of records
in D. Then in the limit of large m,E is a perfect map of p.

Proof: Given Lemma 9, we know that when the second phase of the algorithm is about to com-
mence, the current state of the search algorithm containsp. We are guaranteed thatE will continue
to containp throughout the remainder of the algorithm by the following argument. Consider the
first move made by GES to a state that does not containp. By definition ofEEE−(E), this move
corresponds to an edge deletion in some DAG. But it follows immediately from the fact that the
score is consistent that any such deletion woulddecreasethe score, contradicting the fact that GES
is greedy.

522



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

To complete the proof, assume that the algorithm terminates with some sub-optimal equivalence
classE , and letE∗ be the optimal equivalence class. From Proposition 8, we know thatE∗ is a
perfect map ofp, and becauseE containsp, it follows thatE must be an independence map ofE∗.
Let H be any DAG inE , and letG be any DAG inE∗. BecauseG ≤ H , we know from Theorem
4 that there exists a sequence of covered edge reversals and edge additions that transformsG into
H . There must be at least one edge addition in the sequence because by assumptionE 6= E∗ and
henceG 6≈ H . Consider the DAGG ′ that precedes thelast edge addition in the sequence. Clearly
E(G ′) ∈EEE−(E) and becauseG ′ has fewer parameters thanH , we conclude from the consistency
of the scoring criterion thatE cannot be a local maximum, yielding a contradiction.�

4.3 Discussion

In this section, we discuss some subtle issues about the GES algorithm, and consider what happens
when some of our assumptions are violated.

Note that the first phase of GES does not depend on Theorem 4. In fact, the first phase is not
even needed to get the large-sample optimality. It is used only to identify an equivalence class
that contains the generative distribution, so we could simply start with thecompleteequivalence
class (i.e., no independence constraints) and move immediately to the second phase. The problem,
of course, with starting from the complete model is that for any realistic domain, the number of
parameters in the model will be prohibitively large. The hope is that the first phase will identify a
model that is as simple as possible. There exist generative distributions (e.g., the distribution with
no independence constraints) for which the first phase will, in fact, have to reach the complete model
in order to identify an appropriate equivalence class, but we hope that in practice the first phase will
reach a local maximum that is reasonably sparse. In Section 6, we will see that for many real-world
domains, this is exactly what happens.

The optimality proofs in the previous section do not depend on the scoring criterion being the
Bayesian criterion. Lemma 9 (the first phase of GES) holds for any scoring criterion that is locally
consistent, which means that the result holds for any consistent criterion that is decomposable in
the limit (recall from Section 4.1 that we used consistency and decomposability to get local consis-
tency). The proof of Proposition 8 (the optimal structure is perfect with respect to the generative
distribution) and the proof of Lemma 10 (the second phase of GES) used Theorem 4 to compare the
score of two equivalence classes by comparing the scores of twoparticular DAGs in those equiv-
alence classes. For any score-equivalent criterion (such as the Bayesian criterion), this approach is
clearly justified. Score equivalence is not needed, however, for the large-sample optimality of GES.
In particular, as long as all DAGs in an equivalence class have the same number of parameters—a
property that is easy to show for the models we consider in this paper (i.e., those containing Gaus-
sian or multinomial distributions)—these proofs remain valid for any consistent criterion. To see
this, we consider the following result:

Proposition 11 Let G and H be any two DAGs that contain the generative distribution and for
whichG has fewer parameters thanH , and let S be any consistent (DAG) scoring criterion. If all
DAGs in an equivalence class have the same number of parameters, then for everyG ′ ≈ G and for
everyH ′ ≈H , S(G ′,D) > S(H ′,D).

523



CHICKERING

Proof: BecauseG ′ and H ′ both contain the generative distribution, and given that all DAGs in
an equivalence class have the same number of parameters, the result follows immediately from the
definition of consistency.�

Given Proposition 11, it is easy to see that the proofs for Proposition 8 and Lemma 10 hold
without modification for any consistent scoring criterion, regardless of whether or not the criterion is
score equivalent. Things get a bit tricky when the scoring criterion is not score equivalent, however,
because if we are interested in the highest-scoring DAG model, we may still have work to do after
identifying the optimal equivalence class. In particular, there can be an enormous number of DAGs
contained within an equivalence class, and we must search through these DAGs to find the best
model. Depending on the particulars of the scoring criterion, this search problem may or may not
be difficult.

An example of a popular scoring criterion that is not score equivalent is the (Bayesian) K2
scoring criterion. Cooper and Herskovitz (1992) derive this closed-form criterion for multinomial
conditional distributions by making some assumptions about network parameter priors. It turns out
that for two DAGsG1 andG2 that are in the same equivalence class, we can get different values
for the marginal-likelihood termsp(D|Gh

1) andp(D|Gh
2) in the K2 criterion. Strictly speaking, this

means that the hypothesis corresponding to a DAG in the K2 score cannot be simply a hypothesis
about independence constraints. In fact, the reason that the K2 scoring criterion is not score equiv-
alent is that Cooper and Herskovits (1992) constrain the conditional-parameter priors in the DAGs
to come from a particular restricted family of distributions. Researchers often use K2 because it is
easy to implement and is very fast to evaluate. Furthermore, the score differences between mem-
bers within the same equivalence class are typically very small compared to the score differences
between members of different equivalence classes. As a result, researchers often use the criterion to
identify a good DAG, and then interpret the result to mean that the algorithm identified the equiva-
lence class corresponding to that DAG.

As opposed to the “accidental” non-score-equivalence of K2, Heckerman, Geiger, and Chick-
ering (1995) discuss a Bayesian scoring criterion for learningcausalnetworks. In this case, they
define the hypothesis corresponding to a DAG model to assert, in addition to the independence
properties about the generative distribution, that each edge in the DAG corresponds to a cause-
effect relationship. It turns out that the resulting scoring criterion is locally consistent, and thus—as
described above—we can use GES to identify a single equivalence class of models in which we can
then search for a high-scoring (causal) model.

For most real domains, it is unlikely that the generative distribution will be DAG perfect in the
sense that there is a DAGdefined over the observablesthat is perfect. In this case, we need to
refine our definition of the hypothesis corresponding to a DAG because otherwise we are admitting
thatnoneof these hypotheses are true. We can relax the hypothesisGh to denote, for example, the
assertion thatG is a DAG model with fewest parameters that can represent the joint distribution
over the observables.5 If we make the assumption that there exists a DAG defined oversomeset
of variables that is a perfect map of the generative distribution—of which the observables are a
subset—then the composition axiom still holds so we are guaranteed (in the limit) to identify an
independence map of the optimal hypothesis in the first phase of GES. All we know about the second
phase in this case, however, is that the resulting equivalence class will be aminimal independence
map of the optimal solution. That is, there is no DAG in the class for which we can remove an edge

5. A technical difficulty with this definition is that two non-equivalent DAGs might both satisfy these conditions, and
thus the hypotheses are not mutually exclusive.

524



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

and still contain the generative distribution. In Section 6, we explore the potential problems with
the DAG-perfect assumption by applying the GES algorithm to real-world data. As we show in that
section, the GES algorithm performs well in these domains, regardless of whether the large-sample
guarantees are justified.

5. An Efficient Search Space

In the previous section, we provided a theoretical justification for using the GES algorithm by prov-
ing that in the limit of large datasets, the algorithm will identify the optimal model. Such a result is
of little importance unless the search algorithm can be implemented in a reasonably efficient manner.
To make this point clear, consider the (provably optimal) search algorithm that exhaustively enumer-
ates and evaluates every possible structure; because the number of DAGs grows super-exponentially
with the number of variables in the domain, and recent results from (e.g.) Gillispie and Perlman
(2001) suggest that the number of equivalence classes grows super-exponentially as well, such an
algorithm is of no practical importance except for very small domains (for only eight variables,
there are over 700 billion DAGs and over 200 billion equivalence classes).

The feasibility of applying any search algorithm in practice depends on the complexity of both
the algorithm and the search space to which that algorithm is applied. Because we are using a greedy
search algorithm over edges, it is easy to show that the total number of search states visited by GES
in a domain ofn variables can never exceedn· (n−1). Furthermore, we have found that in practice
the number of states visited generally grows linearly withn.

Of greater concern to us—given the simplicity of the algorithm—is the complexity of the search
space: for each state visited by the greedy search algorithm, we need to generate and evaluate all
states that are reachable by the application of a single operator. If the number of such neighbor
states grows very large, or if each neighbor state takes too long to evaluate, even the simple greedy
algorithm may not terminate quickly enough. Chickering (1996) shows that the problem of learning
the optimal structure using the Bayesian scoring criterion is NP-hard; this negative result suggests
that in the worst case, the connectivity of the search space that the algorithm encounters will be
a problem. Our hope is that in practice, this worst-case scenario will not occur, and that for real-
world problems the portion of the search space traversed by GES will be sparse. If we do, in fact,
encounter portions of the search space that are too dense to search efficiently, we can choose to
consider only a heuristically-selected subset of the candidate neighbors at each step, albeit at the
cost of losing the large-sample optimality guarantee. We should point out that the density of the
search space has never been a problem in any of the experiments we have performed, including
those presented in Section 6.

In this section, we describe a method for efficiently generating and evaluating the neighbors
of a given search state in the GES algorithm. The approach we take builds upon the work of
Chickering (2002), where completed PDAGs (described in Section 2.4) are used to represent states
in the search, and where operators are defined that can be used (by any algorithm) to search the
space of equivalence classes efficiently.

We now define asearch spacecorresponding to each of the two phases of the GES algorithm
presented in Section 4.2. A search space has three components:

1. A set of states

2. A representation scheme for the states

525



CHICKERING

3. A set of operators

The set of states represents the logical set of solutions to the search problem, the representation
scheme defines an efficient way to represent the states, and the set of operators is used by the search
algorithm to transform the representation of one state to another in order to traverse the space in a
systematic way. The two phases of GES correspond to a greedy search algorithm applied to two
different search spaces that differ by the set of operators they contain.

In Section 4.2, both the states of GES and the connectivity of the search space in the two phases
are defined. In particular, the states of the search are equivalence classes of DAGs, and the neighbors
of a particular stateE are eitherEEE+(E) or EEE−(E), depending on whether GES is in the first
or second phase, respectively. Furthermore, we will use completed PDAGs—described in Section
2.4—to represent the states of the search. Thus all that remains to defining the search space is an
implementation of the operators.

Given a state of the search represented as a completed PDAGP c, we define the following two
sets of operators that can be used to define the connectivity of the two phases of GES. In these
definitions and elsewhere, a pair of nodesX andY in a PDAG areneighborsif they are connected
by an undirected edge, and they areadjacentif they are connected by either an undirected edge or a
directed edge.

Definition 12 Insert(X,Y,T)
For non-adjacent nodes X and Y inP c, and for any subsetT of the neighbors of Y that are not
adjacent to X, the Insert(X,Y,T) operator modifiesP c by (1) inserting the directed edge X→Y,
and (2) for each T∈ T, directing the previously undirected edge between T and Y as T→Y.

Definition 13 Delete(X,Y,H)
For adjacent nodes X and Y inP c connected either as X−Y or X→Y, and for any subsetH of
the neighbors of Y that are adjacent to X, the Delete(X,Y,H) operator modifiesP c by deleting the
edge between X and Y , and for each H∈H, (1) directing the previously undirected edge between Y
and H as Y→ H and (2) directing any previously undirected edge between X and H as X→ H.

We useInsert operators to implement the connectivity for the first phase of GES, and we use
Deleteoperators to implement the connectivity for the second phase of GES. We use ‘T’ to denote
the set-argument of theInsert operator because every node in this set becomes a “tail” node in a
new v-structure as a result of the operator. Similarly, we use ‘H’ for the Deleteoperator because
every node in this set becomes a “head” node in a new v-structure.

After applying an operator to a completed PDAG, the resulting PDAG is not necessarily com-
pleted. Therefore we may need to convert that PDAG to the corresponding completed PDAG rep-
resentation of the resulting equivalence class; this is accomplished in two steps by first extracting a
consistent extension from the (not completed) PDAG, and then constructing the completed PDAG
from that DAG. In Appendix C, we provide the implementation of Chickering (2002) for both steps
of this conversion algorithm. If the (not completed) PDAG that results from an operator admits a
consistent extension, we say that the operator isvalid. Otherwise, we say the operator isnot valid
and do not allow its application to the search space.

The algorithm in Appendix C that converts PDAGs to completed PDAGs takes timeO(|E| ·k2)
in the worst case—where|E| is the number of edges in the PDAG andk is the maximum number
of parents per node—which could potentially be a problem for domains with a large number of

526



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

variables. As we show below, however, in GES all of the operators for a given search state can
be generated and evaluated efficiently without ever needing to construct the representation of the
resulting states. Thus the only time that the completed PDAG representation for a state needs to be
constructed is when GES “moves” to that state (i.e., when the best neighbor state is identified and
the current state is replaced with that neighbor state). Furthermore, the algorithm does not depend
on the number of records in the data, and because it is applied infrequently compared to the number
of times operators are evaluated, its contribution to the overall run time of GES is insignificant.

There are easily testable conditions for bothInsert andDeleteoperators to ensure that they are
valid. To define these conditions, we first need to define asemi-directedpath. This is the same as a
directed path except that any of the edges may be undirected. More formally we have:

Definition 14 A semi-directed pathfrom Y to X in a PDAG is a path from Y to X such that each
edge is either undirected or directed away from Y.

The following two theorems and corresponding corollaries demonstrate (1) how to determine
efficiently whether or not anInsert or Deleteoperator is valid and (2) how to score each such
operator. We have simplified our notation to make the results easy to read:PaY denotes the parents
of nodeY in the completed PDAG representation of the current state. We usePaY

+X andPaY
−X as

shorthand forPaY∪{X} andPaY \{X}, respectively. We useNAY,X to denote the set of nodes that
are neighbors of nodeY and are adjacent to nodeX in the current state. The proofs of these results,
which are summarized in Table 1, are given in Appendix B.

Theorem 15 LetP c be any completed PDAG, and letP c′ denote the result of applying an Insert(X,Y,T)
operator toP c. There exists a consistent extensionG of P c to which adding the edge X→Y results
in a consistent extensionG ′ of P c′ if and only if inP c

1. NAY,X ∪T is a clique

2. Every semi-directed path from Y to X contains a node inNAY,X ∪T

Corollary 16 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator Insert(X,Y,T) to a completed PDAGP c is

s(Y,NAY,X ∪T∪PaY
+X)−s(Y,NAY,X ∪T∪PaY)

Theorem 17 Let P c be any completed PDAG that contains either X→ Y or X−Y, and letP c′

denote the result of applying the operator Delete(X,Y,H) to P c. There exists a consistent extension
G of P c that contains the edge X→Y from which deleting the edge X→Y results in a consistent
extensionG ′ of P c′ if and only ifNAY,X \H is a clique.

Corollary 18 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator Delete(X,Y,H) to a completed PDAGP c is

s(Y,{NAY,X \H}∪PaY
−X)−s(Y,{NAY,X \H}∪PaY)

The final step in an implementation of GES is a method to generate candidate operators after
each move. We note that the majority of the operators at a given step of the algorithm both will
remain valid and will have the same score at the next step of the algorithm. Given that we need

527



CHICKERING

Table 1: Necessary and sufficient validity conditions and (local) change in score for each operator
Operator Validity Tests Change in Score

Insert(X,Y,T)

NAY,X ∪T is a clique

Every semi-directed path
from Y to X contains
a node inNAY,X ∪T

s(Y,NAY,X ∪T∪PaY
+X)

−s(Y,NAY,X ∪T∪PaY)

Delete(X,Y,H) NAY,X \H is a clique
s(Y,{NAY,X \H}∪PaY

−X)
−s(Y,{NAY,X \H}∪PaY)

to generate or re-generate a set of operators corresponding to a pair of nodesX andY, the most
obvious approach is to use Definition 12 and Definition 13 directly to generate those operators
without regard to the validity conditions, and then test the validity conditions for every one. This
procedure is detailed in the following paragraph.

In the first phase of GES, only those nodes that are not adjacent will have a corresponding set
of operators. For such pairX andY whose corresponding operators need to be generated, we define
T0 to be the set of all neighbors ofY thatare notadjacent toX. Let T0∗ denote the power set ofT0;
that is,T0∗ contains all possible subsets ofT0. We then test the validity of (and possibly score) the
result ofInsert(X,Y,T) for everyT ∈ T0∗. In the second phase of GES, only those nodes thatare
adjacent will have a corresponding set of operators. For such a pairX andY whose corresponding
operators need to be generated—and for which there is either an undirected edge betweenX andY
or a directed edge fromX toY—we defineH0 to be the set of all neighbors ofY thatareadjacent to
X. Let H0∗ denote the power set ofH0. We then test the validity of (and possibly score) the result
of Delete(X,Y,H) for everyH ∈H0∗.

For a set of nodesS of sizek, there are 2k elements in the power set ofS. It follows that the
feasibility of this implementation for GES will, to a large degree, depend on the number of neighbors
of the nodes in the completed PDAGs we encounter; if there is a node with too many neighbors, we
may simply have too many operators to test. In particular, during the first phase of the algorithm, in
order to generate the operators for a pair of non-adjacent nodesX andY, the implementation can be
slow if Y has many neighbors that are not adjacent toX. Similarly, during the second phase of the
algorithm, the implementation may be slow for (adjacent)X andY if Y has many neighbors thatare
adjacent toX.

There are a number of tricks we can apply to generate more efficiently the candidate operators
corresponding to a pair of nodes. Consider the first validity condition for theInsert operator given
in Table 1: namely, that the setNAY,X ∪T must be a clique. If this test fails for some setT, then it
will also fail for anyT′ that containsT. Thus if we are careful, we can gain enormous savings by
not generating candidates that we know are not valid. A similar optimization can be made for the
Deleteoperator, except that we save only the cost of performing the validity test. In particular, if
the validity test for theDeleteoperator passes for some setH, then we know it will also pass for

528



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

any setH′ that containsH as a subset. We can also save time by noting that if thesecondvalidity
condition for theInsert operator passes for someT, then it will also pass for anyT′ that containsT.
Finally, we note that if we are careful, we can avoid generating distinct operators that result in the
same neighbor state. For example,Delete(X,Y,H) andDelete(Y,X,H) result in the same state,6

so only one of them need be generated. A similar result for theInsert operator when the setT is
empty is given by Chickering (2002): ifX andY have the same parents, thenInsert(X,Y, /0) and
Insert(Y,X, /0) result in the same state.

Unfortunately, in the worst case there can be an exponential number of valid operators for a
particular state in the search. As was mentioned above, we can prune neighbors heuristically in
this situation to make the search practical. For example, we might choose to search only through
equivalence classes where the member DAGs have some upper boundk on the number of parents
for each node. In this case, we need consider only a polynomial number of “v-structure sets” for
each pair of nodes. In all of the experiments we have performed, however, including those presented
in the next section, we have yet to encounter a domain for which GES encounters a state that has
too many neighbors.

As is evident from the simplicity of the validity conditions from Table 1, there are a number of
ways to efficiently update (i.e., regenerate) the valid operators after each step of GES. For example,
consider the set ofInsert operators corresponding to the nodesX andY. Suppose that all the
operators have been generated and scored at a given step of (the first phase of) GES, and we want to
know whether these operators remain valid and have the same score after applying some operator.
From Table 1, we see that if the neighbors ofY have not changed, the first validity condition must
still hold for all previously-valid operators; because we are adding edges in this phase, any clique
must remain a clique. Furthermore, if the parents of nodeY have not changed, we need only check
the second validity condition (assuming the first holds) if the score of the operator is higher than the
best score seen so far; otherwise, we know that regardless of whether the operator is valid or not, it
will not be chosen in the next step.

Finally, we note that an obvious optimization that we use for both GES and the alternative
search algorithms described in the next section is to cache away previously-computed local scores
corresponding to a node. Thus when we transition to the second phase of GES, many of the operators
can be scored without an explicit call to the scoring function.

6. Experimental Results

In this section, we evaluate the GES algorithm using both synthetic and real-world data. In Section
6.1, we use synthetic data to evaluate GES in terms of how well the algorithm can identify the
generative structure given datasets that are finite. In Section 6.2, we use real-world data to evaluate
the solution quality and total search time of GES when it is applied to real data.

In all of our experiments, we compare GES to two alternative greedy search algorithms. The
first such algorithm, which we callD-space search, is a traditional DAG-space greedy algorithm
that considers adding, removing, and reversing edges at each step. The second search algorithm,
which we callE-space search, is a greedy search through equivalence classes using the following
operators defined by Chickering (2002): (1) all validInsert operators for whichT is empty (no
v-structures are created that contain previously undirected edges), (2) all validDeleteoperators

6. These operators are only both defined if the edge betweenX and Y is undirected; note that the definition of
Delete(X,Y,H) is not symmetric inX andY.

529



CHICKERING

where the setH is empty, (3) a directed edge can be reversed if the result is a PDAG that admits
a consistent extension and (4) for any length-two path of undirected edgesX−Y−Z, if X andZ
are not adjacent, then the edges can be directed asX→Y← Z if the result is a PDAG that admits
a consistent extension. As shown by Chickering (2002), all of these operators can be tested and
scored efficiently.

We use the BayesianBDeuscoring criterion for discrete variables—derived by Heckerman et
al. (1995)—in all of our experiments. The BDeu criterion uses a parameter prior that has uniform
means, and requires both a prior equivalence sample size and a structure prior to specify. For all of
our experiments, we use a prior equivalent sample size of ten, and a structure prior of 0.001f , where
f is the number of free parameters in the DAG. Letqi denote the number of configurations of the
parent setPai, and letri denote the number of states of variableXi. Then the version of the BDeu
criterion used in our experiments is:

SBDeu(G ,D) = log
n

∏
i=1

0.001(ri−1)qi

qi

∏
j=1

Γ(10
qi

)

Γ(10
qi

+Ni j )
·

ri

∏
k=1

Γ( 10
ri ·qi

+Ni jk)

Γ( 10
ri ·qi

)
(5)

whereNi jk is the number of records inD for which Xi = k and Pai is in the jth configuration,
andNi j = ∑kNi jk . We also use the (non-Bayesian) constraint that each parameter needs to have
a corresponding sample size of at least five. Note from Equation 5 that our scoring criterion is
decomposable.

6.1 Synthetic-Data Experiments

In our experiments with synthetic data, we generated datasets of various sample sizes from agold
standardBayesian network with known structure and parameters. In order to make the connectiv-
ity of the gold standard “realistic”, we constructed each generative network as follows. First, we
took a real-world dataset (the MediaMetrix dataset described in detail in Section 6.2), consisting of
roughly 5000 records in a domain of 13 discrete (three-valued) variables, and ran the D-space search
algorithm to identify a local maximum. Then, we performed ten random D-space edge operations
(i.e., additions, deletions, and reversals) to that local maximum, and the resulting structure defined
the edges in our gold standard. Finally, we parameterized the gold standard by sampling all of the
conditional (multinomial) parameters from a uniform Dirichlet distribution.

The synthetic data experiments can be described as follows. We generated 100 random gold
standards as described above, and considered sample sizes from 500 to 10000 in increments of 500
samples. For each sample size, we created a dataset with the appropriate number of records from
each of the 100 gold standards. For each sampled dataset, we learned three Bayesian networks
using each of the three greedy search algorithms, and checked whether or not these networks were
equivalent to the gold standard. Figure 7 contains the results of these experiments. The figure plots,
for each of the three algorithms, the number of the learned networks that were equivalent to the gold
standard as a function of the sample size.

As we see from the figure, GES proved to be superior to the competing algorithms when tasked
with identifying the generative structure. Rather surprising is that the models identified using D-
space were more often equivalent to the generative structure than those identified using E-space;
one explanation for this is that by virtue of generating the gold standards using D-space, we may be
biasing the experiment in favor of that space. To gauge the complexity of the domain, we recorded
the number of edges, the number of parameters, and the maximum number of parents for each of

530



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

0

50

100

500 2000 3500 5000 6500 8000 9500

Sample Size

N
um

be
r 

E
qu

iv
al

en
t t

o 
G

ol
d 

S
ta

nd
ar

d

GES

D-space

E-space

Figure 7: Number of learned networks that are equivalent to the generative structure as a function
of the sample size.

the 100 gold-standard models. The averages of these measurements were 9.1 (±1.1), 98.0 (±36.1),
and 2.4 (±0.7), respectively, which demonstrate that for this experiment, the optimal equivalence
classes were sparse.

6.2 Real-World Data Experiments

We used the following six real-world datasets in our experiments. For all datasets, we assume that
values arenot missing at random. In particular, we treat “missing” as a distinct, discrete state.

1. Microsoft Web Training Data (MSWeb)

This dataset, which is available via anonymous ftp from the UCI Machine Learning Reposi-
tory, contains 32711 instances of users visiting the www.microsoft.com web site on a day in
1996. For each user, the data contains a variable indicating whether or not that user visited
each of the 292 areas (i.e., “vroots”) of the site. We used the 50 most popular areas and a
sample of 5,000 users.

2. Nielsen

The Nielsen dataset contains data about television-watching behavior during a two-week pe-
riod in 1995. The data was made available courtesy of Nielsen Media Research. The data
records whether or not each user watched five or more minutes of network TV shows aired
during the given time period. There were 3314 users in the study, and 402 television shows.
We used the most popular 50 shows in our experiments.

3. EachMovie

531



CHICKERING

The EachMovie dataset consists of viewer ratings on movies. The data was collected during
an 18-month period beginning in 1995. We used the ratings of the 50 most popular movies
by a sample of 5,000 viewers. The rating is a discrete variable that is either missing, or is
provided as an integer from one to five.

4. MediaMetrix

This dataset contains demographic and internet-use data for 4808 individuals during the
month of January 1997. We used only the internet-use variables in our experiments; there
are 13 such variables that indicate the category of web site visited.

5. 1984 United States Congressional Voting Records (HouseVotes)

This dataset contains the 1984 congressional voting records for 435 representatives voting on
17 issues, and is available via anonymous ftp from the UCI Machine Learning Repository.
Votes are all three-valued: yes, no, or unknown. For each representative, the political party is
given; this dataset is typically used in a classification setting to predict the political party of
the representative based on the voting record.

6. Mushroom

The Mushroom dataset, available via anonymous ftp from the UCI Machine Learning Reposi-
tory, contains physical characteristics of 8124 mushrooms, as well as whether each mushroom
is poisonous or edible. There are 22 physical characteristics for each mushroom, all of which
are discrete.

For our experiments, we considered some variants of the GES algorithm that we deemed to be
better suited for real-world domains. Our inclusion of these variants was motivated by a number
of observations. First, we found that after running phase two of GES, it was often the case that we
could further increase the score by applying moreInsertoperators; in other words, the state reached
after phase two was not a local maximum with respect to the phase-one operators. Second, we found
that in the first phase of GES, the bestDeleteoperator would often have a better score than the best
Insert operator, even though the bestInsert operator increased the score; note that this situation is
impossible in the large-sample limit. Finally, we noticed that in practice, the number of v-structures
induced by the setsT andH for the bestInsert andDeleteoperators, respectively, was in almost all
cases either zero or one. Thus we can often restrict the size ofT andH to size one and get the same
local maximum as we would with no such restrictions. As discussed in Section 5, such a restriction
reduces the number of operators we need to evaluate and thus will speed up the implementation.

We ran experiments using three specific variants of GES. The first variant, which we call GES*,
simply applies GES repeatedly until neither phase one nor phase two increases the score. We use
GES* instead of GES in our experiments because it is guaranteed to find a solution that is at least
as good (in terms of the score) as GES. The second variant, which we call OPS, performs a greedy
search usingboth the Insert operators and theDeleteoperators at each step. Finally, the third
variant, which we call OPS-1, is identical to OPS except that we only considerInsert andDelete
operators for which|T| ≤ 1 and|H| ≤ 1, respectively.

The results of our experiments are given in Table 2 and Table 3. In Table 2 we report, for each
dataset, the score of the maximum reached by each algorithm. In Table 3 we report, for each dataset,
the total learning time in seconds for each algorithm.

532



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

Table 2: Scores of the model selected by each of the algorithms.
Dataset GES* OPS OPS-1 D-space E-space
MSWeb -38599.7 -38599.7 -38599.7 -38602.0 -38618.4
Nielsen -42787.8 -42787.8 -42787.8 -42800.3 -42916.4
EachMovie -258531.0 -258531.0 -258531.0 -258531.0 -258531.0
MediaMetrix -46341.3 -46341.3 -46341.3 -46369.8 -46341.3
HouseVotes -6061.1 -6061.1 -6061.1 -6061.1 -6061.1
Mushroom -177351 -177351 -177351 -177408 -177351

Table 3: Total learning time in seconds for each algorithm.
Dataset GES* Time OPS Time OPS-1 Time D-space Time E-space Time
MSWeb 54 54 52 28 24
Nielsen 36 36 36 30 12
EachMovie 25 24 24 16 16
MediaMetrix 3 3 3 2 2
HouseVotes 0.5 0.5 0.5 0.3 0.3
Mushroom 14 14 13 5 4

Rather surprising, we see from Table 3 that all of the algorithms performed about the same in
terms of the resulting score. Although the GES variants always identified a model that had the same
score or better than the two competing approaches, we do not believe the differences are significant.7

Upon closer examination of the models, we found some interesting properties. For HouseVotes and
EachMovie, all of the algorithms resulted in the same local maximum, and this model contained no
compelled edges. For MediaMetrix and Mushroom, all of the algorithms except for D-space resulted
in the same local maximum, and this model contained no compelled edges. For all datasets, the GES
variants traversed the same set of states and resulted in the same local maximum. All of the models
learned were reasonably sparse.

Because the local maxima from the experiments can be identified without applying many (if any)
operators that create v-structures, all algorithms essentially traversed over the same set of states.
We expect that in domains for which there are more complicated dependencies, the GES-based
algorithms will identify different models both from themselves and the two competing algorithms.
Given the results in Section 6.1, we also have reason to hope that these algorithms will identify
better models. From Table 3 we see that the running times of the GES variants are generally larger
than the running times of the two alternative algorithms. To investigate the source of the increase
in time, we recorded the number of times that the local scoring function was called by each of the
algorithms. In Table 4 we report the total learning time—inmilliseconds—divided by the number
of times the evaluation function was called; as we see, for each of the datasets, this time is roughly
constant across all of the algorithms.

7. Chickering (2002) compared D-space to E-space using a 70% sample of the full datasets, and the winning algorithm
was different than our results for three of them.

533



CHICKERING

Table 4: Total learning time in milliseconds divided by the number of calls to the evaluation func-
tion for each algorithm.

Dataset GES* Time OPS Time OPS-1 Time D-space Time E-space Time
MSWeb 5.01 5.01 4.99 5.27 5.40
Nielsen 4.72 4.77 4.78 4.88 7.31
EachMovie 10.01 9.59 9.73 9.56 9.56
MediaMetrix 5.96 5.96 6.04 6.45 6.40
HouseVotes 0.73 0.70 0.76 1.06 0.95
Mushroom 12.44 12.50 12.29 13.00 12.25

Because we cache the local scores of the nodes during all searches, each operator re-score (due
to a change in the local connectivity of the state) requires on average a single call to the scoring
function. Therefore the times in Table 4 are roughly equal to the time spent per operator re-score.
Because this time is constant, we conclude that the increase in time is due entirely to the additional
operators that we need to score (and re-score) at each step. Furthermore, we conclude that our
validity tests for theInsert andDeleteoperators are efficient enough that the time to traverse the
search space using the GES variants is dominated by the time spent scoring the operators.

7. Conclusion

In this paper, we proved the so-called “Meek Conjecture” and showed how the result leads to the
asymptotically optimal two-phase greedy search algorithm GES that was originally proposed by
Meek (1997). We provided a new implementation of the search space to which GES can be applied
such that all operators used by the algorithm can be scored efficiently using local functions of the
nodes in the domain. Using synthetic data, we demonstrated that (1) the GES algorithm can identify
the generative structure when given enough data and (2) the GES algorithm is superior in this regard
to a greedy search using two alternative search spaces. We applied GES to six real-world datasets
and saw that the solution quality was roughly the same as the two alternative greedy approaches.
Although the time per evaluation-function call was the same as the competing algorithms, we found
that the larger number of neighbors per state for the GES algorithm resulted in slightly slower run
times.

An interesting extension to this work would be to investigate whether or not there are any large-
sample optimality guarantees to GES (or a variant of GES) when the generative structure is not
a DAG defined over the observables. As discussed in Section 4.3, if the generative structure is a
DAG that includes hidden variables, the composition axiom of independence still holds among the
observables, and the first phase of GES will lead to an independence map of the optimal model. We
know that result of thesecondphase of the algorithm is a minimal such independence map, but can
we say anything stronger? In a recent paper, Chickering and Meek (2002) consider situations when
the composition axiom is guaranteed to hold, and investigate the optimality guarantees of GES in
these situations.

534



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

It is unfortunate that the real-world dataset experiments did not provide a good test bed for our
algorithms. It does suggest, however, the following search strategy to apply when faced with real
data: First run a simple (and fast) DAG-based greedy algorithm. If the resulting model is simple
(e.g., there are no compelled edges and there are only a few edges), we probably will not be able to
find a better solution with a more sophisticated algorithm. If the model is reasonably complicated,
on the other hand, we may try to apply GES or one of its variants.

Recall that the OPS algorithm from Section 6.2 considers both theInsert andDeleteoperators
simultaneously. An interesting extension would be to implement an algorithm that considers, in
addition to these operators, the “extra” operators from the E-space algorithm of Chickering (2002)
that connect states that are not adjacent in the OPS space; these operators are the edge-reversal
operator and the operator that makes a v-structure by directing two undirected edges. This extension
would increase the number of evaluations that would need to be performed at each state, but perhaps
the combined search algorithm would perform better.

Acknowledgments

Special thanks to Michael Perlman, who revived my interest in Meek’s conjecture; I had long ago
given up after many months in pursuit of a proof. My discussions with Michael Perlman, Milan
Studen´y, Tomás̆ Koc̆ka, Robert Castelo and Steve Gillispie proved to be extremely useful, and I
am grateful to them all. I would also like to thank Chris Meek—who initially introduced me to his
conjecture in 1995—for the many helpful discussions on this work. Others who provided useful
comments on earlier drafts include Remco Bouchaert, David Heckerman, Rich Neapolitan, and two
anonymous reviewers.

Appendix A: Detailed Proof of Theorem 4

In this appendix, we provide a detailed proof of Theorem 4. The theorem is an immediate conse-
quence of Lemma 30, which demonstrates the correctness of ALGORITHM APPLY-EDGE-OPERATION.

Almost all of the results presented here are proved using properties of thed-separationcriterion.
This criterion—which is detailed by (e.g.) Pearl (1988)—is used to test whether or not certain
independence constraints are implied by a DAG model. In particular, two nodesA andB are said to
be d-separated in a DAGG given a set of nodesS if and only if there is noactive pathin G between
A andB givenS. The standard definition of an active path is asimplepath for which each nodeW
along the path either (1) has converging arrows andW or a descendant ofW is in S or (2) does not
have converging arrows andW is not inS. By simple, we mean that the path never passes through
the same node twice.

To simplify our proofs, we use an equivalent definition of an active path—that need not be
simple—where each nodeW along the path either (1) has converging arrows andW is in S or (2)
does not have converging arrows andW is not inS. In other words, instead of allowing a segment
→W← to be included in a path by virtue of a descendant ofW belonging toS, we require that the
path include the sequence of edges fromW to that descendant and then back again. For those readers
familiar with the celebrated “Bayes ball” algorithm of Shachter (1998) for testing d-separation, our
expanded definition of an active path is simply a valid path that the ball can take betweenA andB.

More formally, we have the following definitions.

535



CHICKERING

Definition 19 (Collider) Let π(W1,Wn) denote any path between W1 and Wn. A node Wi is called
a collider at positioni of the path if Wi 6∈ {W1,Wn} and the path contains the converging arrows
Wi−1→Wi ←Wi+1 at Wi.

Definition 20 (Active Path) A path π(A,B) between A and B in DAGG is S-active in G if the
following conditions hold:

1. A 6∈ Sand B 6∈ S

2. If W ∈ S is an element ofπ(A,B), then W is a collider at every position inπ(A,B)

3. If W 6∈ S is an element ofπ(A,B), then W is not a collider in any position inπ(A,B)

The direction of eachterminal edge—that is, the first and last edge encountered in a traversal
from one end of the path to the other—in an active path is important for determining whether we
can append two active paths together to make a third active path. We say that a pathπ(A,B) is into
A if the terminal edge incident toA is oriented towardA (i.e.,A←). Similarly, the path is intoB if
the terminal edge incident toB is oriented towardB. If a path is not into an endpointA, we say that
the path isout of A.

The following lemma demonstrates when we can create an active path by simply appending two
other active paths together.

Lemma 21 Let π(A,B) be anS-active path between A and B, and letπ(B,C) be anS-active path
between B and C. If either path is out of B, then the concatenation ofπ(A,B) and π(B,C) is an
S-active path between A and C.

Proof: Because at least one of the paths is out ofB, the junction betweenπ(A,B) and π(B,C)
cannot be a collider. Furthermore, becauseB 6∈ S, the concatenation satisfies all of the conditions of
Definition 20.�

For example, consider the DAG shown in Figure 8, and assumeS= {C}. If we let π(A,D) =
{A→ B→ D} andπ(D,E) = {D→C← D← E, it follows from Lemma 21 that because (1) both
paths areS-active and (2)π(D,E) is out of D, the concatenationπ(A,E) = A→ B→ D→ C←
D← E is S-active.

A E

B C

D

Figure 8: Example DAG with aS-active path betweenA andE, whereS= {C}.

In the proofs that follow, we will make extensive use of Lemma 21, but we will do so implicitly
to simplify the presentation. In many of the results, for example, we prove the existence of an
S-active path between two nodesA andB by showing that (1) there is anS-active path betweenA
and some nodeX1, (2) there is anS-active path betweenB andX2, and (3) there is anS-active path

536



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

betweenX1 andX2 that is out of bothX1 andX2. To conclude from these properties that there is an
S-active path betweenA andB, we need to make an awkward argument about applying Lemma 21
twice, whereas the conclusion is obvious given the lemma.

The following lemma and its two corollaries provide the main tools we use to prove that AL-
GORITHM APPLY-EDGE-OPERATION is correct. In particular, these results expose properties about
active paths that must hold in light of an edge addition to some DAG.

Lemma 22 Let G be any DAG, and letG ′ be the DAG that results by adding the edge X→Y to
G . Letπ(A,B) be anyS-active path inG ′ such that there is no S-active path between A and B inG .
Then the following properties hold:

1. π(A,B) contains the edge X→Y

2. X 6∈ S

3. If Y is an endpoint, then inG there is an active path between the other endpoint and X

4. If Y 6∈ S, then inG either there are active paths between both endpoints and X, or there is an
active path between one endpoint and X and an active path between the other endpoint and
Y .

5. If Y ∈ S, then inG either there are active paths between both endpoints and X, or there is an
active path between one endpoint and X and an active path between the other endpoint and
all other parents of Y that are not inS.

Proof: (1) follows immediately because otherwise the path is active inG . Given (1), (2) follows
because otherwise the path would not be active. (3) follows from (2) and the fact that every sub-path
of an active path between nodes not inS is by definition active.

We now prove (4) and (5) by considering the following two traversals ofπ(A,B): consider a
traversal ofπ(A,B) from A alongπ(A,B) until the edge betweenX andY is about to be traversed
for the first time. Similarly, consider the same traversal except starting atB.

First we show that at least one of the traversals ends atX, and thus we establish for both (4) and
(5) that there exists inG an active path between one of the endpoints andX. Suppose to the contrary
that both traversals end at nodeY. If Y ∈ S, the last edge in both traversals must be intoY and thus
we could append them together to form an active path that violates property (1). Similarly, ifY 6∈ S,
it follows that because the next edge (i.e.,X→Y) along both traversals is intoY, the last edge in
both traversals is out ofY, and again we can form an active path in violation of property (1).

Without loss of generality, assume there is anS-active path betweenA andX in G . Property (4)
now follows immediately because the traversal fromB must have ended atX or atY; becauseY 6∈ S,
this sub-path is active. To prove property (5), we assumeY ∈ S. If the traversal fromB ended at
X, the property follows immediately. Otherwise, the last edge in the traversal must have been into
Y, and thus the next-to-last node is some parentX′ of Y that is not inS, and thus we conclude that
there is an active path betweenB andX′. Now consider any other parentX′′ of Y that is not inS:
we can form an active path betweenB andX′′ by appending the active path betweenB andX′ with
the (active) pathX′ →Y← X′′ in G that is out ofX′. �

Corollary 23 Let G be any DAG, and letG ′ be the DAG that results by adding the edge X→Y
to G . Let H be any DAG such thatG ≤ H . Then for anyS-active pathπ in G identified with

537



CHICKERING

properties 3, 4, or 5 from Lemma 22, there is a correspondingS-active path between the endpoints
of π in H .

Proof: Follows immediately becauseG ≤H . �
The following second corollary is convenient for our main proof because two of the additions

made by the algorithm are edges into a node that is a sink in the independence map.

Corollary 24 Let G be any DAG, and letG ′ be the DAG that results from adding the edge X→Y
to G . Let H be any DAG such that (1)G ≤ H , (2) Y is a sink node inH , and (3)H contains the
edge X→Y. Letπ(A,B) be anyS-active path inG ′ such that there is no S-active path between A
and B inG . If Y ∈ S, then there is anS-active path between A and B inH .

Proof: From Corollary 23 (Property 5) we know that inH , there is anS-active path between one
of the endpoints andX, and there is anS-active path between the other endpoint and eitherX or
a parent ofY from G that is not inS. Without loss of generality, assume there is anS-active path
betweenA andX in H . Given the three preconditions of the corollary, it follows that every parent
of Y in G ′ is a parent ofY in H . Thus there is anS-active path inH betweenB and some parent
W of Y that is not inS (with W = X a possibility). Consequently we can construct anS-active path
betweenA andB in H by connecting the two active paths from the endpoints with the active path
X→Y←W that is out of bothX andW. �

The next lemma is the key idea of Step 2 of the algorithm: it allows us to remove nodes from
both of the input DAGs in order to simplify the problem.

Lemma 25 Let G and H be two DAGs containing a node Y that is a sink in both DAGs and for

whichPaG
Y = PaH

Y . Let G ′ and H ′ denote the subgraphs ofG and H , respectively, that result by
removing node Y and all its in-coming edges. ThenG ≤H if and only ifG ′ ≤H ′.

Proof: (If) For this case, we assume thatG ′ ≤ H ′, and show that any active path inG must also
exist inH , thus establishing thatG ≤H . Let π(A,B) be anyS-active path betweenA andB in G .

If Y never appears inπ(A,B), thenπ(A,B) is T-active inG ′, whereT = S\ {Y}, and thus by
assumption, there is a correspondingT-active pathπ′(A,B) betweenA andB in H ′. Furthermore,
becauseH ′ is a subgraph ofH , and becauseY cannot appear inπ′(A,B) (Y does not exist inH ′),
we conclude thatπ(A,B) is S-active inH , thus proving the result. For the remainder of the proof,
we assume thatY appears inπ(A,B).

SupposeY ∈ S. This implies thatY occurs as a collider at every position inπ(A,B). Consider
a traversal fromA to B alongπ(A,B), and letX → Y← X′ andZ′ → Y← Z be the first and last
occurrence ofY (as a collider) on the traversal. Because every sub-path of anS-active path between
members not inS is by definition active, and because neitherX nor Z can be inS (elseπ(A,B)
would not be active through the identified colliders), we conclude that inG there exists (1) anS-
active path betweenA andX that does not pass throughY and (2) anS-active path betweenB and
Z that does not pass throughY. Clearly both of these paths areT-active inG ′ givenT = S\{Y},
and by assumption thatG ′ ≤ H ′, it follows that there exist correspondingT-active pathsπ′(A,X)
andπ′(B,Z) in H ′. BecauseH ′ is a sub-graph ofH , bothπ′(A,X) andπ′(B,Z) areT-active inH .
Furthermore, because neither path containsY, they are bothS-active inH as well. This means we
can append them together with theS-active pathX→Y← Z that is out of bothX andZ to create
anS-active path betweenA andB in H .

538



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

SupposeY 6∈ S. Then becauseY is a sink node inG , the only time it can occur inπ(A,B) is as
an endpoint. Without loss of generality, assumeY = A. In the degenerate case whenY is alsoB,
the result follows trivially, so we assume that there is at least one edge inπ(A,B). BecauseY is a
sink in G , we know the first edge inπ(A,B) is intoY: let X→Y denote this first edge. ClearlyX
cannot be inS, which means that there is anS-active path betweenX andB that does not includeY.
This means that the same path isS-active inG ′, and therefore because we are assumingG ′ ≤ H ′,
there must exist anS-active pathπ′(B,X) betweenB andX in H ′. Because the parent sets ofY are
identical inG andH , it follows that the edgeX→Y exists inH and constitutes anS-active path in
H that can be appended toπ′(B,X) to create anS-active path betweenY = A andB in H .
(Only If) For this case, we assume thatG ≤H , and show that any active path inG ′ must also exist
in H ′, thus establishing thatG ′ ≤ H ′. Let π′(A,B) be anyS-active path betweenA andB in G ′.
BecauseY does not exist inG ′ we can assume, without loss of generality, thatY 6∈ S. BecauseG ′
is a subgraph ofG , π′(A,B) is S-active inG . By the assumption thatG ≤ H , it follows that there
exists a correspondingS-active pathπ(A,B) betweenA andB in H . BecauseY 6∈ S andY is a sink
node inH , Y cannot be inπ(A,B), and thus this path isS-active inH ′. �

We are now almost ready to present the main proof; we first need some simple intermediate
results, the first of which was proved by Verma and Pearl (1991).

Lemma 26 (Verma and Pearl, 1991)If nodes X and Y are not adjacent in some DAGG , then for

the setS= PaG
X ∪PaG

Y , there is noS-active path between X and Y inG .

Proposition 27 Let G andH be two DAGs such thatG ≤ H . If there is an edge between X and Y
in G , then there is an edge between X and Y inH .

Proof: Follows immediately from Lemma 26 and the fact that an edge betweenX andY constitutes
anS-active path for anyS that does not includeX orY. �

Lemma 28 LetG andH be two DAGs such thatG ≤H . If G contains the v-structure X→ Z←Y,
then eitherH contains the same v-structure or X and Y are adjacent inH .

Proof: Suppose this is not the case andH does not contain the v-structure andX andY are not
adjacent inH . From Proposition 27, we know that inH , Z must be adjacent to bothX andY. By
our supposition,Z is a parent of eitherX or Y in H . This implies by Lemma 26 that there exists a
conditioning setS that includes nodeZ (and does not include either nodeX or nodeY) for which
no active path exists betweenX andY in H . But the pathX → Z← Y in G is active given any
conditioning set that includesZ (and excludesX andY), including the setS, which contradicts the
fact thatG ≤H . �

Lemma 28 was also proven by Ko˘cka et al. (2001b). For the next lemma, recall from the
definition ofDeG

Y thatY is included in this set.

Lemma 29 SupposeG ≤H . For any node Y , there is a unique maximal element inH from the set

DeG
Y .

Proof: Suppose not, and letD1 andD2 be any two maximal elements inH . Because these nodes
are both descendants ofY in G , there is anS-active path inG between them for anyS that does not

contain any node inDeG
Y . By definition ofD1 andD2, in H neither has a parent fromDeG

Y , and thus

539



CHICKERING

by Lemma 26,S= PaH
D1
∪PaH

D2
constitutes precisely such a set that renders them independent in

H , contradicting the fact thatG ≤H . �
We can now prove that ALGORITHM APPLY-EDGE-ORIENTATION is correct.

Lemma 30 Let G and H be two DAGs such thatG ≤ H and G 6= H . Let G ′ denote the graph
returned byALGORITHM FIND-EDGE-OPERATION(G ,H ). ThenG ′ is a DAG such thatG ′ ≤ H
and if the operation was an edge reversal, then the edge was covered inG .

Proof: In Step 2 of the algorithm the input DAGs are simplified by repeatedly removing common
sink nodes that have the same parents in both DAGs. LetGS andHS denote these simplified versions
of the input DAGs. It follows immediately from Lemma 25 that if we find an edge modification to
GS such thatHS is an independence map of the resulting DAG, thenH is an independence map
of the DAG that results from that same edge modification inG . Furthermore, because only sink
nodes are removed, any covered edge reversal inGS corresponds to a covered edge reversal in
G . Thus we can concentrate on identifying an edge to modify using the simplified problem. For
notational simplicity, we will useG andH to denote the simplified versions of the input DAGs for
the remainder of the proof.

We know that after Step 2,G andH have at least two nodes, else we conclude thatall nodes
were removed in Step 2, contradicting the fact thatG 6= H . Thus the nodeY identified in Step 3
must exist.

X

Y

X

Y

X

Y

(a) (b) (c)

Figure 9: Relevant portions of the DAGs for the edge addition at Step 4: (a)G , (b) G ′ resulting
from the edge addition, and (c)H .

If there are no children ofY in G (Step 4), we simply choose any nodeX that is a parent ofY
in H but not a parent ofY in G (See Figure 9), and we return the DAGG ′ that results from adding
X→Y to G . We know that such anX exists, else we would have removedY in Step 2. Consider
anyS-active pathπ(A,B) in G ′ that is not active inG . Recall from Lemma 22 (Property 1) thatY
must be an element ofπ(A,B). BecauseY is a sink inG ′, we know that it must either be an endpoint
of π(A,B) or it must be a member ofS. If Y is an endpoint, we know by Corollary 23 (Property 3)
that inH there is anS-active path from the other endpoint andX. Thus by appending this path with
the edgeX→Y (which is out ofX), we have identified anS-active path betweenA andB in H . If
Y is in S, it follows immediately from Corollary 24 that there is anS-active path betweenA andB
in H . Thus we conclude that ifG ′ is returned by the algorithm at Step 4, thenG ′ ≤H .

If we get to Step 5, there is at least one child ofY in G , and we apply a somewhat complicated
rule for choosing aparticular child Z on which to concentrate (see Figure 10). We first use the DAG
G to identify the setDeG

Y of descendants ofY in G . Then, we turn our attention to DAGH and

identify the maximal elementD of the setDeG
Y with respect toH . From Lemma 29, this maximal

540



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

Z

Y

D

Y

D

(a) (b)

Figure 10: Selection of nodeZ at Step 5: (a) example DAGG and (b) corresponding DAGH . All

nodes (includingY) are members ofDeG
Y .

element is necessarily unique, and becauseY is a sink node inH , it follows thatD 6= Y. Thus in
G , D must be a descendant of some maximal child ofY, and therefore the nodeZ at Step 5 is well
defined.

For Step 6 of the algorithm, ifY→ Z is covered inG then by Lemma 2 the DAGG ′ that results
from reversing the covered edgeY→ Z in G is equivalent toG , and thusG ′ ≤H . If the edgeY→ Z
is not covered inG , then by definition of a covered edge there is either a parent ofY that is not a
parent ofZ, or there is a parent ofZ that is not a parent ofY. These two cases are tested in Step 7
and Step 8, respectively.

(a) (b) (c)

X

Y

Z X

Y

ZX

Y

Z

Figure 11: Relevant portion of DAGs for the edge addition at Step 7: (a)G , (b) G ′ that results from
the edge addition, and (c)H .

If (in Step 7)Y has some parentX that is not a parent ofZ in G , then we return the DAGG ′ that
results from addingX→ Z to G (see Figure 11). First we note that because there is a directed path
from X to Z in G (X is a parent ofY andZ is a child ofY), the addition will not create a cycle. To
see thatH remains an independence map, consider anyS-active pathπ(A,B) betweenA andB in
G ′ that is not active inG . Recall from Lemma 22 (Property 1) thatπ(A,B) must include the edge
X→ Z. It must be the case thatY ∈ S, or else we could replace every occurrence of the edgeX→ Z
in π(A,B) with the pathX→Y→Z to construct anS-active path betweenA andB in G . If Z 6∈S, we
conclude from Corollary 23 (Property 4) that inH there is anS-active path between each endpoint
and eitherX or Z. BecauseY is a child of bothX andZ in H , we can connect these two active paths
together inH (using eitherX→Y← X or X→Y← Z; from property 4 we know at least one of
the paths ends withX) to construct anS-active path betweenA andB in H . If Z ∈ S, we know from

541



CHICKERING

Corollary 23 (Property 5) that inH there is an active path between one of the endpoints andX, and
an active path between the other endpoint and eitherX or some parent ofZ not inS. Without loss of
generality, assume there is anS-active path betweenA andX in H . If the path fromB ends atX we
establish anS-active path betweenA andB in H by connecting these paths together with the active
pathX→Y← X that is out ofX. Otherwise, assume that the path fromB ends at nodeW, where
W 6∈S is a parent ofZ in bothG andG ′. It must be the case thatW is adjacent toY in H —and hence
becauseY is a sink,W must be aparentof Y in H —by the following argument: ifW is not adjacent
toY in G , thenY→ Z←W is a v-structure not inH and the adjacency is established from Lemma
28; if W is adjacent toY in G then the adjacency is established from Proposition 27. BecauseW
is a parent ofY in H , we can construct anS-active path betweenA andB by connecting the two
paths fromA andB with the active pathX→Y←W. Thus we conclude that ifG ′ is returned by
the algorithm at Step 7, thenG ′ ≤H .

(a) (b) (c)

X

Y

D=Z

Y

D

X

Y

X

D=Z

DeY DeY

Figure 12: Edge addition at Step 8: (a) example DAGG , (b) DAG G ′ resulting from the edge
addition and (c) corresponding DAGH .

Finally, if Step 8 is reached, we know thatZ must have some parentX that is not a parent of
Y, and we return the DAGG ′ that results from adding the edgeX→Y to G (see Figure 12). We
now argue that the edge addition cannot form a cycle. If it did, then there must be a directed path
from Y to X in G . Thefirst nodeW in this path—which is a child ofY—is either equal toX or is
an ancestor ofX, which means thatW is an ancestor ofZ. But this contradicts the fact thatZ is a
maximal child ofY that hasD as a descendant.

As above, letπ(A,B) be anyS-active path betweenA andB in G ′ that is not active inG . Recall
from Lemma 22 (Property 1) thatπ(A,B) must include the edgeX→Y. We will now demonstrate
that there must be a correspondingS-active path betweenA andB in H .

We first consider the case whenY ∈ S. BecauseY is a sink inH , we know thatH cannot
include the v-structureX→ Z←Y that exists inG (but notG ′), and we conclude from Lemma 28
(and the fact thatY is a sink node inH ) that the edgeX→Y must exist inH . Thus from Corollary
24 it follows that there is anS-active path betweenA andB in H . For the remainder of the proof,
we consider the case whenY 6∈ S.

It must be the case that no member fromDeG
Z is in S; otherwise, we could replace each oc-

currence of the edgeX→ Y with an active pathX→ Z→ . . .→ S← . . .← Z← Y for any such
descendantS, and thus construct an active path inG betweenA andB.

We now show that there must beS-active paths between each endpoint and the nodeD chosen
in Step 5 of the algorithm. First, from Lemma 22 (Property 4), there is an active path inG from
each endpoint to eitherX orY. BecauseD is a descendant ofZ (and hence bothX andY) in G , and

542



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

because neitherY nor any of the descendants ofZ (including Z itself) are inS, we can append to
each of these active paths a directed path toD to constructS-active paths between both endpoints
andD in G . BecauseG ≤H , it follows that there exists correspondingS-active paths inH as well.

Given that there is anS-active path between both endpoints andD in H , if we can identify a
directed path inH from D to either (1) one of the endpoints or (2) an element ofS, then we can
easily identify anS-active path betweenA andB in H : consider the shortest such directed path.
If the path reaches an endpoint, then the directed path constitutes anS-active path inH between
D and that endpoint that is out ofD, which means we can append it to theS-active path between
theotherendpoint andD to create the desired path. If the path reaches an elementSof S, then we
can append to that directed path the same path in the opposite direction to create anS-active path
betweenD and itself that is out ofD on both endpoints (i.e.,D→ . . .→ S← . . .← D), which can
then be used to connect the two active paths between the endpoints andD to create the desired path.

All that remains is to show that there must be a descendant ofD in H that is either one of the
endpoints or an element ofS. To do so, we turn our attention back to the active pathπ(A,B) in
G ′. Consider any segment ofπ(A,B) that starts with the edgeX → Y, and then continues in the
direction of the edge until either the path ends or an edge is encountered in the other direction.
Clearly this directed path (which might end immediately atY) ends at either an endpoint (i.e.,A or
B) or a member ofS. In either case, the last node is a descendant ofY in G . BecauseD is theunique

(Lemma 29) maximal element ofDeG
Y within H , it follows that any such descendant ofY in G is a

descendant ofD in H . Thus we conclude that there is anS-active path betweenA andB in H , and
that if G ′ is returned by the algorithm at Step 8, thenG ′ ≤H . �

Finally, we can prove the main result of this paper, which we state again below.

Theorem 4Let G andH be any pair of DAGs such thatG ≤ H . Let r be the number of edges in
H that have opposite orientation inG , and let m be the number of edges inH that do not exist in
either orientation inG . There exists a sequence of at most r+ 2m edge reversals and additions in
G with the following properties:

1. Each edge reversed is a covered edge

2. After each reversal and additionG is a DAG andG ≤H

3. After all reversals and additionsG = H

Proof: Properties 1 through 3 follow immediately from Lemma 30 if we simply apply the edge
operation from ALGORITHM FIND-EDGE-OPERATION(G ,H ) until G = H . We now show that the
algorithm is called at mostr + 2m times. If a covered edge is reversed inG by the algorithm, we
know (see Step 6) thatafter the reversal, the edge has the same orientation as inH , and thereforer
is reduced by exactly one andm remains constant; thus the sumr +2m is reduced by exactly one. If
an edge is added, it follows from Lemma 30 thatH is an independence map of the resulting DAG,
and thus by Proposition 27m is necessarily reduced by one; in this caser either remains constant or
is increased by one, and thus the sumr +2m is reduced by either two or one.�

Appendix B: Operator Proofs

In this appendix, we provide proofs for the main results in Section 5. We show that the conditions
given in Table 1 are necessary and sufficient for anInsert andDeleteoperator to be valid for the

543



CHICKERING

first and second phase, respectively, of the GES algorithm. An immediate corollary of the proof for
each operator type is the increase in score that results.

The appendix is organized as follows. In Appendix B.1, we provide numerous preliminary
results, the majority of which are proved by Chickering (2002). Then in Appendix B.2 and B.3, we
provide the main results for theInsert andDeleteoperators, respectively.

B.1 Preliminary Results

The main proofs in this appendix rely on many intermediate results, most of which are proven by
Chickering (2002). In this section, we enumerate all of these intermediate results.

The following proposition characterizes the conditions under which a v-structure exists in one
PDAG but not another.

Proposition 31 Let P andP ′ denote any pair of PDAGs. Let X→Y← Z be any v-structure inP ′

that is not inP . Then one of the following conditions must hold: (1) X6∈ PaP
Y , (2) Z 6∈ PaP

Y , or (3)
X and Z are adjacent inP .

Proof: Follows immediately from the definition of a v-structure.�
The next several results show how the edge status—either compelled or reversible—of some of

the edges in a PDAG can constrain the status of other edges. An edge is compelled (reversible) in a
PDAG if the corresponding edge is compelled (reversible) in a consistent extension of that PDAG.

Proposition 32 (Chickering, 2002)Let P be any PDAG that admits a consistent extension and
contains a compelled edge X→Y. If there is an edge, either directed or undirected, between Y and
some node Z such that Z and X are not adjacent, then that edge is compelled.

Proposition 33 (Chickering, 2002)Let P be any PDAG that admits a consistent extension such
that there is a directed path from X to Y consisting of compelled edges. If there is an edge between
X and Y, it is compelled as X→Y.

Lemma 34 (Chickering, 1995)Let{X,Y,Z} be any three nodes that form a clique of size three in
PDAGP . If any two of the edges in the clique are reversible, then the third edge is reversible as
well.

Lemma 35 (Chickering, 2002)For any directed edge X→Y in a completed PDAG, X is a parent
of every node reachable by Y via undirected edges.

Lemma 36 (Chickering, 2002)LetX = {X1, ...,Xn} be the nodes from any undirected clique of size
n within some undirected component of a completed PDAGP c, and letτ denote any total ordering
of the nodes inX. There exists a consistent extension ofP c for which (1) the edge orientations
among the nodes inX are consistent withτ, and (2) any edge between Xi and a neighbor Y that is
not inX is oriented as Xi→Y.

The final set of results are properties of semi-directed paths (see Definition 14) from a completed
PDAG.

544



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

Lemma 37 (Chickering, 2002)Let P c be a completed PDAG that contains a semi-directed path
from X to Y . If there exists a directed edge Z→W in this path, then there exists a directed path
from Z to Y inP c.

Corollary 38 (Chickering, 2002) Let P c be a completed PDAG. IfP c contains a semi-directed
path from X to Y consisting of intermediate nodes contained within some setN, then theshortest
semi-directed path whose intermediate nodes are contained inN consists of exactly two consecutive
segments, where the first segment consists entirely of undirected edges and the second segment
consists entirely of directed edges.

Corollary 39 (Chickering, 2002) Let P c be a completed PDAG. IfP c contains a semi-directed
path from X to Y consisting of intermediate nodes contained within some setN, then for anyshort-
estsemi-directed path whose intermediate nodes are contained inN, there is no edge inP c that
connects a pair of non-consecutive nodes along the path.

Lemma 40 Let P c be a completed PDAG that contains a semi-directed path from X to Y , and let
X−W be the first edge along anyshortestsuch semi-directed path. If the edge between X and W is
directed as X→W in some consistent extensionG of P c, then there is a directed path from X to Y
in G .

Proof: Suppose not, and letB←C be the first edge that is directedaway from Y along the path.
From Corollary 38, we know that this edge must be reversible, as must be the edgeA→ B that
precedes it. But from Corollary 39,A andC are not adjacent, and thusA→ B←C is a v-structure,
yielding a contradiction.�

The conditions from Table 1 include checking that some set of neighbors of a node in a com-
pleted PDAG are a clique. It follows immediately from Lemma 34 that if any set of neighbors is a
clique, then that set of neighbors is a clique ofundirectededges. It is to be understood that in the
sections to follow that when we useclique, we mean a clique of undirected edges.

We say thatY is a reversible parentof X in a PDAG or DAG if the edgeY→ X is reversible.
Similarly, we say thatY is a compelled parentof X if Y → X is compelled. We use analogous
definitions forreversible childandcompelled child.

B.2 The Insert Operator

In this section, we show that the conditions in Table 1 are necessary and sufficient for determining
whether anInsertoperator is valid during the first phase of GES. In particular, we show in Theorem
15 that the conditions hold if and only if we can extract a consistent extensionG of the completed
PDAG P c to which adding a single directed edge results in a consistent extensionG ′ of the com-
pleted PDAGP c′ that results from applying the operator. The “if” part of the proof is constructive;
that is, we identify a specificG to which we can add the edge. The increase in score that results
from the operator thus follows immediately.

First, we need the following result:

Lemma 41 Let P c be any completed PDAG with consistent extensionG . Let P c′ denote the com-
pleted PDAG that results from applying the operator Insert(X,Y,T) to P c, whereT is a clique
consisting of nodes that are neighbors of Y that are not adjacent to X. LetG ′ denote the graph that
results from adding X→Y toG . ThenG ′ has the same adjacencies and the same set of v-structures
asP c′ if and only if the set of reversible parents of Y inG that are not adjacent to X is equal toT.

545



CHICKERING

Proof: Clearly G ′ andP c′ have the same adjacencies. BecauseG is a consistent extension ofP c,
any difference in v-structures betweenG ′ andP c′ must have resulted from the modification to either
the completed PDAG or the DAG. From Proposition 31 and the fact that theInsert operator does
not undirect or reverse any directed edges, it is easy to see that the set of v-structures that are in
P c but not inP c′ are precisely the set of v-structures that are inG but not inG ′. In other words,
the set of v-structures that we lose as a result of performing theInsert operator toP c is the same
as the set that we lose as a result of addingX→Y to G ; these are precisely the ones whose “tails”
are made adjacent as a result of the edge addition. We establish the result by showing that the set
of v-structures that wegain as a result of the two modifications is the same if and only if the set of
reversible parents ofY in G is equal toT.

BecauseT is a clique inP c (and therefore a clique of undirected edges) we know from Lemma
35 that any parent of a node inT is a parent ofeverynode inT; this implies that any v-structure
that includes a previously undirected edge must haveX→Y as the other edge. It follows that the
set of v-structures that are inP c′ but not inP c are those of the formX→Y← Z, whereZ is either
a member ofT or is a parent ofY that is not adjacent toX in P c. It is easy to see that the set of
v-structures inG ′ that are not inG are of the formX→Y← Z, whereZ is a parent ofY in G that
is not adjacent toX.

Consider the set of parents ofY that are not adjacent toX in G . Clearly this set consists of the
union of (1) compelled parents ofY that are not adjacent toX and (2) reversible parents ofY that
are not adjacent toX. Because this first set is precisely the set of parents ofY in P c that are not
adjacent toX, the lemma follows.�

Theorem 15LetP c be any completed PDAG, and letP c′ denote the result of applying an Insert(X,Y,T)
operator toP c. There exists a consistent extensionG of P c to which adding the edge X→Y results
in a consistent extensionG ′ of P c′ if and only if inP c

1. NAY,X ∪T is a clique

2. Every semi-directed path from Y to X contains a node inNAY,X ∪T

Proof: (If) Given that the first condition implies thatT is a clique, it follows from Lemma 41 that
we need only identify a consistent extensionG of P c with the following two properties: (*) the
reversible parents ofY that are not adjacent toX are precisely the nodes inT and (**) there is no
directed path fromY to X. BecauseNAY,X∪T is a clique, and becauseY is a neighbor of all of these
nodes, we conclude thatNAY,X ∪T ∪{Y} is also a clique. Therefore we conclude from Lemma 36
that there exists a consistent extensionG of P c for which the reversible parents ofY are precisely
those nodes inNAY,X ∪T. Because all nodes inNAY,X are adjacent toX, (*) is satisfied forG . It
remains to be shown that there is no directed path fromY to X in G . Suppose there does exist such
a path. Clearly any such directed path has a corresponding semi-directed path inP c. By the second
condition of the lemma, however, this path must pass through a node inNAY,X ∪T, all of which are
parents ofY in G , yielding the contradiction thatG is cyclic. Thus we conclude that (**) is satisfied
for G .

(Only if) SupposeNAY,X ∪T is not a clique inP c. Then there are two nodesA andB in this set
for which (1)A−Y−B is in P c and (2)A andB are not adjacent. Thus in any consistent extension
G , at least one of the corresponding edges must be directed away fromY, elseG would contain a
v-structure not inP c. Without loss of generality, assume the edgeY→ A is in G . If A ∈ NAY,X,

546



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

we know that the edge betweenA and X must be directed towardX, elseG would contain the
v-structureX→ A←Y that is not inP c. But this implies that the graph that results from adding
X→Y to G is cyclic. If A∈ T, then the result of addingX→Y to G cannot include the v-structure
X→Y← A; because this v-structure exists inP c′ as a result of theInsert operator,G ′ cannot be a
consistent extension ofP c′.

Suppose that there exists a semi-directed path fromY to X that does not pass through a node in
NAY,X∪T, and consider the shortest such path. If the first edge is directed away fromY, we conclude
from Lemma 37 that there is a directed path fromY to X in P c and thus theInsert operator results—
before converting to the resulting completed PDAG representation—in a PDAG that contains a
cycle; this PDAG does not admit a consistent extension. Otherwise, letY−A be the first edge in
this path. By assumption,A is in neitherNAY,X nor T, and thus ifG contains the edgeA→Y, G ′
contains the v-structureX→Y← A that is not inP c′. If G contains the edgeY→ A, we conclude
by Lemma 40 that there is a directed path fromY to X in G and consequentlyG ′ is cyclic. �

Corollary 16 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator Insert(X,Y,T) to a completed PDAGP c is

s(Y,NAY,X ∪T∪PaY
+X)−s(Y,NAY,X ∪T∪PaY)

Proof: Follows immediately from subtracting the score ofG from the score ofG ′, whereG is
defined in the “if” part of Theorem 15, andG ′ denotes the DAG that results from adding the edge
X→Y to G . �

B.3 The Delete Operator

In this section, we show that the conditions in Table 1 are necessary and sufficient for determin-
ing whether aDeleteoperator is valid during the second phase of GES. In particular, we show in
Theorem 17 that the conditions hold if and only if we can extract a consistent extensionG of the
completed PDAGP c to which deleting a single directed edge results in a consistent extensionG ′
of the completed PDAGP c′ that results from applying the operator. The “if” part of the proof is
constructive; that is, we identify a specificG from which we can delete the edge. The increase in
score that results from the operator thus follows immediately.

First, we need the following result:

Lemma 42 Let P c be any completed PDAG with consistent extensionG that includes the edge
X→Y. LetP c′ denote the completed PDAG that results from applying the operator Delete(X,Y,H)
to P c, whereH consists of nodes that are neighbors of Y that are adjacent to X. LetG ′ denote the
graph that results from deleting X→ Y fromG . ThenG ′ has the same adjacencies and same v-
structures asP c′ if and only if the set of reversible children of Y inG that are children of X is equal
to H.

Proof: Clearly G ′ andP c′ have the same adjacencies. BecauseG is a consistent extension ofP c,
any difference in v-structures betweenG ′ andP c′ must have resulted from the modification to either
the completed PDAG or the DAG. From Proposition 31 and the fact that that theDeleteoperator
does not undirect or reverse any directed edges, it is easy to see that the set of v-structures that are
in P c but not inP c′ are precisely the set of v-structures that are inG but not inG ′. In particular, the

547



CHICKERING

set of v-structures that we lose in bothP c or G are simply those v-structures that contain the edge
betweenX andY. We establish the result by showing that the set of v-structures that wegain as a
result of the two modifications is the same if and only if the set of reversible children ofY in G that
are children ofX is equal toT.

From Proposition 31 and the definition of theDeleteoperator, we immediately conclude that
the set of v-structure inP c′ that are not inP c are characterized by those v-structures in one of the
two following forms: (1)X→ Z←Y, whereZ is either inH or both edges also exist inP c (that is,
the v-structure is formed because the adjacency betweenX andY was removed, and zero or more
of the edges were directed by theDeleteoperator) or (2)A→ Z← B, whereZ∈H, and exactly one
of the nodesA or B is eitherX orY.

We now demonstrate that v-structures of form (2) never occur. Without loss of generality, as-
sume thatA is not a member of{X,Y}, and thatB = X. By definition of theDeleteoperator, we
know thatA→ Z must be directed inP c (only edges incident toX orY are made directed). Because
the v-structure does not exist inP c, and the adjacency betweenA andB did not change as a result
of the Delete, we conclude that the edge betweenZ andX must be undirected inP c. But from
Proposition 32, this is impossible, and therefore we conclude thatA→ Z← B must exist inP c.

Clearly, the set of v-structures gained as a result of deletingX→Y from G is characterized by
those v-structures of the formX→ Z←Y, where eachZ in this case is simply a common child of
bothX andY in G . Thus the lemma follows if we can demonstrate that inG , the common children
of X andY are precisely the common compelled children ofX andY unioned with the reversible
children ofY.

Suppose that inG there exists a childZ of X andY that is not a common compelled child
and for whichY→ Z is compelled. BecauseX→ Z is not compelled, we conclude by Lemma 34
thatX→Y is compelled. But this implies by Proposition 33 thatX→ Z is compelled, yielding a
contradiction.�

Theorem 17Let P c be any completed PDAG that contains either X→ Y or X−Y, and letP c′

denote the result of applying the operator Delete(X,Y,H) to P c. There exists a consistent extension
G of P c that contains the edge X→Y from which deleting the edge X→Y results in a consistent
extensionG ′ of P c′ if and only ifNAY,X \H is a clique.

Proof: (If) SupposeNAY,X \H is a clique. By definition ofNAY,X, it follows that{NAY,X \H}∪{Y}
is also a clique. IfX−Y exists inP c, then{NAY,X \H}∪{Y}∪{X} is a clique; otherwise, we know
thatX→Y is in P c. In either case, we conclude from Lemma 36 that we can extract a consistent
extensionG from P c—whereG contains the edgeX → Y—whose directed edges are consistent
with the following ordering:NAY,X \H, thenX, thenY, then the remaining nodes. Clearly inG the
reversible children ofY that are adjacent toX are precisely the nodes inH. Furthermore, because
G contains the edgeX → Y, any child ofY that is adjacent toX is also a child ofX. Thus we
conclude from Lemma 42 that the result of deletingX→Y from G is a DAGG ′ that has the same
adjacencies and v-structures asP c′. BecauseG is a DAG,G ′ must also be a DAG, and therefore the
lemma follows.

(Only if) Suppose there exists a consistent extensionG of P c that contains the edgeX→Y from
which deleting the edgeX → Y results in a consistent extensionG ′ of P c′. From Lemma 42 we
conclude that the set of reversible children ofY that are adjacent toX in G is precisely the setH.
Thus every element inNAY,X \H is aparentof Y in G . Any pair of such parentsA andB that were

548



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

not adjacent would constitute the v-structureA→Y← B, which contradicts the fact that both these
edges are reversible.�

Corollary 18 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator Delete(X,Y,H) to a completed PDAGP c is

s(Y,{NAY,X \H}∪PaY
−X)−s(Y,{NAY,X \H}∪PaY)

Proof: Follows immediately from subtracting the score ofG from the score ofG ′, whereG is
defined in the “if” part of Theorem 17, andG ′ denotes the DAG that results from deleting the edge
X→Y from G . �

Appendix C: Converting to a Completed PDAG

In Section 5, we defined theInsert andDeleteoperators to be local modifications to the completed
PDAG representation of the current state. As described in that section, the result of applying an
operator to a completed PDAG is a PDAG that is not necessarily completed. In this appendix, we
describe a conversion algorithm that converts a PDAG to the completed PDAG representation of the
corresponding equivalence class. Recall that this conversion algorithm—in light of the results of
Section 5—need only be applied once for each state visited by GES; we can evaluate efficiently all
adjacent states in the greedy search without using the conversion.

The conversion algorithm is, in fact, the combination of two algorithms described in much more
detail by Chickering (2002). The first algorithm, which we refer to as PDAG-TO-DAG, takes as
input a PDAG representation for an equivalence class, and outputs a (DAG) member of that class.
The second algorithm, which we refer to as DAG-TO-CPDAG, takes as input a Bayesian-network
structure, and outputs a completed PDAG representation of the equivalence class to which that
structure belongs. Clearly, we can implement the desired conversion by first calling PDAG-TO-
DAG on the PDAG that results from applying an operator, and then calling DAG-TO-CPDAG on
the consistent extension obtained by the first algorithm.

We first consider a simple implementation of PDAG-TO-DAG due to Dor and Tarsi (1992). Let
NX denote the neighbors of nodeX in a PDAGP . We first create a DAGG that contains all of the
directed edges fromP , and no other edges. We then repeat the following procedure: First, select a
nodeX in P such that (1)X has no out-going edges and (2) ifNX is non-empty, thenNX ∪PaX is a
clique. If P admits a consistent extension, the nodeX guaranteed to exist. Next, for each undirected
edgeY−X incident toX in P , insert a directed edgeY→X to G . Finally, removeX and all incident
edges from theP and continue with the next node. The algorithm terminates when all nodes have
been deleted fromP .

The version of DAG-TO-CPDAG that we provide was originally derived by Chickering (1995),
and is asymptotically optimal on average. The algorithm labels all of the edges in a DAG as either
“compelled” or “reversible”; given such a labeling, it is trivial to construct the corresponding com-
pleted PDAG. The first step of the algorithm is to define a total ordering over the edges in the given
DAG. For simplicity, we present this step as a separate procedure listed in Figure 14. To avoid
confusion between ordered nodes and ordered edges, we have capitalized “node” and “edge” in the
figure. In Figure 13, we show an algorithm of Chickering (1995) that labels the edges. In Figure 14,

549



CHICKERING

Algorithm LABEL-EDGES(G)
Input: DAG G
Output: DAG G with each edge labeled either “compelled” or “reversible”

1. Order the edges inG usingAlgorithm Order-Edges
2. Label every edge inG as “unknown”
3. While there are edges labeled “unknown” inG
4. LetX→Y be the lowest ordered edge that is labeled “unknown”
5. For every edgeW→ X labeled “compelled”
6. If W is not a parent ofY
7. LabelX→Y and every edge incident intoY with “compelled”
8. Goto 3
9. Else
10. LabelW→Y with “compelled”
11. If there exists an edgeZ→Y such thatZ 6= X andZ is not a parent ofX
12. LabelX→Y and all “unknown” edges incident intoY with “compelled”
13. Else
14. LabelX→Y and all “unknown” edges incident intoY with “reversible”

Figure 13: Algorithm to label each edge in a DAG with “compelled” or “reversible”, which leads
to an immediate implementation of DAG-TO-CPDAG.

a topological sortrefers to any total ordering of the nodes where ifXi is an ancestor ofXj , thenXi

must precedeXj in the ordering.

Algorithm ORDER-EDGES(G)
Input: DAG G
Output: DAG G with labeled total order on edges
1. Perform a topological sort on the NODES inG
2. Seti = 0
3. While there are unordered EDGES inG
4. LetY be the lowest ordered NODE that has an unordered EDGE incident into it
5. LetX be the highest ordered NODE for whichX→Y is not ordered
6. LabelX→Y with orderi
7. i = i +1

Figure 14: Algorithm to produce a total ordering over the edges in a DAG. The algorithm is used
by Algorithm LABEL-EDGES.

550



OPTIMAL STRUCTURE IDENTIFICATION WITH GREEDY SEARCH

References

Andersson, S. A., Madigan, D., and Perlman, M. D. (1997). A characterization of Markov equiva-
lence classes for acyclic digraphs.Annals of Statistics, 25:505–541.

Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data.IEEE
Transactions on Knowledge and Data Engineering, 8:195–210.

Chickering, D. M. (1995). A transformational characterization of Bayesian network structures. In
Hanks, S. and Besnard, P., editors,Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 87–98. Morgan Kaufmann.

Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete. In Fisher, D. and Lenz,
H., editors,Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer-
Verlag.

Chickering, D. M. (2002). Learning equivalence classes of Bayesian-network structures.Journal
of Machine Learning Research, 2:445–498.

Chickering, D. M. and Meek, C. (2002). Finding optimal Bayesian networks. In Darwiche, A.
and Friedman, N., editors,Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, pages 94–102. Morgan Kaufmann.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic
networks from data.Machine Learning, 9:309–347.

Dor, D. and Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a par-
tially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer
Science Department.

Geiger, D., Heckerman, D., King, H., and Meek, C. (2001). Stratified exponential families: graphi-
cal models and model selection.Annals of Statistics, 29(2):505–529.

Gillispie, S. B. and Perlman, M. D. (2001). Enumerating Markov equivalence classes of acyclic
digraph models. In Goldszmidt, M., Breese, J., and Koller, D., editors,Proceedings of the Seven-
teenth Conference on Uncertainty in Artificial Intelligence, pages 171–177. Morgan Kaufmann.

Haughton, D. M. A. (1988). On the choice of a model to fit data from an exponential family.The
Annals of Statistics, 16(1):342–355.

Heckerman, D. (1996). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-
06, Microsoft Research.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combi-
nation of knowledge and statistical data.Machine Learning, 20:197–243.

Jeffreys, H. (1939).Theory of Probability. Oxford University Press.

Koc̆ka, T., Bouckaert, R. R., and Studen´y, M. (2001a). On characterizing inclusion of Bayesian
networks. In Breese, J. and Koller, D., editors,Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, pages 261–268. Morgan Kaufmann.

551



CHICKERING

Koc̆ka, T., Bouckaert, R. R., and Studen´y, M. (2001b). On the inclusion problem. Technical
Report 2010, Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation.

Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Hanks,
S. and Besnard, P., editors,Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 403–410. Morgan Kaufmann.

Meek, C. (1997).Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie
Mellon University.

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

Shachter, R. (1998). Bayes-ball: The rational pastime (for determining irrelevance and requisite
information in belief networks and influence diagrams). In Cooper, G. and Moral, S., editors,
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 480–
487. Morgan Kaufmann.

Spirtes, P., Glymour, C., and Scheines, R. (1993).Causation, Prediction, and Search. Springer-
Verlag, New York.

Verma, T. and Pearl, J. (1991). Equivalence and synthesis of causal models. In Henrion, M.,
Shachter, R., Kanal, L., and Lemmer, J., editors,Proceedings of the Sixth Conference on Uncer-
tainty in Artificial Intelligence, pages 220–227.

552


