Journal of Machine Learning Research 3 (2002) 507-552 Submitted 1/02; Published 11/02

Optimal Structure Identification With Greedy Search

David Maxwell Chickering DMAX @MICROSOFT.COM
Microsoft Research

One Microsoft Way

Redmond, WA 98052

Editor: Craig Boutilier

Abstract

In this paper we prove the so-called “Meek Conjecture”. In particular, we show that if aHDASG

an independence map of another D&Gthen there exists a finite sequence of edge additions and
covered edge reversals@such that (1) after each edge modificattbrremains an independence

map of G and (2) after all modification®& = H. As shown by Meek (1997), this result has an
important consequence for Bayesian approaches to learning Bayesian networks from data: in the
limit of large sample size, there exists a two-phgssedysearch algorithm that—when applied to

a particular sparsely-connected search space—provably identifies a perfect map of the generative
distribution if that perfect map is a DAG. We provide a new implementation of the search space,
using equivalence classes as states, for which all operators used in the greedy search can be scored
efficiently usinglocal functions of the nodes in the domain. Finally, using both synthetic and real-
world datasets, we demonstrate that the two-phase greedy approach leads to good solutions when
learning with finite sample sizes.

1. Introduction

Over the last decade, there has been an enormous amount of work in the machine-learning literature
on the problem of learning Bayesian networks from data. In a recent Ph.D. dissertation on the topic,
Meek (1997) put forth a conjecture that, if true, leads to the following and somewhat surprising re-
sult: given that the generative distribution has a perfect map in a DAG defined over the observables,
then there exists a sparse search space (that is, a space in which each state is connected to a small
fraction of the total states) to which we can applyraedysearch algorithm that, in the limit of large
number of training cases, identifies the generative structure. The so-called “Meek Conjecture” can
be stated as follows. Léd andG denote two DAGs such thét is anindependence magf G. In
other words, any independence implied by the structutd @ also implied by the structure &.
Then there exists a finite sequence of edge additions and covered edge reversals that can be applied
to G with the following properties: (1) after each edge charf@eis a DAG andH remains an
independence map & and (2) after all edge changés= H . Although intuitively plausible, the
validity of Meek’s Conjecture has, until now, remained unknown.cka Bouckaert and Studgn”
(2001a) proved that the conjecture is tru&iindH differ by exactly one edge.

In this paper, we prove Meek’s Conjecture. We provide an algorithm for determining a specific
sequence of edge modifications@othat transforms it intdd such that after each modification,
H remains an independence mapaf Assuming that initially there anm edges inH that do not
appear in any orientation i6 andr edges inH that appear in the opposite orientationGn the
sequence includes at mosh2-r edge modifications.

(©2002 David Maxwell Chickering.

CHICKERING

Our algorithm is similar to the one proposed bydka; Bouckaert and Studgr§2001b). In
particular, the choice of an edge to modify depends on the parents and children of some node in
G that is a sink node (i.e., a node with no childrenHn For some configurations of parents and
children of this node, it is reasonably easy both to (1) identify an edge modification and (2) prove
thatH remains an independence map after performing that modification; for such configurations,
our algorithm and proof are essentially the same as that provided tiakai™al. (2001b). There is
a particular configuration of parents and children, however, for which it is more difficult to choose
an edge to modify. For this configuration, & et al. (2001b) conjecture that an appropriate edge
modification exists, but are unable to construct a procedure to identify one.

Under the assumption that the conjecture is true, Meek (1997) devised a two-phase greedy
algorithm that applies a Bayesian scoring criterion to identify the (unique) equivalence class of
DAGs that is a perfect map of the generative distribution, assuming such an equivalence class exists.
The algorithm can be summarized as follows. We start with an equivalence class corresponding to
no dependencies, and greedily add dependencies by considering all possible single-edge additions
that can be made to all DAGs in the current equivalence class. Once the greedy algorithm stops at a
local maximum, we apply a second-phase greedy algorithm that considers at each step all possible
single-edge deletions that can be made to all DAGs in the current equivalence class. The algorithm
terminates with the local maximum identified in the second phase. The fact that the algorithm
identifies (in the limit) the optimal equivalence class is rather remarkable given the sparsity of the
search space; each state in the search space is connected to only as many other states as there are
possible single-edge additions to or single-edge deletions from the DAGs in that state. Assuming
that the generative model is small, we expect that this number of additions or deletions will also be
small for those states we encounter during the search.

Given that the two-phase greedy algorithm has theoretical justification in light of Meek’s Con-
jecture being true, the obvious question is whether the algorithm works well in practice. In other
words, without regard to whether the generative distribution has a perfect map in a DAG or to
whether there is enough data to support the asymptotic properties of the Bayesian scoring crite-
rion, does the local maximum reached by the algorithm applied to real-world data correspond to a
model that is close in score to the global maximum? Although we are unlikely to be able to answer
this question without exhaustively enumerating and scoring all possible equivalence classes, we can
compare the two-phase algorithm with other traditional search algorithms.

In order to perform the desired greedy search, we must be able to score all possible single-edge
additions and deletions from all DAGs contained within an equivalence class. In principle, this
might involve an actual enumeration of the DAGs within an equivalence class, and for each DAG,
all edge changes could be scored. Fortunately, Chickering (2002) has formulated a search space
that allows the efficient traversal of equivalence classes directly, as opposed to the more traditional
approach of traversing in DAG space. Although the operators defined by Chickering (2002) do not
correspond to the connectivity of equivalence classes necessary for the two-phase search, we can
leverage the existing results to derive the appropriate operators with relative ease. We show that all
of the operators can be scored as local functions of the nodes and their neighbors in the equivalence-
class representation of a search state, and thus the space shares the computational advantages of
traditional DAG-based search spaces.

This paper is organized as follows. In Section 2, we describe our notation and introduce previous
relevant work. In Section 3, we discuss Meek’s conjecture and detail the algorithm we use to
identify each edge maodification necessary in the transformation. We postpone a rigorous proof of

508

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

the conjecture to Appendix A, but provide some intuition for how we prove the most difficult step.

In Section 4, we discuss the asymptotic properties of a Bayesian scoring criterion and show how
these properties, in conjunction with the validity of Meek’s Conjecture, imply the optimality of the
two-phase greedy search algorithm. In Section 5, we describe a search space where the states of
the search correspond to equivalence classes of DAGs, and for which the operators correspond to
single edge additions and deletions to member DAGs. We show how all operators can be scored
as local functions of the nodes in the search-state representation. In Section 6, we apply the two-
phase greedy algorithm to both synthetic and real-world datasets of different sizes. We compare
solution quality of the algorithm to (1) a traditional DAG-based greedy search algorithm and (2) a
greedy search algorithm applied to an equivalence-class space defined by Chickering (2002). Using
the synthetic data, we show that the two-phase algorithm is superior to the others at the task of
reconstructing the generative structure. Using the real-world data, we show that the two-phase
algorithm is competitive with the others—although slightly slower due to a more densely connected
search space—at the task of identifying high-scoring models. In Section 7, we conclude with a
summary and discussion of future relevant research. Detailed proofs of the main results of this
paper are contained in the appendix.

2. Background and Notation

In this section, we introduce our notation and discuss previous relevant work. Throughout the paper,
we use the following syntactical conventions. We denote a variable by an upper case letter (e.g.,
A,B;,Y,0) and a state or value of that variable by the same letter in lower casea(éygy, 6). We

denote a set of variables by a bold-face capitalized letter or letters XeBg;,NA; ;). We use a
corresponding bold-face lower-case letter or letters (&,@a;,ng; j) to denote an assignment of
state or value to each variable in a given set. We use calligraphic lettersGeRy.E) to denote
statistical models (both parameterized and not).

2.1 Bayesian-Network Models and DAG Models

A parameterized Bayesian-network moBefor a set of variablet) = {Xy,..., Xy} is a pair(G,0).

G = (V,E) is a directed acyclic graph—dpAG for short—consisting of (1) nodeg in one-to-

one correspondence with the variablésand (2) directed edgds that connect the noded is a

set of parameter values that specify all of the conditional probability distributions; we; us@

to denote the subset of these parameter values that define the conditional probability &f node
given its parents ifc. A parameterized Bayesian network represents a joint distributionlbtieat
factors according to the structuéeas follows:

pB<x1=xl,...,xn=xn>=_|‘lp<>q:mpzf = pa’,0) (1)

where Pa\G is the set of parents of node in G. The structurés of a Bayesian network is itself

a model that represents the independence constraints that must hold in any distribution that can

be represented by a Bayesian network with that structure. The set of all independence constraints
imposed by the structur@ via Equation 1 can be characterized by Markov conditionswhich

are the constraints that each variable is independent of its non-descendants given its parents. That
is, any other independence constraint that holds can be derived from the Markov conditions (see,

509

CHICKERING

e.g., Pearl, 1988). We ugel | g B|Sto denote the assertion that DA&imposes the constraint that
Ais independent oB given setS. When the DAGG is clear from context we usé | | B|S. When
S=0, we useA llsB (or ALLB) instead.

Throughout this paper we make numerous comparisons among statistical models; for example,
we compare DAG models with each other and we compare properties of probability distributions
with corresponding properties of DAGs. To simplify the discussion, we will assume that when any
such comparison is made, the models are defined over the same set of variables. Thus when we say,
for example, that two DAG6 andG’ represent the same independence constraints, we assume that
G andG’ are defined over the same set of nodes.

Thedescendantsf a nodeY in G—denoted)es—is the set containiny and all nodes reach-
able by a directed path fro.. Theancestorf a nodeY in G is the set of nodes that can reath
by a directed path of length one or more. For any suBsef the nodes ir5, we say that a node
A € A is maximalif there is no other nod&’ € A such that’ is an ancestor oAin G.

2.2 Equivalence and Independence Maps

Two DAGsG andG’ aredistributionally equivalenif for every Bayesian networB = (G, 0), there

exists a Bayesian netwolX = (G’,8) such thaB andB’ define the same probability distribution,

and vice versa. Two DAG6 andG’ areindependence equivaleifitthe independence constraints

in the two DAGs are identical. In most applications, researchers assume that the conditional distri-
bution for each node in the Bayesian-network model comes from some specific family of distribu-
tions. For example, we might assume that the conditional probability of each continuous variable is
a sigmoid distribution. Such distributional assumptions can sometimes impose non-independence
constraints on the joint distribution that lead to DAGs that are independence equivalent but not
distributionally equivalent. For the remainder of this paper, however, we will adopt the common
distribution assumptions found in the literature on Bayesian-network learning; namely, we assume
Gaussian distributions for continuous variables and unconstrained multinomial distributions for dis-
crete variables. Under these assumptions, the two notions of equivalence are identical, and we
will say that two DAGSG andG’ areequivalentto indicate that they are both distributionally and
independence equivalent.

We useG ~ G’ to denote thatc and G’ are equivalent. Because equivalence is reflexive,
symmetric, and transitive, the relation defines a set of equivalence classes over network structures.
We useE to denote an equivalence class of DAG models. Note that we uswthboldcharacter
E; although arguably misleading in light of our convention to use bold-face for sets of variables, we
use the non-bold character to emphasize the interpretatibrasfa model for a set of independence
constraints as opposed to a set of DAGs. We do, however, use the set-containment operator to denote
DAG-elements of an equivalence class. Thus, we wWsite E to denote tha6 is in equivalence
classkE. To denote a particular equivalence class to which a DAG mG@datlongs, we sometimes
write E (G). Note thatG ~ G’ impliesG’ € E(G) andG € E(G’).

The skeletonof any DAG is the undirected graph resulting from ignoring the directionality of
every edge. As-structurein DAG G is an ordered triple of nod€X,Y,Z) such that (15 contains
the edgeX — Y andZ — Y, and (2)X andZ are not adjacent i6. Verma and Pearl (1991) provide
the following characterization of equivalent DAG models.

Theorem 1 (Verma and Pearl, 1991)wo DAGs are equivalent if and only if they have the same
skeletons and the same v-structures.

510

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

For any DAGG = (V,E), we say an edg¥ — Y € E is coveredin G if X andY have identical
parents, with the exception thXt is not a parent of itself. That isX — Y is covered inG if

Pa? = Paﬁ U X. The significance of covered edges is evident from the following result:

Lemma 2 (Chickering, 1995)Let G be any DAG model, and I&’ be the result of reversing the
edge X— Y inG. ThenG’ is a DAG that is equivalent t6 if and only if X— Y is covered ir5.

The following transformationalcharacterization of equivalent DAG models will prove to be
important to the main results of this paper.

Theorem 3 (Chickering, 1995)Let G and G’ be any pair of DAG models such that~ G’ and
for which there ared edges irG that have opposite orientation [&’. Then there exists a sequence
of & distinct edge reversals i@ with the following properties:

1. Each edge reversed & is covered
2. After each reversal; is a DAG andG ~ G’

3. After all reversal$sc =G’

A DAG H is anindependence magf a DAG G if every independence relationshiplih holds
in G. We useG < H to denote thaH is an independence map Gf The symbol £’ is meant
to express the fact that & < H thenH contains more edges than doés We can use the
independence-map relation to comparey pair of models—not just DAG models—that impose
independence constraints over a set of variables. We reserve the use of the syimfimiever, to
comparisons between DAG models.

An edgeX — Y in G is compelledf that edge exists in every DAG that is equivalentGo If
an edgeX — Y in G is not compelled, we say that it isversible In light of Theorem 1, for any
reversible edgX — Y in G, there exists a DA’ equivalent tds in which the edge is oriented in
the opposite direction (i.eX < Y).

We say that a distributiop(-) is containedin a DAG G if there exists a set of parameter values
6 such that the parameterized Bayesian-network m@&ed) representp exactly.

2.3 Learning Models from Data

As discussed in Section 1, our proof of Meek’s conjecture leads to an optimal greedy algorithm for
learning graphical models from data. We concentrate on Bayesian methods for learning graphical
models, the roots of which date back to the work of Jeffreys (1939). We refer the reader to Heck-
erman (1995) or Buntine (1996) for a review of these methods and a more complete list of relevant
references. As we discuss below, however, the algorithm can be used in conjunction with alternative
learning methods.

Approaches to the Bayesian-network learning problem typically concentrate on identifying one
or more DAG models that fit a set of observed dbtavell according to some scoring criterion
S(G,D); once the structure of a Bayesian network is identified, it is usually straightforward to esti-
mate the parameter values for a corresponding (parameterized) Bayesian network. In the Bayesian
approach to learning DAG models we define, for each m8déhehypothesiss " that the observed
data is a set of iid samples from a distribution that contains exactly the independence constraints

511

CHICKERING

implied by G. The scoring criterion is then defined to be the relative posterior (or relative log pos-
terior) of G" given the observed data. A more detailed discussion of the Bayesian scoring criterion,
as well as a discussion of alternative definition&8f is given in Section 4.

For any scoring criterioi®(G,D), we say thaSis decomposablé it can be written as a sum
of measures, each of which is a function only of one node and its parents. In other words, a decom-
posable scoring criterioB applied to a DAGG can always be expressed as:

n

S(G.D) = ,lem,PaG) o)

Note that the dat® is implicit in the right-hand side Equation 2. When we say S@('C,PQG) is
only a function ofX; and its parents, we intend this also to mean thatittaon which this measure
depends is restricted to those columns correspondidXgdad its parents. To be explicit, we could
re-write the terms in the sum of Equation Zﬁxi,D({Xi}),PqQ,D(Pe\G)), whereD(X) denotes
the data restricted to the columns corresponding to the variables ¥ séfe find it convenient,
however, to keep the notation simple.

Most scoring criteria derived in the literature are decomposable. An important property of
decomposable scoring criteria is that if we want to compare the scores of two BA&G=l G/,
we need only compare those terms in Equation 2 for which the corresponding nodes have different
parent sets in the two graphs. This proves to be particularly convenient for search algorithms that
consider single edge changes to DAGS; in Section 5 we show how using a decomposable scoring
criterion leads to an efficient implementation of the two-phase greedy search algorithm of Meek
(1997).

A scoring criterionS(G, D) is score equivaleni, for any pair of equivalent DAG& andG’, it
is necessarily the case tHaG,D) = S(G’,D).

2.4 Completed PDAGs

In our implementation of the greedy search algorithm presented in Section 5, we search through
equivalence classes of DAG models as opposed to DAG models themselves. As is done by Chicker-
ing (2002), we useompleted PDAGs-which we define below—to represent equivalence classes.
An acyclic partially directed graph, d?DAG for short, is a graph that contains both directed
and undirected edges, and can be used to represent an equivalence class of DAGslehete
an arbitrary PDAG. We define the equivalence class of DE®E) corresponding t® as follows:
G c E(P)ifand only if G andP have the same skeleton and the same set of v-structufesm
Theorem 1, it follows that a PDAG containing a directed edge for every edge participating in a
v-structure and an undirected edge for every other edge uniquely identifies an equivalence class of
DAGs. There may be many other PDAGs, however, that correspond to the same equivalence class.
For example, any DAG interpreted as a PDAG can be used to represent its own equivalence class.
If a DAG G has the same skeleton and the same set of v-structures as a PRAGif every
directed edge i? has the same orientation @, we say thaf> is aconsistent extensioof P. Any
DAG that is a consistent extension Bf must also be contained fa(P), but not every DAG in
E(P) is a consistent extension Bf. If there is at least one consistent extension of a PIAGve
say thatP admits a consistent extension

1. The definitions for the skeleton and set of v-structures for a PDAG are the obvious extensions to these definitions for
DAGs.

512

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

We usecompleted®DAGSs to represent equivalence classes of DAGs. Recall that a compelled
edge is an edge that exists in the same orientation for every member of an equivalence class, and
that a reversible edge is an edge that is not compelled. The completed PDAG corresponding to
an equivalence class is the PDAG consisting of a directed edge for every compelled edge in the
equivalence class, and an undirected edge for every reversible edge in the equivalence class. Given
an equivalence class of DAGs, the completed-PDAG representation is unique. Also, every DAG in
an equivalence class is a consistent extension of the completed PDAG representation for that class.
Figure 1a shows a DAG, and Figure 1b shows the completed PDAGHd(5). PDAGs are called
patternsbhy (e.g.) Spirtes, Glymour and Scheines (1993) and completed PDAGs areasaltgdial
graphsby (e.g.) Andersson, Madigan and Perlman (1997)raadimally oriented graphy Meek
(1995).

<
(@) (b)

Figure 1: (a) a DAGS and (b) the completed PDAG f&t (G)

3. Meek’s Conjecture

In this section, we discuss Meek’s conjecture and detail the constructive algorithm used to prove
that the conjecture is true. We provide some examples to help illustrate the algorithm and to give
some insight into why researchers have been unable to solve this problem. The detailed proof is
postponed to Appendix A.

Recall the transformational characterization of equivalence from Section 2.2, which states that
G =~ G’ if and only if we can transforn® into G’ by a sequence of covered edge reversals. Meek’s
conjecture is an analogous characterization of the independence-map relation. In particular, Meek’s
conjecture states th& < H if and only if we can transforn® into H by a sequence of (1) covered
edge reversals and (2) single edge additions. More formally, we now state the main result of this
paper.

Theorem 4 LetG andH be any pair of DAGs such th& < H. Let r be the number of edges in
H that have opposite orientation &, and let m be the number of edgesHnthat do not exist in
either orientation inG. There exists a sequence of at mostaZm edge reversals and additions in
G with the following properties:

1. Each edge reversed is a covered edge
2. After each reversal and additidh is a DAG andG < H

3. After all reversals and additions = H

513

CHICKERING

Our proof of Theorem 4 is constructive: we define an algorithm, shown in Figure 2, that takes
as input two DAG<S5 andH such thaG < H, and identifies an edge (& that can either be added
or reversed. We show that after the edge modification is made by the algorithr @nains an
independence map & and (2)G is “closer” toH in the sense that it has either fewer adjacency
differences or the same number of adjacency differences and fewer orientation differences. Theorem
4 is an immediate consequence of the validity aiG®RITHM APPLY-EDGE-OPERATION because
we can conver6G into H by calling the algorithm repeatedly, replacigafter each call with the
result of the algorithm, untic = H .

In words, the algorithm works as follows. First, all common sink nodes that have identical
parents in the two DAGs are removed from both DAGs. By “remove” we mean “remove from
consideration”; in practice, the input DAGs need not be modified, and it is to be understood that
ALGORITHM APPLY-EDGE-OPERATION uses a “by value” calling convention so that bGtlandH
are local variables that the algorithm can modify without side effects. The algorithm next identifies
a sink nodeY in H. If Y is also a sink node ifs, the algorithm chooses any parefibf nodeY
in H that is not a parent of in G, and adds the edg¢ — Y to G. Otherwise, there is at least
one edge¥ — Z in G that is oriented in the opposite directionkh, and the algorithm identifies a
unique such edge via Step 5 (this step will be discussed in more detail below). If th¥ edgeis
covered inG, the algorithm reverses the edge and terminates. Otherwise, it follows by definition of
a covered edge that @ there is either (1) a paredt of Y that is not a parent o, in which case
the algorithm adds the edge— Z or (2) a parenK of Z that is not a parent of, in which case the
algorithm adds the edge — Y.

In the examples to follow, we will assume that the reader is familiar withddseparation
criterion used to test independence relationships in DAG models. Those who are not familiar with
this criterion can refer to Appendix A for a detailed definition and description. In Figure 3, we
give an example application of the algorithm. Consider the two D&GandH shown in Figure
3a and Figure 3b, respectively. It is easy to verify tBat H by testing that the unique Markov
conditions inH (i.e.,ALLB,ALLE|{C},BLLE|{C}) also hold via d-separation {&. Now consider
a call to ALGORITHM APPLY-EDGE-OPERATION(G,H). There are no common sink nodes, so the
algorithm does not remove any nodes in Step 2. N&de the only sink node iH , and because
C is the only child ofE in G, it is easy to see that the edge tested in Step-is C. This edge is
covered inG, so the algorithm reverses it and terminates. The resulting DAG is shown in Figure 3c.
We can now call AGORITHM APPLY-EDGE-OPERATION(G’,H) once again, using the DAG’
that was returned from the previous call to the function. For this call, both DAGs contain the sink
nodeE with the single parent, and thus nod& is removed from consideration from both DAGs.
After this removal, there are no remaining common sinks with the same parents, so the algorithm
proceeds to Step 3 and identifiéss a sink node il . Again there is only a single child to identify
in Step 5, and thus the edge tested in Step®-s A. This edge is covered, and thus the algorithm
terminates with the DAG shown in Figure 3d. We call@orRITHM APPLY-EDGE-OPERATION a
final time, with the first DAG equal to the one that was returned in the previous call. After removing
E from both DAGs, the algorithm adds the edge~ C in Step 4, and the resulting DAG—shown
in Figure 3e—is identical tbd .

As mentioned in Section 1, the validity of all but one of the edge modifications can be proved
with relative ease. The difficult case to prove is when there is a child of the sinkYhtilt has

2. Dis guaranteed to be unique by Lemma 29 in Appendix A.

514

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

ALGORITHM APPLY-EDGE-OPERATION(G,H)
Input: DAGsG andH whereG <H andG #H
Output: DAG G’ that results from adding or reversing an edg&in

1. SetG' =G.

2. While G andH contain a nod& that is a sink in both DAGs and for whidha({3 = Pd/,
removeY and all incident edges from both DAGs.

3. LetY be any sink node i

4. If Y has no children ir5, then letX be any parent of in H that is not a parent of in G.
Add the edgeX — Y to G’ andReturn G'.

5. Let De$ denote the descendantsYfin G, and letD < Des denote the (unique) maximal
element from this set withitd .2 Let Z be any maximal child o¥ in G such thatD is a
descendant o in G.

6. If Y — Zis covered irG, reverse&¥ — Z in G’ andReturn G’.

7. If there exists a nod¥ that is a parent of but not a parent of in G, then addX — Z to G’
andReturn G'.

8. LetX be any parent of that is not a parent of. Add X — Y to G’ andReturn G’.
Figure 2: Algorithm that identifies and applies an edge modification

a parent that is not a parent ¥f In this case, Step 8 will be encountered, and the key step is the
selection of the specific such chiltlin Step 5 of the algorithm. If Step 8 were never encountered,
we could use anuchsimpler method for choosing in Step 5. In particular, it would suffice to
choose any maximal child of. To illustrate the difficult case, we consider a single step of an
example that was given by I€ka et al. (2001b) and is shown in Figure 4. Given the choice of
adding eitherX; — T or X, — T to G, only the second addition yields a DAG’ such thatH
remains an independence map. In particular, if we add the ¥gge T, then the independence
X111 H4Cy does not hold in the resulting DAG. We now show that the correct choice between these
two additions is made by a call to our algorithm. There are nho common sink nodes, and the unique
sink node fromH is T. The set of descendants ®fin G is {T,C;,C,}, and inH the maximal
elementD in this set isD = C,. The maximal child ofl in G that hadD = C, as a descendant@

itself, and thus the eddge — C; is chosen by the algorithm to be considered for Steps 6 to 8. This
edge is not covered iB, andC, has the parenX; that is not a parent of, and thus the algorithm
adds the edg&, — T in Step 8.

To fully understand how the selection @fin Step 5 guarantees that the addition is valid, the
reader should study the proof in Appendix A. For those who would like simply to gain some intu-
ition, however, we now provide some insight into Step 5. Our discussion assumes familiarity with
the d-separation criterion, as well as familiarity with the concept cd@ive paththat defines the

515

CHICKERING

(@) (b)
(A

(m—(o)

>
&
(©) (d)

~

e)

Figure 3: DAGs in an example application of AORITHM APPLY-EDGE-OPERATION. (a) Origi-
nal DAG G and (b) DAGH . (c), (d), and (e) show the DAGs resulting from successive
calls to the algorithm.

0\@

W
9

eo‘

(a) (b)

Figure 4. DAGs (a)G and (b)H in an example application of KGORITHM APPLY-EDGE-
OPERATION.

criterion? Again, readers not familiar with these concepts can consult Appendix A. We provide
relevant portions of botls andH in Figure 5a and Figure 5b, respectively, to help clarify the
discussion.

3. We use a non-standard definition of an active path in Appendix A, but the standard definition will suffice in the
present discussion.

516

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

o

(@) (b)

Figure 5: Relevant portion of (&) and (b)H that demonstrate how Step 5 leads to a valid edge
addition in Step 8.

Recall that nodd® from Step 5 is the maximal element st$ with respect tdH . That is, in
Step 5 we look at the descendentsrdh G, and then pick the maximal descendant with respect to
H . Note that becauséis a sink inH,D #Y.

The potential problem of the addition of the edge- Y to G is that some active path between
two nodesA andB given a conditioning se$ exists in the resulting grapB’, where no such active
path exists in eitheG or H . It is reasonably easy to show that the following three properties hold
if there exists such an active path@i: (1) there must exist at least one such path that includes the
edgeX — Y, (2) neitherZ nor any descendant @f(includingD) in G can belong to the conditioning
set, and (3Y is not in the conditioning set.

The first conclusion we make from these three properties (see Figure 5a) is that there must be
a descendark of Y in G’—and henceE is also a descendant ¥fin G—that is either inS or is
one of the endpointd(in the figure). This follows because any first non-descendant node along the
path afterX — Y follows a head-to-head junction (i.e., collider) along the path.

The second conclusion we make is that, because of our choitdltdére must be an active path
between both (1A andD and (2)B andD in the DAG G (it is easy to show that there are active
paths between both endpoints andand there is a directed path @ from Z to D that does not
pass through any node 8). Thus inH (see Figure 5b), there must also exist active paths between
both endpoints anB. Furthermore, because ¢ S (Property 2), both of these paths must end with
an edganto D (i.e.,A—... — DandB—... — D) or else we could concatenate them together and
identify an active path betweehandB in H . But this implies that (*) none of the descendants of
D in H can be inS, or else the concatenation of the active paths would be active, and (**) none of
the descendants &f in H can be an endpoint, or else the concatenation of the directed path from
D to that endpoint (through nodes notS$nwhere the first edge iswayfrom D) can be connected
with the active path from thetherendpoint to form an active path.

517

CHICKERING

Now the logic of the choice db in Step 5 becomes clear. Becau3és the maximal node in
H out of all of the descendants ¥fin G, D is anancestorin H of all of these nodes as well (see
Lemma 29 in Appendix A). This means thatis an ancestor dE in H, which from (*) and (**)
yield a contradiction.

4. The Optimality of Greedy Search

In this section, we describe the two-phase greedy search algorithm proposed by Meek (1997), and
show that in the limit of large samples, the algorithm identifies the DAG corresponding to the
generative model if such a model exists. Here we are concerned with the theoretical properties of
the algorithm; we postpone discussing implementation details to Section 5.

To be more precise about the optimality result in this section, we need the following notation.
Given a DAGG and a probability distributiom(-), we say that is aperfect mapf p if (1) every
independence constraint pis implied by the structur& and (2) every independence implied by
the structurds holds inp. If there exists some DAG that is a perfect map of a probability distribution
p(-), we say thap is DAG-perfect

Assumption 1 Each case in the observed ddiais an iid sample from some DAG-perfect proba-
bility distribution p(-).

We allow there to be missing values in each iid sample, but our results implicitly depend on the
assumption that the parameters of each Bayesian network are identifiable. We will therefore assume
for the remainder of this section that the empirical distribution defined by theDdatmverges to
p(-) as the number of records grows large.

The remainder of this section is organized as follows. In Section 4.1, we explore the asymptotic
behavior of the Bayesian scoring criterion, and in Section 4.2, we detail the two-phase greedy
algorithm and show how it takes advantage of that asymptotic behavior to identify the optimal
solution. Finally, in Section 4.3, we discuss the applicability of the algorithm to non-Bayesian
scoring criteria and to Bayesian scoring criteria for which the definition of the structure hypothesis
differs from the one we presented in Section 2.3. We also discuss how violations of Assumption 1
can affect the solution quality of the algorithm.

4.1 Asymptotic Behavior of the Bayesian Scoring Criterion

Recall from Section 2 that the Bayesian scoring criterion for a A\@&easures the relative pos-
terior or relative log posterior of the hypothe€id' that the independence constraintsGnare
precisely the independence constraints in the generative distribution. Without loss of generality, we
express the Bayesian scoring criteri@nusing the relative log posterior &

S(G,D) =logp(G") +logp(D|G") ©)

wherep(G") is the prior probability olG", andp(D|G") is themarginal likelihood The marginal
likelihood is obtained by integrating the likelihood function (i.e., Equation 1) applied to each record
in D over the unknown parameters of the model.

Definition 5 (Consistent Scoring Criterion)
Let D be a set of data consisting of m records that are iid samples from some distributipnAp
scoring criterion S ionsistentf in the limit as m grows large, the following two properties hold:

518

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

1. If H contains p and5 does not contain p, thend ;D) > S(G,D)

2. If H and G both contain p, ands contains fewer parameters thdn, then $G,D) >
SH,D)

Geiger, Heckerman, King and Meek (2001) show that the models we consider in this paper (i.e.,
those containing Gaussian or multinomial distributions)canmwed exponential model¥he details
of this class of model are not important for our results, but Haughton (1988) shows that (under
mild assumptions about the parameter prior) the Bayesian scoring criterion is consistent for curved
exponential models. In particular, Haughton (1988) shows that Equation 3 for curved exponential
models can be approximated using Laplace’s method for integrals, yielding

%(G.D) = logp(D[8. G") — S logm-+ O(1) @

whereb denotes the maximum-likelihood values for the network parametetsnotes the dimen-

sion (i.e., number of free parameters)®f andmis the number records iD. The first two terms

in this approximation are known as tBayesian information criteriorfor BIC). The presence of
theO(1) error means that, even asapproaches infinity, the approximation can differ from the true
relative log posterior by a constant. As shown by Haughton (1988), however, BIC is consistent.
Furthermore, it is easy to show that the leading term in BIC grow®(ay, and therefore we con-
clude that because the error term becomes increasingly less significargre®s large, Equation

3 is consistent as well. Because the prior tgaf6") does not depend on the data, it does not grow
with mand therefore is absorbed into the error term of Equation 4. Thus the asymptotic behavior of
the Bayesian scoring criterion depends only on the marginal likelihood term.

Consistency of the Bayesian scoring criterion leads, from the fact that BIC is decomposable,
to a more practical property of the criterion that we dadlal consistency Intuitively, if a scoring
criterion is locally consistent, then the score of a DAG mdél€l) increasesas the result of adding
any edge that eliminates an independence constraint that does not hold in the generative distribution,
and (2)decreasess a result of adding any edge that does not eliminate such a constraint. More
formally, we have the following definition.

Definition 6 (Locally Consistent Scoring Criterion)

LetD be a set of data consisting of m records that are iid samples from some distribtioh. gt G
be any DAG, and leG’ be the DAG that results from adding the edge-XX;. A scoring criterion
S(G,D) is locally consistentf the following two properties hold:

1. I XYL %|P&’, then $G’,D) > S(G,D)
2. 1f X;LLpX|PaC, then $G’,D) < (G, D)
Lemma 7 The Bayesian scoring criterion is locally consistent.

Proof: The proof follows from the fact that in the limit, the criterion ranks models in the same
order as BIC. Because BIC is decomposable, the increase in score that results from adding the edge
Xi — X; to any DAGG is the samas the increase in score that results from adding the edge to any
other DAGH for which X; has the same parents. We can therefore choose a partitutavhere

519

CHICKERING

Pa'j‘| = Pa(j;—for which adding the edg¥; — X; results in acompleteDAG H’; that is,H " has an
edge between every pair of nodes. Because the complete DAG imposes no constraints on the joint
distribution, the lemma follows immediately from the consistency of BIC.

From Lemma 7, we see that as long as there are edges that can be added to a DAG that eliminate
independence constraints not contained in the generative distribution, the Bayesian scoring criterion
will favor such an addition. If the DAG contains the distribution, then Lemma 7 guarantees that any
deletion of an “unnecessary” edge will be favored by the criterion. These properties allow us to
prove the optimality of the greedy search algorithm presented in the following section.

4.2 A Two-Phase Optimal Greedy Search Algorithm

In this section, we first detail the two-phase greedy search algorithm, dcatksetly Equivalence
Searchor GES by Meek (1997). Then we present—using the results of Section 4.1—a version of
the proof of Meek (1997) that GES is optimal in the limit of large datasets. For the remainder of
this section, we will assume that we are using the Bayesian scoring criterion in conjunction with the
search algorithm.

Up to this point, we have concentrated on DAG models in our discussion of learning from data.
We find it convenient now to switch to an equivalence-class interpretation of both DAG hypotheses
and the Bayesian scoring criterion in order to more clearly present the GES algorithm. From the
definition of G", it follows that all DAGs in the same equivalence class correspond to the same
hypothesis. That is, it ~ H thenG" = H". Thus we can us&" to denote the hypothesis
corresponding to the (identical) hypotheses of the DAGs contained whhirfFurthermore, by
definition of the Bayesian scoring criterion, the score of a DAG model in equivalenceciaghe
(relative) log posterior oE"; thus, the Bayesian scoring criterion is well defined for equivalence
classes, and can be evaluated using any DAG member of the class. We v@}l(ks®) to denote
the score for equivalence clalssusing the Bayesian scoring criterion.

Before proceeding, we show that the equivalence class that is a perfetbirtap generative
distribution is the optimal solution.

Proposition 8 LetE* denote the equivalence class that is a perfect map of the generative distribu-
tion p(-), and let m denote the number of recordshn Then in the limit of large m,g%E*,D) >
S(E,D) foranyE £E*.

Proof: Suppose this is not the case, and there exists a higher-scoring equivalende g¢idss.
Because the scoring criterion is consistent, it must be the casdctltantainsp; furthermore,
becausd&e * is a perfect map of, it follows thatE must be an independence mapdf. LetG be
any DAGInE*, and letH be any DAG inE. Becausdés < H , we know from Theorem 4 that there
exists a sequence of covered edge reversals and edge additions that trafsfiomm$d . After
each covered edge reversal, the scor® gEmains the same because (by Lemma 2) it remains in
the same equivalence class. After each edge addition, however, the number of parameters in the
DAG necessarily increases, and because the scoring criterion is consistent, the score necessarily
decreases BecauseE is optimal, there can therefore be no edge additions in the transformation,
which contradicts the supposition tHat# E*. [

As suggested by the name, GES is a greedy algorithm that searches over equivalence classes
of DAGs. Greedy search (in general) proceeds at each step by evaluatingesglshor of the

4. The definition operfect magor equivalence classes is the obvious extension of the definition for DAGs.

520

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

current state, and moving to the one with the highest score if doing so improves the score. The set
of neighbors of each state in the search defines the connectivity of the search space. GES consists
of two phases. In the first phase, a greedy search is performed over equivalence classes using a
particular connectivity between equivalence classes. Once a local maximum is reached, a second
phase proceeds from the previous local maximum using a second connectivity. When the second
phase reaches a local maximum, that equivalence class is returned as the solution.

We useEEE * (E) to denote the neighbors of stdteduring the first phase of GES. In words,
an equivalence clads’ is in EEE " (E) if and only if there is some DAG < E to which we can
add a single edge that results in a D&G= E’. Given Theorem 3, an alternative way of describing
EE*(E) is as follows. LeG be any DAG inE and letG’ be any DAG inE’. ThenE’ € EE*(E)
if and only if there exists a sequence of covered edge reversals followed by a single edge addition
followed by another sequence of covered edge reversals that trarfSfortn G’. We uselEE ~ (E)
to denote the neighbors of stdteduring the second phase of GES. The definitioftdd ~ (E) is
completely analogous to that @8E *(E), and contains equivalence classes that are obtained by
deletinga single edge from DAGs ik .

In Figure 6a, we show a particular DAG, and in Figure 6b, we show all membersbf=
E(G). In Figure 6c, we show all DAGs reachable by a single edge addition to a memherTdie
union of the corresponding equivalence classes constilles(E); because all of the DAGs in
Figure 6¢ are equivalenBEE " (E) contains a single equivalence class (corresponding to the “no
independence constraints” hypothesis). In Figure 6d, we show all DAGs reachable by a single edge
deletion from a member df. The union of the two corresponding equivalence classes constitutes

EE -~ (E).
(B)=(S) (8)=(C) (Bre(c) (Bm(c
(a) (b)
I &
52T (B)~c e‘e
(©)

f %D A <y
&) (o) (e
(d)

Figure 6: (a) DAGG, (b) E =E(G), (c) the single member & *(E), and (d) the two members
of EE~(E).

521

CHICKERING

GES can now be described as follows. We first initialize the state of the search to be the equiva-
lence clas& corresponding to the (unique) DAG with no edges. That is, the first state of the search
corresponds to all possible marginal and conditional independence constraints. In the first phase of
the algorithm, we repeatedly replaBewith the member o EE* (E) that has the highest score,
until no such replacement increases the score. Once a local maximum is reached, we move to the
second phase of the algorithm and repeatedly reffaeédth the member ofEE ~ (E) that has the
highest score. Once the algorithm reaches a local maximum in the second phase, it terminates with
its solution equal to the current stdte

We prove that GES correctly identifies the optimal solution in the limit using two steps. First,
we show that the local maximum reached in the first phase of the algorithm contains the generative
distribution. Then, we use Theorem 4 to show that the equivalence class reached at the end of the
second phase must be a perfect map of the generative distribution.

The proof for the first phase of GES relies on the fact that the generative distribution is DAG-
perfect. Any such distribution must obey tbempositionindependence axiom described in Pearl
(1988), the contrapositive of which can be stated as follows: if varigbenot independent of the
setY given setZ, then there exists a singleton elem¥nt Y such thatX is not independent of
given setZ.

Lemma 9 LetE denote the equivalence class that results at the end of the first phase of GES, let
p(-) denote the distribution from which the ddbawas generated, and let m denote the number of
records inD. Then in the limit of large Nk contains p.

Proof: Suppose not, and consider a@yc E. Becausds contains some independence constraint
not in p, and because the independence constrairfisat characterized by the Markov conditions,
there must exist some nodein G for which XiJLLpY]Pa, whereY is the set of non-descendants
of X. Furthermore, because the composition axiom holdspfey, there must exist at least one
singleton non-descendaxite Y for which this dependence holds. By Lemma 7, this implies that
the DAG G’ that results from adding the edye— X; to G (which cannot be cyclic by definition
of Y) has a higher score th&h. Clearly,E (G’) € =" (E), which contradicts the fact th&t is a
local maximum.J

We now use Theorem 4 to show that in the second phase, GES will add independence constraints
(by “deleting edges”) until the equivalence class corresponding to the generative distribution is
reached.

Lemma 10 Let E denote the equivalence class that results from GES, (letdenote the DAG-
perfect distribution from which the dafa was generated, and let m denote the number of records
in D. Then in the limit of large k& is a perfect map of p.

Proof: Given Lemma 9, we know that when the second phase of the algorithm is about to com-
mence, the current state of the search algorithm confailée are guaranteed thiatwill continue

to containp throughout the remainder of the algorithm by the following argument. Consider the
first move made by GES to a state that does not comiaiBy definition of HE ~ (E), this move
corresponds to an edge deletion in some DAG. But it follows immediately from the fact that the
score is consistent that any such deletion walddreasehe score, contradicting the fact that GES

is greedy.

522

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

To complete the proof, assume that the algorithm terminates with some sub-optimal equivalence
classk, and letE* be the optimal equivalence class. From Proposition 8, we knowkhas a
perfect map op, and becausE containsp, it follows thatE must be an independence magtdft.

Let H be any DAG inE, and letG be any DAG inE*. Becausd> < H, we know from Theorem

4 that there exists a sequence of covered edge reversals and edge additions that tr&ngftoms
H . There must be at least one edge addition in the sequence because by asskmptichand
henceG % H . Consider the DAGS’ that precedes thiast edge addition in the sequence. Clearly
E(G’) e EE~(E) and becaus@’ has fewer parameters thkh, we conclude from the consistency
of the scoring criterion thet cannot be a local maximum, yielding a contradictian.

4.3 Discussion

In this section, we discuss some subtle issues about the GES algorithm, and consider what happens
when some of our assumptions are violated.

Note that the first phase of GES does not depend on Theorem 4. In fact, the first phase is not
even needed to get the large-sample optimality. It is used only to identify an equivalence class
that contains the generative distribution, so we could simply start witltahgpleteequivalence
class (i.e., no independence constraints) and move immediately to the second phase. The problem,
of course, with starting from the complete model is that for any realistic domain, the number of
parameters in the model will be prohibitively large. The hope is that the first phase will identify a
model that is as simple as possible. There exist generative distributions (e.g., the distribution with
no independence constraints) for which the first phase will, in fact, have to reach the complete model
in order to identify an appropriate equivalence class, but we hope that in practice the first phase will
reach a local maximum that is reasonably sparse. In Section 6, we will see that for many real-world
domains, this is exactly what happens.

The optimality proofs in the previous section do not depend on the scoring criterion being the
Bayesian criterion. Lemma 9 (the first phase of GES) holds for any scoring criterion that is locally
consistent, which means that the result holds for any consistent criterion that is decomposable in
the limit (recall from Section 4.1 that we used consistency and decomposability to get local consis-
tency). The proof of Proposition 8 (the optimal structure is perfect with respect to the generative
distribution) and the proof of Lemma 10 (the second phase of GES) used Theorem 4 to compare the
score of two equivalence classes by comparing the scores giawicular DAGs in those equiv-
alence classes. For any score-equivalent criterion (such as the Bayesian criterion), this approach is
clearly justified. Score equivalence is not needed, however, for the large-sample optimality of GES.
In particular, as long as all DAGs in an equivalence class have the same number of parameters—a
property that is easy to show for the models we consider in this paper (i.e., those containing Gaus-
sian or multinomial distributions)—these proofs remain valid for any consistent criterion. To see
this, we consider the following result:

Proposition 11 Let G and H be any two DAGs that contain the generative distribution and for
whichG has fewer parameters than, and let S be any consistent (DAG) scoring criterion. If all
DAGs in an equivalence class have the same number of parameters, then fos exe@ and for
everyH' ~H, SG’,D) > SH’',D).

523

CHICKERING

Proof: BecauseG’ andH’ both contain the generative distribution, and given that all DAGs in
an equivalence class have the same number of parameters, the result follows immediately from the
definition of consistency]

Given Proposition 11, it is easy to see that the proofs for Proposition 8 and Lemma 10 hold
without modification for any consistent scoring criterion, regardless of whether or not the criterion is
score equivalent. Things get a bit tricky when the scoring criterion is not score equivalent, however,
because if we are interested in the highest-scoring DAG model, we may still have work to do after
identifying the optimal equivalence class. In particular, there can be an enormous number of DAGs
contained within an equivalence class, and we must search through these DAGSs to find the best
model. Depending on the particulars of the scoring criterion, this search problem may or may not
be difficult.

An example of a popular scoring criterion that is not score equivalent is the (Bayesian) K2
scoring criterion. Cooper and Herskovitz (1992) derive this closed-form criterion for multinomial
conditional distributions by making some assumptions about network parameter priors. It turns out
that for two DAGsG; and G, that are in the same equivalence class, we can get different values
for the marginal-likelihood termp(D|G]") and p(D|G}) in the K2 criterion. Strictly speaking, this
means that the hypothesis corresponding to a DAG in the K2 score cannot be simply a hypothesis
about independence constraints. In fact, the reason that the K2 scoring criterion is not score equiv-
alent is that Cooper and Herskovits (1992) constrain the conditional-parameter priors in the DAGs
to come from a particular restricted family of distributions. Researchers often use K2 because it is
easy to implement and is very fast to evaluate. Furthermore, the score differences between mem-
bers within the same equivalence class are typically very small compared to the score differences
between members of different equivalence classes. As a result, researchers often use the criterion to
identify a good DAG, and then interpret the result to mean that the algorithm identified the equiva-
lence class corresponding to that DAG.

As opposed to the “accidental” non-score-equivalence of K2, Heckerman, Geiger, and Chick-
ering (1995) discuss a Bayesian scoring criterion for learcigsalnetworks. In this case, they
define the hypothesis corresponding to a DAG model to assert, in addition to the independence
properties about the generative distribution, that each edge in the DAG corresponds to a cause-
effect relationship. It turns out that the resulting scoring criterion is locally consistent, and thus—as
described above—we can use GES to identify a single equivalence class of models in which we can
then search for a high-scoring (causal) model.

For most real domains, it is unlikely that the generative distribution will be DAG perfect in the
sense that there is a DAGefined over the observablésat is perfect. In this case, we need to
refine our definition of the hypothesis corresponding to a DAG because otherwise we are admitting
thatnoneof these hypotheses are true. We can relax the hypotBésis denote, for example, the
assertion thaG is a DAG model with fewest parameters that can represent the joint distribution
over the observables.If we make the assumption that there exists a DAG defined svereset
of variables that is a perfect map of the generative distribution—of which the observables are a
subset—then the composition axiom still holds so we are guaranteed (in the limit) to identify an
independence map of the optimal hypothesis in the first phase of GES. All we know about the second
phase in this case, however, is that the resulting equivalence class withb@naalindependence
map of the optimal solution. That is, there is no DAG in the class for which we can remove an edge

5. A technical difficulty with this definition is that two non-equivalent DAGs might both satisfy these conditions, and
thus the hypotheses are not mutually exclusive.

524

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

and still contain the generative distribution. In Section 6, we explore the potential problems with
the DAG-perfect assumption by applying the GES algorithm to real-world data. As we show in that
section, the GES algorithm performs well in these domains, regardless of whether the large-sample
guarantees are justified.

5. An Efficient Search Space

In the previous section, we provided a theoretical justification for using the GES algorithm by prov-
ing that in the limit of large datasets, the algorithm will identify the optimal model. Such a result is

of little importance unless the search algorithm can be implemented in a reasonably efficient manner.
To make this point clear, consider the (provably optimal) search algorithm that exhaustively enumer-
ates and evaluates every possible structure; because the number of DAGs grows super-exponentially
with the number of variables in the domain, and recent results from (e.g.) Gillispie and Perlman
(2001) suggest that the number of equivalence classes grows super-exponentially as well, such an
algorithm is of no practical importance except for very small domains (for only eight variables,
there are over 700 billion DAGs and over 200 billion equivalence classes).

The feasibility of applying any search algorithm in practice depends on the complexity of both
the algorithm and the search space to which that algorithm is applied. Because we are using a greedy
search algorithm over edges, it is easy to show that the total number of search states visited by GES
in a domain ofn variables can never excead(n— 1). Furthermore, we have found that in practice
the number of states visited generally grows linearly with

Of greater concern to us—given the simplicity of the algorithm—is the complexity of the search
space: for each state visited by the greedy search algorithm, we need to generate and evaluate all
states that are reachable by the application of a single operator. If the number of such neighbor
states grows very large, or if each neighbor state takes too long to evaluate, even the simple greedy
algorithm may not terminate quickly enough. Chickering (1996) shows that the problem of learning
the optimal structure using the Bayesian scoring criterion is NP-hard; this negative result suggests
that in the worst case, the connectivity of the search space that the algorithm encounters will be
a problem. Our hope is that in practice, this worst-case scenario will not occur, and that for real-
world problems the portion of the search space traversed by GES will be sparse. If we do, in fact,
encounter portions of the search space that are too dense to search efficiently, we can choose to
consider only a heuristically-selected subset of the candidate neighbors at each step, albeit at the
cost of losing the large-sample optimality guarantee. We should point out that the density of the
search space has never been a problem in any of the experiments we have performed, including
those presented in Section 6.

In this section, we describe a method for efficiently generating and evaluating the neighbors
of a given search state in the GES algorithm. The approach we take builds upon the work of
Chickering (2002), where completed PDAGs (described in Section 2.4) are used to represent states
in the search, and where operators are defined that can be used (by any algorithm) to search the
space of equivalence classes efficiently.

We now define aearch spaceorresponding to each of the two phases of the GES algorithm
presented in Section 4.2. A search space has three components:

1. A set of states

2. Arepresentation scheme for the states

525

CHICKERING

3. A set of operators

The set of states represents the logical set of solutions to the search problem, the representation
scheme defines an efficient way to represent the states, and the set of operators is used by the search
algorithm to transform the representation of one state to another in order to traverse the space in a
systematic way. The two phases of GES correspond to a greedy search algorithm applied to two
different search spaces that differ by the set of operators they contain.

In Section 4.2, both the states of GES and the connectivity of the search space in the two phases
are defined. In particular, the states of the search are equivalence classes of DAGs, and the neighbors
of a particular staté& are eitheEE " (E) or =~ (E), depending on whether GES s in the first
or second phase, respectively. Furthermore, we will use completed PDAGs—described in Section
2.4—to represent the states of the search. Thus all that remains to defining the search space is an
implementation of the operators.

Given a state of the search represented as a completed PDA&e define the following two
sets of operators that can be used to define the connectivity of the two phases of GES. In these
definitions and elsewhere, a pair of nodéandY in a PDAG areneighborsif they are connected
by an undirected edge, and they agacentif they are connected by either an undirected edge or a
directed edge.

Definition 12 Insert(X,Y,T)

For non-adjacent nodes X and Y Rf, and for any subset of the neighbors of Y that are not
adjacent to X, the InsefX,Y, T) operator modified ¢ by (1) inserting the directed edge % Y,
and (2) for each Te T, directing the previously undirected edge between T and Y -asYT.

Definition 13 DeletgX,Y,H)

For adjacent nodes X and Y ° connected either as XY or X — Y, and for any subset of

the neighbors of Y that are adjacent to X, the De{¥t&, H) operator modifie® ¢ by deleting the
edge between X and Y, and for eackeH, (1) directing the previously undirected edge between Y
and H as Y— H and (2) directing any previously undirected edge between X and H-astX

We uselnsert operators to implement the connectivity for the first phase of GES, and we use
Deleteoperators to implement the connectivity for the second phase of GES. W& usedenote
the set-argument of thimsert operator because every node in this set becomes a “tail” node in a
new v-structure as a result of the operator. Similarly, we tBedr the Deleteoperator because
every node in this set becomes a “head” node in a new v-structure.

After applying an operator to a completed PDAG, the resulting PDAG is not necessarily com-
pleted. Therefore we may need to convert that PDAG to the corresponding completed PDAG rep-
resentation of the resulting equivalence class; this is accomplished in two steps by first extracting a
consistent extension from the (not completed) PDAG, and then constructing the completed PDAG
from that DAG. In Appendix C, we provide the implementation of Chickering (2002) for both steps
of this conversion algorithm. If the (not completed) PDAG that results from an operator admits a
consistent extension, we say that the operaterligl. Otherwise, we say the operatomist valid
and do not allow its application to the search space.

The algorithm in Appendix C that converts PDAGs to completed PDAGSs takesQiiig - k?)
in the worst case—wher&| is the number of edges in the PDAG akiis the maximum number
of parents per node—which could potentially be a problem for domains with a large number of

526

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

variables. As we show below, however, in GES all of the operators for a given search state can
be generated and evaluated efficiently without ever needing to construct the representation of the
resulting states. Thus the only time that the completed PDAG representation for a state needs to be
constructed is when GES “moves” to that state (i.e., when the best neighbor state is identified and
the current state is replaced with that neighbor state). Furthermore, the algorithm does not depend
on the number of records in the data, and because it is applied infrequently compared to the number
of times operators are evaluated, its contribution to the overall run time of GES is insignificant.

There are easily testable conditions for bbikert andDeleteoperators to ensure that they are
valid. To define these conditions, we first need to defiserai-directegpath. This is the same as a
directed path except that any of the edges may be undirected. More formally we have:

Definition 14 A semi-directed patfrom Y to X in a PDAG is a path from Y to X such that each
edge is either undirected or directed away from Y .

The following two theorems and corresponding corollaries demonstrate (1) how to determine
efficiently whether or not atnsert or Delete operator is valid and (2) how to score each such
operator. We have simplified our notation to make the results easy toPaeadtenotes the parents
of nodeY in the completed PDAG representation of the current state. Weaise® andPa, * as
shorthand foPa, U {X} andPa, \ {X}, respectively. We usBlAy x to denote the set of nodes that
are neighbors of nodé and are adjacent to nodein the current state. The proofs of these results,
which are summarized in Table 1, are given in Appendix B.

Theorem 15 LetP € be any completed PDAG, and Rt denote the result of applying an Insext Y, T)
operator toP €. There exists a consistent extensiwf P ¢ to which adding the edge X Y results
in a consistent extensida’ of P¢ if and only if inP¢

1. NAyx UT is a clique

2. Every semi-directed path fromY to X contains a nodeAgy x UT

Corollary 16 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator InséK,Y,T) to a completed PDAG® € is

s(Y,NAyx UTUPa, ™) —s(Y,NAyx UTUPa,)

Theorem 17 Let P be any completed PDAG that contains eitherXY or XY, and letP?
denote the result of applying the operator Del&gey,H) to P€. There exists a consistent extension
G of P°¢ that contains the edge X Y from which deleting the edge % Y results in a consistent
extensiorG’ of P¢ if and only ifNAy x \ H is a clique.

Corollary 18 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator Delgb¢ Y,H) to a completed PDAG € is

S(Y,{NAvx \H} UPa,) — (Y, {NAvx \H} UPa)

The final step in an implementation of GES is a method to generate candidate operators after
each move. We note that the majority of the operators at a given step of the algorithm both will
remain valid and will have the same score at the next step of the algorithm. Given that we need

527

CHICKERING

Table 1: Necessary and sufficient validity conditions and (local) change in score for each operator
Operator | Validity Tests | Change in Score

NAyx UT is a clique

s(Y,NAyx UTUPa, ™)

Insert(X,Y,T) Every semi-directed path SY.NAyxUTUPa,)

fromY to X contains
anode iNNAyx UT

s(Y,{NAyx \H}UPa, %)

DeletgX,Y,H NAy x \ H is a clique
eletgX,Y,H) vx \H s acliqu —s(Y,{NAyx \H}UPa,)

to generate or re-generate a set of operators corresponding to a pair oPhadey’, the most
obvious approach is to use Definition 12 and Definition 13 directly to generate those operators
without regard to the validity conditions, and then test the validity conditions for every one. This
procedure is detailed in the following paragraph.

In the first phase of GES, only those nodes that are not adjacent will have a corresponding set
of operators. For such pa¥ andY whose corresponding operators need to be generated, we define
Ty to be the set of all neighbors ¥fthatare notadjacent toX. Let To+ denote the power set df;
that is, Tox contains all possible subsetsTd. We then test the validity of (and possibly score) the
result ofInsert(X,Y, T) for everyT € To*. In the second phase of GES, only those nodesateat
adjacent will have a corresponding set of operators. For such &paidY whose corresponding
operators need to be generated—and for which there is either an undirected edge beamnddn
or a directed edge frod to Y—we defineHg to be the set of all neighbors ¥fthatare adjacent to
X. LetHg* denote the power set éfy. We then test the validity of (and possibly score) the result
of DeletegX,Y,H) for everyH € Hox.

For a set of node$ of sizek, there are ® elements in the power set & It follows that the
feasibility of this implementation for GES will, to a large degree, depend on the number of neighbors
of the nodes in the completed PDAGs we encounter; if there is a node with too many neighbors, we
may simply have too many operators to test. In particular, during the first phase of the algorithm, in
order to generate the operators for a pair of non-adjacent nodadyY, the implementation can be
slow if Y has many neighbors that are not adjacerX t&imilarly, during the second phase of the
algorithm, the implementation may be slow for (adjacetgndY if Y has many neighbors thate
adjacent toX.

There are a number of tricks we can apply to generate more efficiently the candidate operators
corresponding to a pair of nodes. Consider the first validity condition folrtbert operator given
in Table 1: namely, that the sBAy x UT must be a clique. If this test fails for some Jetthen it
will also fail for any T’ that containsT. Thus if we are careful, we can gain enormous savings by
not generating candidates that we know are not valid. A similar optimization can be made for the
Deleteoperator, except that we save only the cost of performing the validity test. In particular, if
the validity test for theDeleteoperator passes for some sgtthen we know it will also pass for

528

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

any setH’ that containdH as a subset. We can also save time by noting that is&wendvalidity
condition for thelnsert operator passes for soriiethen it will also pass for any’ that containsT .

Finally, we note that if we are careful, we can avoid generating distinct operators that result in the
same neighbor state. For exambeletdX,Y,H) and DeletdY, X,H) result in the same stafe,

so only one of them need be generated. A similar result fotrikert operator when the sét is

empty is given by Chickering (2002): X andY have the same parents, thersert(X,Y,0) and
Insert(Y, X, 0) result in the same state.

Unfortunately, in the worst case there can be an exponential number of valid operators for a
particular state in the search. As was mentioned above, we can prune neighbors heuristically in
this situation to make the search practical. For example, we might choose to search only through
equivalence classes where the member DAGs have some upper lboartie number of parents
for each node. In this case, we need consider only a polynomial number of “v-structure sets” for
each pair of nodes. In all of the experiments we have performed, however, including those presented
in the next section, we have yet to encounter a domain for which GES encounters a state that has
too many neighbors.

As is evident from the simplicity of the validity conditions from Table 1, there are a number of
ways to efficiently update (i.e., regenerate) the valid operators after each step of GES. For example,
consider the set ofnsert operators corresponding to the nodésandY. Suppose that all the
operators have been generated and scored at a given step of (the first phase of) GES, and we want to
know whether these operators remain valid and have the same score after applying some operator.
From Table 1, we see that if the neighborsyofiave not changed, the first validity condition must
still hold for all previously-valid operators; because we are adding edges in this phase, any clique
must remain a clique. Furthermore, if the parents of nodave not changed, we need only check
the second validity condition (assuming the first holds) if the score of the operator is higher than the
best score seen so far; otherwise, we know that regardless of whether the operator is valid or not, it
will not be chosen in the next step.

Finally, we note that an obvious optimization that we use for both GES and the alternative
search algorithms described in the next section is to cache away previously-computed local scores
corresponding to a node. Thus when we transition to the second phase of GES, many of the operators
can be scored without an explicit call to the scoring function.

6. Experimental Results

In this section, we evaluate the GES algorithm using both synthetic and real-world data. In Section
6.1, we use synthetic data to evaluate GES in terms of how well the algorithm can identify the
generative structure given datasets that are finite. In Section 6.2, we use real-world data to evaluate
the solution quality and total search time of GES when it is applied to real data.

In all of our experiments, we compare GES to two alternative greedy search algorithms. The
first such algorithm, which we calb-space searchis a traditional DAG-space greedy algorithm
that considers adding, removing, and reversing edges at each step. The second search algorithm,
which we callE-space searchis a greedy search through equivalence classes using the following
operators defined by Chickering (2002): (1) all valitsert operators for whichrl is empty (no
v-structures are created that contain previously undirected edges), (2) alDelkte operators

6. These operators are only both defined if the edge betdeandY is undirected; note that the definition of
DeleteX,Y,H) is not symmetric inX andY.

529

CHICKERING

where the seH is empty, (3) a directed edge can be reversed if the result is a PDAG that admits
a consistent extension and (4) for any length-two path of undirected edges— Z, if X andZ
are not adjacent, then the edges can be directed-asy < Z if the result is a PDAG that admits
a consistent extension. As shown by Chickering (2002), all of these operators can be tested and
scored efficiently.

We use the BayesiaBDeuscoring criterion for discrete variables—derived by Heckerman et
al. (1995)—in all of our experiments. The BDeu criterion uses a parameter prior that has uniform
means, and requires both a prior equivalence sample size and a structure prior to specify. For all of
our experiments, we use a prior equivalent sample size of ten, and a structure pri@16f @rhere
f is the number of free parameters in the DAG. getlenote the number of configurations of the
parent sePa, and letr; denote the number of states of varialfle Then the version of the BDeu
criterion used in our experiments is:

I r(h - +N|]k)

n
Sepeu(G,D) = log[]0.001"~1 (5)
o il:l I_LI’ 10+NIJ k:l F(,il.—%)

whereN;jx is the number of records iB for which X; = k and Pa is in the jth configuration,

andN;j = SkNijk. We also use the (non-Bayesian) constraint that each parameter needs to have
a corresponding sample size of at least five. Note from Equation 5 that our scoring criterion is
decomposable.

6.1 Synthetic-Data Experiments

In our experiments with synthetic data, we generated datasets of various sample sizegdtdm a
standardBayesian network with known structure and parameters. In order to make the connectiv-
ity of the gold standard “realistic”, we constructed each generative network as follows. First, we
took a real-world dataset (the MediaMetrix dataset described in detail in Section 6.2), consisting of
roughly 5000 records in a domain of 13 discrete (three-valued) variables, and ran the D-space search
algorithm to identify a local maximum. Then, we performed ten random D-space edge operations
(i.e., additions, deletions, and reversals) to that local maximum, and the resulting structure defined
the edges in our gold standard. Finally, we parameterized the gold standard by sampling all of the
conditional (multinomial) parameters from a uniform Dirichlet distribution.

The synthetic data experiments can be described as follows. We generated 100 random gold
standards as described above, and considered sample sizes from 500 to 10000 in increments of 500
samples. For each sample size, we created a dataset with the appropriate number of records from
each of the 100 gold standards. For each sampled dataset, we learned three Bayesian networks
using each of the three greedy search algorithms, and checked whether or not these networks were
equivalent to the gold standard. Figure 7 contains the results of these experiments. The figure plots,
for each of the three algorithms, the number of the learned networks that were equivalent to the gold
standard as a function of the sample size.

As we see from the figure, GES proved to be superior to the competing algorithms when tasked
with identifying the generative structure. Rather surprising is that the models identified using D-
space were more often equivalent to the generative structure than those identified using E-space;
one explanation for this is that by virtue of generating the gold standards using D-space, we may be
biasing the experiment in favor of that space. To gauge the complexity of the domain, we recorded
the number of edges, the number of parameters, and the maximum number of parents for each of

530

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

100 ~

GES

........... D-space

—————— E-space

Number Equivalent to Gold Standard

500 2000 3500 5000 6500 8000 9500

Sample Size

Figure 7: Number of learned networks that are equivalent to the generative structure as a function
of the sample size.

the 100 gold-standard models. The averages of these measurementsiwere D, 980 (+36.1),
and 24 (+0.7), respectively, which demonstrate that for this experiment, the optimal equivalence
classes were sparse.

6.2 Real-World Data Experiments

We used the following six real-world datasets in our experiments. For all datasets, we assume that
values aranot missing at random. In particular, we treat “missing” as a distinct, discrete state.

1. Microsoft Web Training Data (MSWeb)

This dataset, which is available via anonymous ftp from the UCI Machine Learning Reposi-
tory, contains 32711 instances of users visiting the www.microsoft.com web site on a day in
1996. For each user, the data contains a variable indicating whether or not that user visited
each of the 292 areas (i.e., “vroots”) of the site. We used the 50 most popular areas and a
sample of 5,000 users.

2. Nielsen

The Nielsen dataset contains data about television-watching behavior during a two-week pe-
riod in 1995. The data was made available courtesy of Nielsen Media Research. The data
records whether or not each user watched five or more minutes of network TV shows aired
during the given time period. There were 3314 users in the study, and 402 television shows.
We used the most popular 50 shows in our experiments.

3. EachMovie

531

CHICKERING

The EachMovie dataset consists of viewer ratings on movies. The data was collected during
an 18-month period beginning in 1995. We used the ratings of the 50 most popular movies
by a sample of 5,000 viewers. The rating is a discrete variable that is either missing, or is
provided as an integer from one to five.

4. MediaMetrix

This dataset contains demographic and internet-use data for 4808 individuals during the
month of January 1997. We used only the internet-use variables in our experiments; there
are 13 such variables that indicate the category of web site visited.

5. 1984 United States Congressional Voting Records (HouseVotes)

This dataset contains the 1984 congressional voting records for 435 representatives voting on
17 issues, and is available via anonymous ftp from the UCI Machine Learning Repository.
Votes are all three-valued: yes, no, or unknown. For each representative, the political party is
given; this dataset is typically used in a classification setting to predict the political party of
the representative based on the voting record.

6. Mushroom

The Mushroom dataset, available via anonymous ftp from the UCI Machine Learning Reposi-
tory, contains physical characteristics of 8124 mushrooms, as well as whether each mushroom
is poisonous or edible. There are 22 physical characteristics for each mushroom, all of which
are discrete.

For our experiments, we considered some variants of the GES algorithm that we deemed to be
better suited for real-world domains. Our inclusion of these variants was motivated by a number
of observations. First, we found that after running phase two of GES, it was often the case that we
could further increase the score by applying moert operators; in other words, the state reached
after phase two was not a local maximum with respect to the phase-one operators. Second, we found
that in the first phase of GES, the b&stleteoperator would often have a better score than the best
Insert operator, even though the béstert operator increased the score; note that this situation is
impossible in the large-sample limit. Finally, we noticed that in practice, the number of v-structures
induced by the sefs andH for the bestinsertandDeleteoperators, respectively, was in almost all
cases either zero or one. Thus we can often restrict the siz@ofiH to size one and get the same
local maximum as we would with no such restrictions. As discussed in Section 5, such a restriction
reduces the number of operators we need to evaluate and thus will speed up the implementation.

We ran experiments using three specific variants of GES. The first variant, which we call GES*,
simply applies GES repeatedly until neither phase one nor phase two increases the score. We use
GES* instead of GES in our experiments because it is guaranteed to find a solution that is at least
as good (in terms of the score) as GES. The second variant, which we call OPS, performs a greedy
search usingboth the Insert operators and th®elete operators at each step. Finally, the third
variant, which we call OPS-1, is identical to OPS except that we only coniidert and Delete
operators for whichT| < 1 and|H| < 1, respectively.

The results of our experiments are given in Table 2 and Table 3. In Table 2 we report, for each
dataset, the score of the maximum reached by each algorithm. In Table 3 we report, for each dataset,
the total learning time in seconds for each algorithm.

532

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

Table 2: Scores of the model selected by each of the algorithms.

Dataset GES* OPS OPS-1 D-space | E-space
MSWeb -38599.7 | -38599.7 | -38599.7 | -38602.0 | -38618.4
Nielsen -42787.8 | -42787.8 | -42787.8 | -42800.3 | -42916.4
EachMovie | -258531.0| -258531.0| -258531.0| -258531.0| -258531.0
MediaMetrix | -46341.3 | -46341.3 | -46341.3 | -46369.8 | -46341.3
HouseVotes | -6061.1 -6061.1 -6061.1 -6061.1 -6061.1
Mushroom | -177351 | -177351 | -177351 | -177408 | -177351

Table 3: Total learning time in seconds for each algorithm.

Dataset GES* Time | OPS Time| OPS-1 Time| D-space Time E-space Time
MSWeb 54 54 52 28 24

Nielsen 36 36 36 30 12
EachMovie | 25 24 24 16 16
MediaMetrix | 3 3 3 2 2

HouseVotes | 0.5 0.5 0.5 0.3 0.3
Mushroom | 14 14 13 5 4

Rather surprising, we see from Table 3 that all of the algorithms performed about the same in
terms of the resulting score. Although the GES variants always identified a model that had the same
score or better than the two competing approaches, we do not believe the differences are significant.
Upon closer examination of the models, we found some interesting properties. For HouseVotes and
EachMovie, all of the algorithms resulted in the same local maximum, and this model contained no
compelled edges. For MediaMetrix and Mushroom, all of the algorithms except for D-space resulted
in the same local maximum, and this model contained no compelled edges. For all datasets, the GES
variants traversed the same set of states and resulted in the same local maximum. All of the models
learned were reasonably sparse.

Because the local maxima from the experiments can be identified without applying many (if any)
operators that create v-structures, all algorithms essentially traversed over the same set of states.
We expect that in domains for which there are more complicated dependencies, the GES-based
algorithms will identify different models both from themselves and the two competing algorithms.
Given the results in Section 6.1, we also have reason to hope that these algorithms will identify
better models. From Table 3 we see that the running times of the GES variants are generally larger
than the running times of the two alternative algorithms. To investigate the source of the increase
in time, we recorded the number of times that the local scoring function was called by each of the
algorithms. In Table 4 we report the total learning time—iilliseconds—divided by the number
of times the evaluation function was called; as we see, for each of the datasets, this time is roughly
constant across all of the algorithms.

7. Chickering (2002) compared D-space to E-space using a 70% sample of the full datasets, and the winning algorithm
was different than our results for three of them.

533

CHICKERING

Table 4: Total learning time in milliseconds divided by the number of calls to the evaluation func-
tion for each algorithm.

Dataset GES* Time | OPS Time| OPS-1 Time| D-space Time E-space Time
MSWeb 5.01 5.01 4.99 5.27 5.40

Nielsen 472 4.77 4.78 4.88 7.31
EachMovie | 10.01 9.59 9.73 9.56 9.56
MediaMetrix | 5.96 5.96 6.04 6.45 6.40
HouseVotes | 0.73 0.70 0.76 1.06 0.95
Mushroom | 12.44 12.50 12.29 13.00 12.25

Because we cache the local scores of the nodes during all searches, each operator re-score (due
to a change in the local connectivity of the state) requires on average a single call to the scoring
function. Therefore the times in Table 4 are roughly equal to the time spent per operator re-score.
Because this time is constant, we conclude that the increase in time is due entirely to the additional
operators that we need to score (and re-score) at each step. Furthermore, we conclude that our
validity tests for thelnsert and Deleteoperators are efficient enough that the time to traverse the
search space using the GES variants is dominated by the time spent scoring the operators.

7. Conclusion

In this paper, we proved the so-called “Meek Conjecture” and showed how the result leads to the
asymptotically optimal two-phase greedy search algorithm GES that was originally proposed by
Meek (1997). We provided a new implementation of the search space to which GES can be applied
such that all operators used by the algorithm can be scored efficiently using local functions of the
nodes in the domain. Using synthetic data, we demonstrated that (1) the GES algorithm can identify
the generative structure when given enough data and (2) the GES algorithm is superior in this regard
to a greedy search using two alternative search spaces. We applied GES to six real-world datasets
and saw that the solution quality was roughly the same as the two alternative greedy approaches.
Although the time per evaluation-function call was the same as the competing algorithms, we found
that the larger number of neighbors per state for the GES algorithm resulted in slightly slower run
times.

An interesting extension to this work would be to investigate whether or not there are any large-
sample optimality guarantees to GES (or a variant of GES) when the generative structure is not
a DAG defined over the observables. As discussed in Section 4.3, if the generative structure is a
DAG that includes hidden variables, the composition axiom of independence still holds among the
observables, and the first phase of GES will lead to an independence map of the optimal model. We
know that result of thesecondphase of the algorithm is a minimal such independence map, but can
we say anything stronger? In a recent paper, Chickering and Meek (2002) consider situations when
the composition axiom is guaranteed to hold, and investigate the optimality guarantees of GES in
these situations.

534

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

It is unfortunate that the real-world dataset experiments did not provide a good test bed for our
algorithms. It does suggest, however, the following search strategy to apply when faced with real
data: First run a simple (and fast) DAG-based greedy algorithm. If the resulting model is simple
(e.g., there are no compelled edges and there are only a few edges), we probably will not be able to
find a better solution with a more sophisticated algorithm. If the model is reasonably complicated,
on the other hand, we may try to apply GES or one of its variants.

Recall that the OPS algorithm from Section 6.2 considers bothi$est and Deleteoperators
simultaneously. An interesting extension would be to implement an algorithm that considers, in
addition to these operators, the “extra” operators from the E-space algorithm of Chickering (2002)
that connect states that are not adjacent in the OPS space; these operators are the edge-reversal
operator and the operator that makes a v-structure by directing two undirected edges. This extension
would increase the number of evaluations that would need to be performed at each state, but perhaps
the combined search algorithm would perform better.

Acknowledgments

Special thanks to Michael Perlman, who revived my interest in Meek’s conjecture; | had long ago
given up after many months in pursuit of a proof. My discussions with Michael Perlman, Milan
Studery, TomaS KoCka, Robert Castelo and Steve Gillispie proved to be extremely useful, and |
am grateful to them all. | would also like to thank Chris Meek—who initially introduced me to his
conjecture in 1995—for the many helpful discussions on this work. Others who provided useful
comments on earlier drafts include Remco Bouchaert, David Heckerman, Rich Neapolitan, and two
anonymous reviewers.

Appendix A: Detailed Proof of Theorem 4

In this appendix, we provide a detailed proof of Theorem 4. The theorem is an immediate conse-
guence of Lemma 30, which demonstrates the correctness@dRAITHM APPLY-EDGE-OPERATION.
Almost all of the results presented here are proved using propertiesaistygaratiorcriterion.
This criterion—which is detailed by (e.g.) Pearl (1988)—is used to test whether or not certain
independence constraints are implied by a DAG model. In particular, two #odedB are said to
be d-separated in a DAG given a set of nodeSif and only if there is nactive pathin G between
A andB givenS. The standard definition of an active path isimplepath for which each node/
along the path either (1) has converging arrows\Ahdr a descendant & is in S or (2) does not
have converging arrows aMil is not inS. By simple, we mean that the path never passes through
the same node twice.
To simplify our proofs, we use an equivalent definition of an active path—that need not be
simple—where each nod# along the path either (1) has converging arrowsahis in S or (2)
does not have converging arrows affds not inS. In other words, instead of allowing a segment
— W « to be included in a path by virtue of a descendant/dbelonging toS, we require that the
path include the sequence of edges fibdhto that descendant and then back again. For those readers
familiar with the celebrated “Bayes ball” algorithm of Shachter (1998) for testing d-separation, our
expanded definition of an active path is simply a valid path that the ball can take belveaeiB.
More formally, we have the following definitions.

535

CHICKERING

Definition 19 (Collider) Let (Wi, W;) denote any path between \&hd W,. A node Wis called
a collider at positioni of the path if W¢ {W;,W,} and the path contains the converging arrows
Wop - W — W, atW.

Definition 20 (Active Path) A path (A, B) between A and B in DAG is S-activein G if the
following conditions hold:

1. A¢Sand B¢ S
2. IfW € Sis an element ofi(A,B), then W is a collider at every position (A, B)
3. IfW ¢ Sis an element oft(A, B), then W is not a collider in any position mA, B)

The direction of eaclerminal edge—that is, the first and last edge encountered in a traversal
from one end of the path to the other—in an active path is important for determining whether we
can append two active paths together to make a third active path. We say thatré4o&his into
A'if the terminal edge incident tA is oriented toward (i.e., A <). Similarly, the path is intd if
the terminal edge incident ®is oriented towardB. If a path is not into an endpoii, we say that
the path isout of A

The following lemma demonstrates when we can create an active path by simply appending two
other active paths together.

Lemma 21 Leti(A,B) be anS-active path between A and B, and 1&B,C) be anS-active path
between B and C. If either path is out of B, then the concatenatiaffAB) and 1(B,C) is an
S-active path between A and C.

Proof: Because at least one of the paths is ouBpthe junction betweem(A,B) and 1(B,C)
cannot be a collider. Furthermore, becaBsg S, the concatenation satisfies all of the conditions of
Definition 20.0

For example, consider the DAG shown in Figure 8, and asssimeC}. If we let i(A,D) =
{A—B— D} andn(D,E) = {D — C « D « E, it follows from Lemma 21 that because (1) both
paths areS-active and (2)r(D,E) is out of D, the concatenatiom(AJE) =A —B — D — C «—

D «— E is S-active.

Figure 8: Example DAG with &-active path betweeA andE, whereS= {C}.

In the proofs that follow, we will make extensive use of Lemma 21, but we will do so implicitly
to simplify the presentation. In many of the results, for example, we prove the existence of an
S-active path between two nodé&sandB by showing that (1) there is a@&active path betweeA
and some nod¥;, (2) there is ars-active path betweeB andX,, and (3) there is aB-active path

536

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

betweenX; andX, that is out of bothX; andX,. To conclude from these properties that there is an
S-active path betweeA andB, we need to make an awkward argument about applying Lemma 21
twice, whereas the conclusion is obvious given the lemma.

The following lemma and its two corollaries provide the main tools we use to prove that A
GORITHM APPLY-EDGE-OPERATION is correct. In particular, these results expose properties about
active paths that must hold in light of an edge addition to some DAG.

Lemma 22 Let G be any DAG, and le&’ be the DAG that results by adding the edge-XY to
G. Letm(A,B) be anyS-active path inG’ such that there is no S-active path between A and®.in
Then the following properties hold:

1. (A, B) contains the edge X Y

2. X¢S

3. IfY is an endpoint, then i@ there is an active path between the other endpoint and X
4

. IfY ¢ S, then inG either there are active paths between both endpoints and X, or there is an
active path between one endpoint and X and an active path between the other endpoint and
Y.

5. IfY € S, then inG either there are active paths between both endpoints and X, or there is an
active path between one endpoint and X and an active path between the other endpoint and
all other parents of Y that are not i&

Proof: (1) follows immediately because otherwise the path is activ@é .irGiven (1), (2) follows
because otherwise the path would not be active. (3) follows from (2) and the fact that every sub-path
of an active path between nodes noSiis by definition active.
We now prove (4) and (5) by considering the following two traversals(@ B): consider a
traversal ofri(A,B) from A along1i(A, B) until the edge betweeK andY is about to be traversed
for the first time. Similarly, consider the same traversal except startiBg at
First we show that at least one of the traversals en#s ahd thus we establish for both (4) and
(5) that there exists i6 an active path between one of the endpointsX@n8uppose to the contrary
that both traversals end at nodelf Y € S, the last edge in both traversals must be iitand thus
we could append them together to form an active path that violates property (1). Similrky,Sf
it follows that because the next edge (iX..— Y) along both traversals is inté, the last edge in
both traversals is out of, and again we can form an active path in violation of property (1).
Without loss of generality, assume there isSaactive path betweeA andX in G. Property (4)
now follows immediately because the traversal flBmmust have ended at or atY; becausey ¢ S,
this sub-path is active. To prove property (5), we asstynaeS. If the traversal fronB ended at
X, the property follows immediately. Otherwise, the last edge in the traversal must have been into
Y, and thus the next-to-last node is some pak€rdf Y that is not inS, and thus we conclude that
there is an active path betweBmandX’. Now consider any other pareKt’ of Y that is not inS:
we can form an active path betweBrandX” by appending the active path betwegand X’ with
the (active) pattX’ — Y « X" in G that is out ofX’. [J

Corollary 23 LetG be any DAG, and le&’ be the DAG that results by adding the edge-XY
to G. LetH be any DAG such thds < H. Then for anyS-active pathmtin G identified with

537

CHICKERING

properties 3, 4, or 5 from Lemma 22, there is a correspond@ragtive path between the endpoints
of mtin H.

Proof: Follows immediately because <H . O
The following second corollary is convenient for our main proof because two of the additions
made by the algorithm are edges into a node that is a sink in the independence map.

Corollary 24 LetG be any DAG, and leb’ be the DAG that results from adding the edge-XY

to G. LetH be any DAG such that (I3 <H, (2) Y is a sink node il , and (3)H contains the
edge X— Y. Letm(A,B) be anyS-active path inG’ such that there is no S-active path between A
and B inG. IfY € S, then there is ais-active path between A and B lih.

Proof: From Corollary 23 (Property 5) we know that lth, there is arS-active path between one
of the endpoints ani, and there is als-active path between the other endpoint and either
a parent ofY from G that is not inS. Without loss of generality, assume there isSactive path
betweermA andX in H. Given the three preconditions of the corollary, it follows that every parent
of Y in G’ is a parent ofY in H. Thus there is a%-active path inH betweenB and some parent
W of Y that is not inS (with W = X a possibility). Consequently we can constructSaactive path
betweenA andB in H by connecting the two active paths from the endpoints with the active path
X =Y «— W that is out of bothX andW. [

The next lemma is the key idea of Step 2 of the algorithm: it allows us to remove nodes from
both of the input DAGs in order to simplify the problem.

Lemma 25 LetG andH be two DAGs containing a node Y that is a sink in both DAGs and for

which Pa.(,5 = Pa. LetG’ andH '’ denote the subgraphs &f andH , respectively, that result by
removing node Y and all its in-coming edges. Ther H if and only if G’ <H'.

Proof: (If) For this case, we assume ti&t < H’, and show that any active path @G must also
exist inH , thus establishing th& < H . Let (A, B) be anyS-active path betweeA andB in G.

If Y never appears im(A,B), thenti(A,B) is T-active inG’, whereT = S\ {Y}, and thus by
assumption, there is a correspondifgactive pathit (A, B) betweenA andB in H'. Furthermore,
becauséH ' is a subgraph off , and becaus¥ cannot appear in'(A,B) (Y does not exist ifH '),
we conclude thatt(A, B) is S-active inH , thus proving the result. For the remainder of the proof,
we assume that appears im(A, B).

Supposé’ € S. This implies thaly occurs as a collider at every positionTiA, B). Consider
a traversal fromA to B alongTi(A,B), and letX — Y « X’ andZ’ — Y «+ Z be the first and last
occurrence oY (as a collider) on the traversal. Because every sub-path $faive path between
members not irS is by definition active, and because neitiénor Z can be inS (elseTi(A, B)
would not be active through the identified colliders), we conclude th&t there exists (1) a%-
active path betweeA andX that does not pass throuyhand (2) anS-active path betweeB and
Z that does not pass through Clearly both of these paths afeactive inG’ givenT = S\ {Y},
and by assumption th&’ < H’, it follows that there exist correspondifigactive pathst (A, X)
andt'(B,Z) in H'. BecauséH '’ is a sub-graph ofl , both1?(A, X) andt/(B,Z) areT-active inH .
Furthermore, because neither path contaiphey are bottS-active inH as well. This means we
can append them together with tBeactive pathX — Y « Z that is out of bothX andZ to create
anS-active path betweeA andBin H .

538

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

SupposeY ¢ S. Then becaus¥ is a sink node ir5, the only time it can occur im(A, B) is as
an endpoint. Without loss of generality, assuvhe: A. In the degenerate case whéris alsoB,
the result follows trivially, so we assume that there is at least one edg@\iB). Becausé is a
sink in G, we know the first edge im(A,B) is intoY: let X — Y denote this first edge. Clearky
cannot be ir5, which means that there is &active path betweeX andB that does not includ¥.
This means that the same pattSigactive inG’, and therefore because we are assunfiheg H',
there must exist aB-active patht (B, X) betweerB andX in H'. Because the parent setsYoare
identical inG andH , it follows that the edgeX — Y exists inH and constitutes ag-active path in
H that can be appended (B, X) to create ars-active path betweevi = AandBin H .

(Only If) For this case, we assume tléat H , and show that any active path@ must also exist
in H’, thus establishing thd®’ < H’. Let (A, B) be anyS-active path betweeA andB in G’.
BecauseY does not exist ifc’ we can assume, without loss of generality, tfigf S. Becauses’
is a subgraph o6, (A, B) is S-active inG. By the assumption th& < H, it follows that there
exists a corresponding-active pathr(A, B) betweenA andB in H . Becauser ¢ SandY is a sink
node inH , Y cannot be im(A, B), and thus this path iS-active inH'. O

We are now almost ready to present the main proof; we first need some simple intermediate
results, the first of which was proved by Verma and Pearl (1991).

Lemma 26 (Verma and Pearl, 1991)f nodes X and Y are not adjacent in some DBGhen for
the setS= Pa?(U Pa?, there is noS-active path between X and Y @

Proposition 27 LetG andH be two DAGs such th& < H . If there is an edge between X and Y
in G, then there is an edge between X and Hin

Proof: Follows immediately from Lemma 26 and the fact that an edge betXemmdY constitutes
an S-active path for anys that does not includ¥ orY. (0

Lemma 28 LetG andH be two DAGs such th& < H . If G contains the v-structure X Z Y,
then eitherH contains the same v-structure or X and Y are adjacei in

Proof: Suppose this is not the case ardddoes not contain the v-structure aKdandY are not
adjacent inH . From Proposition 27, we know that ki, Z must be adjacent to botk andY. By
our suppositionZ is a parent of eitheX orY in H. This implies by Lemma 26 that there exists a
conditioning sesS that includes nod& (and does not include either nodeor nodeY) for which
no active path exists betweétiandY in H. But the pathX — Z < Y in G is active given any
conditioning set that includes (and excludex andY), including the se8, which contradicts the
fact thatG <H.O

Lemma 28 was also proven by Bka et al. (2001b). For the next lemma, recall from the
definition ofDe$ thatY is included in this set.

Lemma 29 Supposé> < H . For any node Y, there is a unique maximal elemem ifrom the set
G
Dey .

Proof: Suppose not, and I&; andD, be any two maximal elements . Because these nodes
are both descendants¥fin G, there is arB-active path inG between them for ang that does not

contain any node iﬁ)es. By definition ofD; andD», in H neither has a parent fromes, and thus

539

CHICKERING

by Lemma 26S = Pa.'S'l U Pa',S'2 constitutes precisely such a set that renders them independent in
H , contradicting the fact thdd <H . O
We can now prove that &GORITHM APPLY-EDGE-ORIENTATION is correct.

Lemma 30 LetG andH be two DAGs such thdd <H andG # H. LetG’ denote the graph
returned byALGORITHM FIND-EDGE-OPERATION(G,H). ThenG’ is a DAG such thaG’ < H
and if the operation was an edge reversal, then the edge was coveed in

Proof: In Step 2 of the algorithm the input DAGs are simplified by repeatedly removing common
sink nodes that have the same parents in both DAGS5andHs denote these simplified versions
of the input DAGs. It follows immediately from Lemma 25 that if we find an edge modification to
Gs such thatHs is an independence map of the resulting DAG, theris an independence map
of the DAG that results from that same edge modificatiofsinFurthermore, because only sink
nodes are removed, any covered edge revers8sicorresponds to a covered edge reversal in
G. Thus we can concentrate on identifying an edge to modify using the simplified problem. For
notational simplicity, we will usé& andH to denote the simplified versions of the input DAGs for
the remainder of the proof.

We know that after Step Z; andH have at least two nodes, else we conclude dflanodes
were removed in Step 2, contradicting the fact tBag H. Thus the nod¢ identified in Step 3
must exist.

® PR O RO
(a) (b) (c)

Figure 9: Relevant portions of the DAGs for the edge addition at Step 45 (&) G’ resulting
from the edge addition, and (k).

If there are no children of in G (Step 4), we simply choose any noHehat is a parent of
in H but not a parent of in G (See Figure 9), and we return the DAR3 that results from adding
X — Y to G. We know that such aK exists, else we would have removédn Step 2. Consider
any S-active pathr(A, B) in G’ that is not active ifG. Recall from Lemma 22 (Property 1) thét
must be an element of A, B). Becaus# is a sink inG’, we know that it must either be an endpoint
of T(A,B) or it must be a member @&. If Y is an endpoint, we know by Corollary 23 (Property 3)
thatinH there is ar5-active path from the other endpoint akd Thus by appending this path with
the edgeX — Y (which is out ofX), we have identified aB-active path betweeA andBin H . If
Y isin S, it follows immediately from Corollary 24 that there is &mactive path betweeA andB
in H . Thus we conclude that @’ is returned by the algorithm at Step 4, tHeh< H .

If we get to Step 5, there is at least one childvah G, and we apply a somewhat complicated
rule for choosing garticular child Z on which to concentrate (see Figure 10). We first use the DAG
G to identify the setDe$ of descendants of in G. Then, we turn our attention to DAB and

identify the maximal elemerD of the setDes with respect tdH . From Lemma 29, this maximal

540

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

-
(a) (b)

Figure 10: Selection of node at Step 5: (a) example DAG and (b) corresponding DAGE . All
nodes (includingr) are members dDes.

element is necessarily unique, and becavse a sink node irH , it follows thatD # Y. Thus in
G, D must be a descendant of some maximal chil oand therefore the nodeat Step 5 is well
defined.

For Step 6 of the algorithm, ¥ — Z is covered ifG then by Lemma 2 the DAG’ that results
from reversing the covered edye— Z in G is equivalent td5, and thusz’ <H . If the edgeY — Z
is not covered ir5, then by definition of a covered edge there is either a pare¥tthft is not a
parent ofZ, or there is a parent & that is not a parent of. These two cases are tested in Step 7
and Step 8, respectively.

(@) (b) (©)

Figure 11: Relevant portion of DAGs for the edge addition at Step TG (&) G’ that results from
the edge addition, and (&) .

If (in Step 7)Y has some paretX that is not a parent & in G, then we return the DAG’ that
results from addingK — Z to G (see Figure 11). First we note that because there is a directed path
from X toZin G (X is a parent off andZ is a child ofY), the addition will not create a cycle. To
see thaH remains an independence map, consider $uagtive pathri(A, B) betweenA andB in
G’ that is not active ifc. Recall from Lemma 22 (Property 1) thatA, B) must include the edge
X — Z. It must be the case th¥te S, or else we could replace every occurrence of the edgeZ
in T(A, B) with the pathX — Y — Z to construct ars-active path betweeAandBin G. If Z¢ S, we
conclude from Corollary 23 (Property 4) thatkh there is arS-active path between each endpoint
and eitheiX or Z. Becaus# is a child of bothX andZ in H , we can connect these two active paths
together inH (using eitherX — Y < X or X — Y « Z; from property 4 we know at least one of
the paths ends witK) to construct ars-active path betweeAandBin H. If Z € S, we know from

541

CHICKERING

Corollary 23 (Property 5) that ikl there is an active path between one of the endpoints<aad

an active path between the other endpoint and ekharsome parent af not in S. Without loss of
generality, assume there is &active path betweeA andX in H . If the path fromB ends aiX we
establish ars-active path betweeA andB in H by connecting these paths together with the active
pathX — Y « X that is out ofX. Otherwise, assume that the path fr@wends at nod&V, where

W ¢ Sis a parent oZ in bothG andG’. It must be the case th@l is adjacent t&y in H —and hence
becaus# is a sink, W must be garentof Y in H —by the following argument: ¥V is not adjacent
toY in G, thenY — Z « W is a v-structure not ifd and the adjacency is established from Lemma
28; if W is adjacent tor in G then the adjacency is established from Proposition 27. Bed&use
is a parent ofY in H, we can construct aB-active path betweeA andB by connecting the two
paths fromA andB with the active pattX — Y « W. Thus we conclude that &’ is returned by
the algorithm at Step 7, thés’ <H .

o ® «
2 (=
pec (Y

(@) (b)

X

: A0
D=2) C%/@
(c)

Figure 12: Edge addition at Step 8: (a) example D&G(b) DAG G’ resulting from the edge
addition and (c) corresponding DAG .

Finally, if Step 8 is reached, we know thatmust have some pareMtthat is not a parent of
Y, and we return the DA’ that results from adding the ede— Y to G (see Figure 12). We
now argue that the edge addition cannot form a cycle. If it did, then there must be a directed path
fromY to X in G. Thefirst nodeW in this path—which is a child of —is either equal tX or is
an ancestor oK, which means thatVv is an ancestor of. But this contradicts the fact thdtis a
maximal child ofY that hasD as a descendant.

As above, lef(A, B) be anyS-active path betweeA andB in G’ that is not active ifs. Recall
from Lemma 22 (Property 1) that(A, B) must include the edg€ — Y. We will now demonstrate
that there must be a correspondi®@ctive path betweeA andBin H .

We first consider the case whahe S. BecauseY is a sink inH , we know thatH cannot
include the v-structurX — Z « Y that exists inG (but notG’), and we conclude from Lemma 28
(and the fact thaY is a sink node irH) that the edgé& — Y must exist inH . Thus from Corollary
24 it follows that there is a®-active path betweeA andB in H . For the remainder of the proof,
we consider the case whanZ S.

It must be the case that no member frtﬁmg is in S; otherwise, we could replace each oc-
currence of the edg¥ — Y with an active patiX - Z — ... — S« ... «— Z <Y for any such
descendan®, and thus construct an active pathGrbetweenA andB.

We now show that there must [eactive paths between each endpoint and the mbdbosen
in Step 5 of the algorithm. First, from Lemma 22 (Property 4), there is an active p&hfriom
each endpoint to eithét or Y. Becausé is a descendant & (and hence bot) andY) in G, and

542

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

because neither nor any of the descendants of(including Z itself) are inS, we can append to
each of these active paths a directed patD to constructS-active paths between both endpoints
andD in G. Becausés < H , it follows that there exists correspondifenctive paths irH as well.

Given that there is ag-active path between both endpoints dnih H , if we can identify a
directed path irH from D to either (1) one of the endpoints or (2) an elemenBathen we can
easily identify anS-active path betweeA andB in H: consider the shortest such directed path.
If the path reaches an endpoint, then the directed path constitut8setive path inH between
D and that endpoint that is out &f, which means we can append it to {Beactive path between
the otherendpoint and to create the desired path. If the path reaches an eleG&is, then we
can append to that directed path the same path in the opposite direction to cr&adetae path
betweenD and itself that is out oD on both endpoints (i.eD — ... — S« ... « D), which can
then be used to connect the two active paths between the endpoiridst@acdeate the desired path.

All that remains is to show that there must be a descendabtinfH that is either one of the
endpoints or an element & To do so, we turn our attention back to the active path,B) in
G’. Consider any segment of A, B) that starts with the edg¥ — Y, and then continues in the
direction of the edge until either the path ends or an edge is encountered in the other direction.
Clearly this directed path (which might end immediately aends at either an endpoint (i.& or
B) or a member oS. In either case, the last node is a descendaXtinfG. Becausd is theunique
(Lemma 29) maximal element ﬁfe$ within H, it follows that any such descendantYoin G is a
descendant dD in H. Thus we conclude that there is Sractive path betweeA andB in H, and
that if G’ is returned by the algorithm at Step 8, tHeh< H . O

Finally, we can prove the main result of this paper, which we state again below.

Theorem 4LetG andH be any pair of DAGs such th& < H. Let r be the number of edges in
H that have opposite orientation &, and let m be the number of edgesHnthat do not exist in
either orientation inG. There exists a sequence of at mostaZm edge reversals and additions in
G with the following properties:

1. Each edge reversed is a covered edge
2. After each reversal and additids is a DAG andG < H
3. After all reversals and additiors = H

Proof. Properties 1 through 3 follow immediately from Lemma 30 if we simply apply the edge
operation from AGORITHM FIND-EDGE-OPERATION(G,H) until G = H . We now show that the
algorithm is called at most+2mtimes. If a covered edge is reversedGnby the algorithm, we
know (see Step 6) thatfter the reversal, the edge has the same orientation lds &nd therefore

is reduced by exactly one andremains constant; thus the sumt 2mis reduced by exactly one. If

an edge is added, it follows from Lemma 30 thhtis an independence map of the resulting DAG,
and thus by Proposition 2% is necessarily reduced by one; in this caséther remains constant or

is increased by one, and thus the su#2m s reduced by either two or ongl

Appendix B: Operator Proofs

In this appendix, we provide proofs for the main results in Section 5. We show that the conditions
given in Table 1 are necessary and sufficient folrzsert and Deleteoperator to be valid for the

543

CHICKERING

first and second phase, respectively, of the GES algorithm. An immediate corollary of the proof for
each operator type is the increase in score that results.

The appendix is organized as follows. In Appendix B.1, we provide numerous preliminary
results, the majority of which are proved by Chickering (2002). Then in Appendix B.2 and B.3, we
provide the main results for tHasert andDeleteoperators, respectively.

B.1 Preliminary Results

The main proofs in this appendix rely on many intermediate results, most of which are proven by
Chickering (2002). In this section, we enumerate all of these intermediate results.

The following proposition characterizes the conditions under which a v-structure exists in one
PDAG but not another.

Proposition 31 LetP andP’ denote any pair of PDAGs. Let % Y « Z be any v-structure iR’

that is not inP. Then one of the following conditions must hold: (19?)1?6\'?, (2) z¢ PaE, or (3)
X and Z are adjacent iR .

Proof: Follows immediately from the definition of a v-structuis.

The next several results show how the edge status—either compelled or reversible—of some of
the edges in a PDAG can constrain the status of other edges. An edge is compelled (reversible) in a
PDAG if the corresponding edge is compelled (reversible) in a consistent extension of that PDAG.

Proposition 32 (Chickering, 2002)Let P be any PDAG that admits a consistent extension and
contains a compelled edge-X Y. If there is an edge, either directed or undirected, between Y and
some node Z such that Z and X are not adjacent, then that edge is compelled.

Proposition 33 (Chickering, 2002)Let P be any PDAG that admits a consistent extension such
that there is a directed path from X to Y consisting of compelled edges. If there is an edge between
XandY,itis compelled as % Y.

Lemma 34 (Chickering, 1995)Let {X,Y,Z} be any three nodes that form a clique of size three in
PDAGP. If any two of the edges in the clique are reversible, then the third edge is reversible as
well.

Lemma 35 (Chickering, 2002)For any directed edge X- Y in a completed PDAG, X is a parent
of every node reachable by Y via undirected edges.

Lemma 36 (Chickering, 2002)LetX = {X,...,Xn} be the nodes from any undirected clique of size
n within some undirected component of a completed PBPAGnNd lett denote any total ordering
of the nodes iX. There exists a consistent extensiorPéffor which (1) the edge orientations
among the nodes iK are consistent with, and (2) any edge between ahd a neighbor Y that is
not in X is oriented as X— Y.

The final set of results are properties of semi-directed paths (see Definition 14) from a completed
PDAG.

544

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

Lemma 37 (Chickering, 2002)Let P°¢ be a completed PDAG that contains a semi-directed path
from X to Y. If there exists a directed edgeZW in this path, then there exists a directed path
fromZ toY inP°C.

Corollary 38 (Chickering, 2002) Let P¢ be a completed PDAG. R ¢ contains a semi-directed

path from X to Y consisting of intermediate nodes contained within soni¢, seén theshortest
semi-directed path whose intermediate nodes are containBiccionsists of exactly two consecutive
segments, where the first segment consists entirely of undirected edges and the second segment
consists entirely of directed edges.

Corollary 39 (Chickering, 2002) Let P¢ be a completed PDAG. R° contains a semi-directed
path from X to Y consisting of intermediate nodes contained within sonhg #etn for anyshort-
estsemi-directed path whose intermediate nodes are containddl ithere is no edge i ¢ that
connects a pair of non-consecutive nodes along the path.

Lemma 40 LetP ¢ be a completed PDAG that contains a semi-directed path from X to Y, and let
X —W be the first edge along ashortessuch semi-directed path. If the edge between X and W is
directed as X— W in some consistent extensiGnof P ¢, then there is a directed path from X to'Y
inG.

Proof: Suppose not, and |& < C be the first edge that is directedvayfrom Y along the path.
From Corollary 38, we know that this edge must be reversible, as must be theAeddgg that
precedes it. But from Corollary 3% andC are not adjacent, and thés— B < C is a v-structure,
yielding a contradiction

The conditions from Table 1 include checking that some set of neighbors of a node in a com-
pleted PDAG are a clique. It follows immediately from Lemma 34 that if any set of neighbors is a
cligue, then that set of neighbors is a cliqueuoflirectededges. It is to be understood that in the
sections to follow that when we ustique, we mean a clique of undirected edges.

We say thaly is areversible parentf X in a PDAG or DAG if the edg& — X is reversible.
Similarly, we say thalY is a compelled parenof X if Y — X is compelled. We use analogous
definitions forreversible childandcompelled child

B.2 The Insert Operator

In this section, we show that the conditions in Table 1 are necessary and sufficient for determining
whether arinsertoperator is valid during the first phase of GES. In particular, we show in Theorem
15 that the conditions hold if and only if we can extract a consistent exteftsiofithe completed
PDAG P ¢ to which adding a single directed edge results in a consistent exte@siohthe com-
pleted PDAGP ¢ that results from applying the operator. The “if” part of the proof is constructive;
that is, we identify a specifi& to which we can add the edge. The increase in score that results
from the operator thus follows immediately.

First, we need the following result:

Lemma 41 LetP¢ be any completed PDAG with consistent exten§orLetP ¢ denote the com-
pleted PDAG that results from applying the operator Ing¥rty. T) to P¢, whereT is a clique
consisting of nodes that are neighbors of Y that are not adjacent to XG'Ld#note the graph that
results from adding X- Y toG. ThenG’ has the same adjacencies and the same set of v-structures
asP? if and only if the set of reversible parents of YGrthat are not adjacent to X is equal Ta

545

CHICKERING

Proof: ClearlyG’ andP ¢ have the same adjacencies. Becasss a consistent extension Bf,
any difference in v-structures betwe@handP ¢ must have resulted from the modification to either
the completed PDAG or the DAG. From Proposition 31 and the fact thangest operator does
not undirect or reverse any directed edges, it is easy to see that the set of v-structures that are in
P¢ but not inP¢ are precisely the set of v-structures that ar&itut not inG’. In other words,
the set of v-structures that we lose as a result of performindribert operator toP °© is the same
as the set that we lose as a result of adding> Y to G; these are precisely the ones whose “tails”
are made adjacent as a result of the edge addition. We establish the result by showing that the set
of v-structures that wegain as a result of the two modifications is the same if and only if the set of
reversible parents of in G is equal toT.

BecauseT is a clique inP ¢ (and therefore a clique of undirected edges) we know from Lemma
35 that any parent of a node This a parent okeverynode inT; this implies that any v-structure
that includes a previously undirected edge must have Y as the other edge. It follows that the
set of v-structures that are B¢ but not inP ¢ are those of the forniX — Y « Z, whereZ is either
a member ofT or is a parent ol that is not adjacent tX in P€. It is easy to see that the set of
v-structures i3’ that are not irG are of the formX — Y « Z, whereZ is a parent o¥ in G that
is not adjacent tX.

Consider the set of parents ¥fthat are not adjacent % in G. Clearly this set consists of the
union of (1) compelled parents §fthat are not adjacent 9§ and (2) reversible parents ®fthat
are not adjacent tX. Because this first set is precisely the set of pareni iof P ¢ that are not
adjacent tox, the lemma follows[d

Theorem 15LetP ¢ be any completed PDAG, and R¥ denote the result of applying an Insext Y, T)
operator toP €. There exists a consistent extens{®of P ¢ to which adding the edge X Y results
in a consistent extensida’ of P¢ if and only if inP¢

1. NAyx UT is aclique
2. Every semi-directed path fromY to X contains a nodeAgy x UT

Proof: (If) Given that the first condition implies thatis a clique, it follows from Lemma 41 that
we need only identify a consistent extensiénof P¢ with the following two properties: (*) the
reversible parents of that are not adjacent % are precisely the nodes hand (**) there is no
directed path fronY to X. BecauséNAy x UT is a clique, and becau¥eis a neighbor of all of these
nodes, we conclude th&Ay x UT U{Y} is also a clique. Therefore we conclude from Lemma 36
that there exists a consistent extens®mf P ¢ for which the reversible parents ¥fare precisely
those nodes iNAy x UT. Because all nodes iNAy x are adjacent tX, (*) is satisfied forG. It
remains to be shown that there is no directed path fram X in G. Suppose there does exist such
a path. Clearly any such directed path has a corresponding semi-directed BattBinthe second
condition of the lemma, however, this path must pass through a nddayrx U T, all of which are
parents ol in G, yielding the contradiction thdi is cyclic. Thus we conclude that (**) is satisfied
for G.

(Only if) SupposeNAy x UT is not a clique inP°. Then there are two nodésandB in this set

for which (1)A—Y —Bis in P¢ and (2)A andB are not adjacent. Thus in any consistent extension
G, at least one of the corresponding edges must be directed awayfreleeG would contain a
v-structure not irP €. Without loss of generality, assume the edgje> Ais in G. If A€ NAyx,

546

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

we know that the edge betwe#nand X must be directed towari, elseG would contain the
v-structureX — A « Y that is not inP¢. But this implies that the graph that results from adding
X — Y toG is cyclic. If A€ T, then the result of adding — Y to G cannot include the v-structure
X — Y « A; because this v-structure existsRi¥’ as a result of thénsert operatorG’ cannot be a
consistent extension &,

Suppose that there exists a semi-directed path ¥dmX that does not pass through a node in
NAy x UT, and consider the shortest such path. If the first edge is directed away fawenconclude
from Lemma 37 that there is a directed path frgro X in P € and thus thénsert operator results—
before converting to the resulting completed PDAG representation—in a PDAG that contains a
cycle; this PDAG does not admit a consistent extension. Otherwis¥,-eA be the first edge in
this path. By assumptior is in neitherNAy x nor T, and thus ifG contains the edga — Y, G’
contains the v-structur® — Y «— Athat is not inP¢. If G contains the edg¥ — A, we conclude
by Lemma 40 that there is a directed path frgno X in G and consequentl3’ is cyclic. [

Corollary 16 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator InséK,Y, T) to a completed PDAG € is

s(Y,NAyx UTUPa, ™) —s(Y,NAyx UT UPa,)

Proof: Follows immediately from subtracting the score®ffrom the score ofc’, whereG is
defined in the “if” part of Theorem 15, arfd’ denotes the DAG that results from adding the edge
X—=YtoG.O

B.3 The Delete Operator

In this section, we show that the conditions in Table 1 are necessary and sufficient for determin-
ing whether aDeleteoperator is valid during the second phase of GES. In particular, we show in
Theorem 17 that the conditions hold if and only if we can extract a consistent extéhgbthe
completed PDAGP € to which deleting a single directed edge results in a consistent exte@sion
of the completed PDA® ¢’ that results from applying the operator. The “if” part of the proof is
constructive; that is, we identify a specific from which we can delete the edge. The increase in
score that results from the operator thus follows immediately.

First, we need the following result:

Lemma 42 Let P¢ be any completed PDAG with consistent exten$othat includes the edge
X —Y. LetP® denote the completed PDAG that results from applying the operator DXleteH)

to P¢, whereH consists of nodes that are neighbors of Y that are adjacent to XGLeéénote the
graph that results from deleting % Y fromG. ThenG’ has the same adjacencies and same v-
structures a® ¢ if and only if the set of reversible children of Y Gnthat are children of X is equal
toH.

Proof: ClearlyG’ andP¢ have the same adjacencies. Becdtse a consistent extension Bf,

any difference in v-structures betwe@handP ¢ must have resulted from the modification to either

the completed PDAG or the DAG. From Proposition 31 and the fact that th&ddheteoperator

does not undirect or reverse any directed edges, it is easy to see that the set of v-structures that are
in P€ but not inP ¢’ are precisely the set of v-structures that ar& ibut not inG’. In particular, the

547

CHICKERING

set of v-structures that we lose in bd¥§ or G are simply those v-structures that contain the edge
betweenX andY. We establish the result by showing that the set of v-structures thgaines a
result of the two modifications is the same if and only if the set of reversible childrénm® that

are children oiX is equal toT.

From Proposition 31 and the definition of tBeeleteoperator, we immediately conclude that
the set of v-structure iR ¢ that are not irP ¢ are characterized by those v-structures in one of the
two following forms: (1)X — Z < Y, whereZ is either inH or both edges also exist B° (that is,
the v-structure is formed because the adjacency betWesmdY was removed, and zero or more
of the edges were directed by tBeleteoperator) or (2A — Z «+ B, whereZ € H, and exactly one
of the nodesA or B is eitherX orY.

We now demonstrate that v-structures of form (2) never occur. Without loss of generality, as-
sume thatA is not a member of X,Y}, and thatB = X. By definition of theDeleteoperator, we
know thatA — Z must be directed iR © (only edges incident t¥ or Y are made directed). Because
the v-structure does not exist Rf, and the adjacency betwedrandB did not change as a result
of the Delete we conclude that the edge betwegrand X must be undirected iR¢. But from
Proposition 32, this is impossible, and therefore we concludefthatZ < B must exist inP ©.

Clearly, the set of v-structures gained as a result of deléting Y from G is characterized by
those v-structures of the forid — Z < Y, where eaclZ in this case is simply a common child of
both X andY in G. Thus the lemma follows if we can demonstrate thairthe common children
of X andY are precisely the common compelled childrenXo&ndY unioned with the reversible
children ofY.

Suppose that iffs there exists a chil& of X andY that is not a common compelled child
and for whichY — Z is compelled. Becaus¢ — Z is not compelled, we conclude by Lemma 34
thatX — Y is compelled. But this implies by Proposition 33 thxat—~ Z is compelled, yielding a
contradiction.[

Theorem 17Let P¢ be any completed PDAG that contains eitherXY or X—Y, and letP¢
denote the result of applying the operator Del&tgy,H) to P €. There exists a consistent extension
G of P¢ that contains the edge X> Y from which deleting the edge % Y results in a consistent
extensiorG’ of P if and only ifNAy x \ H is a clique.

Proof: (If) SupposéNAy x \ H is a clique. By definition oNAy x, it follows that{NAy x \H}U{Y}

is also a clique. X —Y exists inP ¢, then{NAy x \ H}U{Y} U{X} is a clique; otherwise, we know
thatX — Y is in P€. In either case, we conclude from Lemma 36 that we can extract a consistent
extensionG from P°—whereG contains the edg& — Y—whose directed edges are consistent
with the following ordering:NAy x \ H, thenX, thenY, then the remaining nodes. ClearlyGnthe
reversible children o¥ that are adjacent t& are precisely the nodes k. Furthermore, because

G contains the edgX — Y, any child ofY that is adjacent tX is also a child ofX. Thus we
conclude from Lemma 42 that the result of deletig- Y from G is a DAGG’ that has the same
adjacencies and v-structuresRfS. Becausés is a DAG,G’ must also be a DAG, and therefore the
lemma follows.

(Only if) Suppose there exists a consistent exten6iaof P ¢ that contains the edgé — Y from
which deleting the edgX — Y results in a consistent extensi@i of P¢. From Lemma 42 we
conclude that the set of reversible childrenYothat are adjacent t& in G is precisely the sefl.
Thus every element iNAy x \ H is aparentof Y in G. Any pair of such parenta andB that were

548

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

not adjacent would constitute the v-structdére~ Y < B, which contradicts the fact that both these
edges are reversiblél

Corollary 18 For any score-equivalent decomposable scoring criterion, the increase in score that
results from applying a valid operator Delgbé Y,H) to a completed PDAG € is

s(Y,{NAvyx \H} UPa,) — (Y, {NAvx \H} UPa)

Proof: Follows immediately from subtracting the score ®ffrom the score ofG’, whereG is
defined in the “if” part of Theorem 17, aré’ denotes the DAG that results from deleting the edge
X =Y fromG. O

Appendix C: Converting to a Completed PDAG

In Section 5, we defined tHasert andDeleteoperators to be local modifications to the completed
PDAG representation of the current state. As described in that section, the result of applying an
operator to a completed PDAG is a PDAG that is not necessarily completed. In this appendix, we
describe a conversion algorithm that converts a PDAG to the completed PDAG representation of the
corresponding equivalence class. Recall that this conversion algorithm—in light of the results of
Section 5—need only be applied once for each state visited by GES; we can evaluate efficiently all
adjacent states in the greedy search without using the conversion.

The conversion algorithm is, in fact, the combination of two algorithms described in much more
detail by Chickering (2002). The first algorithm, which we refer to as PDASGBDAG, takes as
input a PDAG representation for an equivalence class, and outputs a (DAG) member of that class.
The second algorithm, which we refer to as DAG-CPDAG, takes as input a Bayesian-network
structure, and outputs a completed PDAG representation of the equivalence class to which that
structure belongs. Clearly, we can implement the desired conversion by first calling FDAG-
DAG on the PDAG that results from applying an operator, and then calling DAGPDAG on
the consistent extension obtained by the first algorithm.

We first consider a simple implementation of PDAG-DAG due to Dor and Tarsi (1992). Let
Nyx denote the neighbors of nodein a PDAGP . We first create a DAG that contains all of the
directed edges frorR, and no other edges. We then repeat the following procedure: First, select a
nodeX in P such that (1X has no out-going edges and (2N is non-empty, theiNy UPay is a
clique. IfP admits a consistent extension, the n@dguaranteed to exist. Next, for each undirected
edgeY — X incident toX in P, insert a directed edgé— X to G. Finally, removeX and all incident
edges from thé and continue with the next node. The algorithm terminates when all nodes have
been deleted frorR .

The version of DAG¥0o-CPDAG that we provide was originally derived by Chickering (1995),
and is asymptotically optimal on average. The algorithm labels all of the edges in a DAG as either
“compelled” or “reversible”; given such a labeling, it is trivial to construct the corresponding com-
pleted PDAG. The first step of the algorithm is to define a total ordering over the edges in the given
DAG. For simplicity, we present this step as a separate procedure listed in Figure 14. To avoid
confusion between ordered nodes and ordered edges, we have capitalized “node” and “edge” in the
figure. In Figure 13, we show an algorithm of Chickering (1995) that labels the edges. In Figure 14,

549

CHICKERING

Algorithm LABEL-EDGEYG)
Input: DAG G
Output: DAG G with each edge labeled either “compelled” or “reversible”

1. Order the edges i@ usingAlgorithm Order-Edges
2. Label every edge i6 as “unknown”
3. While there are edges labeled “unknown”Gn

4. LetX —Y be the lowest ordered edge that is labeled “unknown”

5. For every edg&V — X labeled “compelled”

6. If W is not a parent of

7 LabelX — Y and every edge incident insowith “compelled”

8. Goto 3

9. Else

10. LabeW — Y with “compelled”

11. If there exists an edgé— Y such thaZ # X andZ is not a parent oK
12. LabelX — Y and all “unknown” edges incident indwith “compelled”
13. Else

14, LabelX — Y and all “unknown” edges incident indd with “reversible”

Figure 13: Algorithm to label each edge in a DAG with “compelled” or “reversible”, which leads
to an immediate implementation of DAGe-CPDAG.

atopological sortrefers to any total ordering of the nodes wher;ifs an ancestor oXj, thenX;
must preced« in the ordering.

Algorithm ORDER-EDGEYG)

Input: DAG G

Output: DAG G with labeled total order on edges

1. Perform a topological sort on the NODESGn

2.Seti=0

3. While there are unordered EDGESGn

4. LetY be the lowest ordered NODE that has an unordered EDGE incident into it
5. LetX be the highest ordered NODE for whigh— Y is not ordered

6. LabelX —Y with orderi

7. i=i+1

Figure 14: Algorithm to produce a total ordering over the edges in a DAG. The algorithm is used
by Algorithm LABEL-EDGES

550

OPTIMAL STRUCTUREIDENTIFICATION WITH GREEDY SEARCH

References

Andersson, S. A., Madigan, D., and Perlman, M. D. (1997). A characterization of Markov equiva-
lence classes for acyclic digraphsnnals of Statistics25:505-541.

Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from taiE
Transactions on Knowledge and Data Engineefi@d.95—-210.

Chickering, D. M. (1995). A transformational characterization of Bayesian network structures. In
Hanks, S. and Besnard, P., editoPspceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence pages 87-98. Morgan Kaufmann.

Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete. In Fisher, D. and Lenz,
H., editors Learning from Data: Artificial Intelligence and Statistics pages 121-130. Springer-
Verlag.

Chickering, D. M. (2002). Learning equivalence classes of Bayesian-network struciotesal
of Machine Learning Research:445-498.

Chickering, D. M. and Meek, C. (2002). Finding optimal Bayesian networks. In Darwiche, A.
and Friedman, N., editor®roceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence pages 94-102. Morgan Kaufmann.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic
networks from dataMachine Learning9:309-347.

Dor, D. and Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a par-
tially oriented graph. Technical Report R-185, Cognitive Systems Laboratory, UCLA Computer
Science Department.

Geiger, D., Heckerman, D., King, H., and Meek, C. (2001). Stratified exponential families: graphi-
cal models and model selectioAnnals of Statistics29(2):505-529.

Gillispie, S. B. and Perlman, M. D. (2001). Enumerating Markov equivalence classes of acyclic
digraph models. In Goldszmidt, M., Breese, J., and Koller, D., edifns;eedings of the Seven-
teenth Conference on Uncertainty in Artificial Intelligenpages 171-177. Morgan Kaufmann.

Haughton, D. M. A. (1988). On the choice of a model to fit data from an exponential famfiky.
Annals of Statistics16(1):342—-355.

Heckerman, D. (1996). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-
06, Microsoft Research.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The combi-
nation of knowledge and statistical datdachine Learning20:197-243.

Jeffreys, H. (1939)Theory of Probability Oxford University Press.

Kocka, T., Bouckaert, R. R., and StugemM. (2001a). On characterizing inclusion of Bayesian
networks. In Breese, J. and Koller, D., editoBspceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligencepages 261-268. Morgan Kaufmann.

551

CHICKERING

Kocka, T., Bouckaert, R. R., and StugerM. (2001b). On the inclusion problem. Technical
Report 2010, Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation.

Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Hanks,
S. and Besnard, P., editoiBroceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence pages 403—-410. Morgan Kaufmann.

Meek, C. (1997)Graphical Models: Selecting causal and statistical mod®eisD thesis, Carnegie
Mellon University.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
Morgan Kaufmann, San Mateo, CA.

Shachter, R. (1998). Bayes-ball: The rational pastime (for determining irrelevance and requisite
information in belief networks and influence diagrams). In Cooper, G. and Moral, S., editors,
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelliggpages 480—

487. Morgan Kaufmann.

Spirtes, P., Glymour, C., and Scheines, R. (1993ausation, Prediction, and Searcltspringer-
Verlag, New York.

Verma, T. and Pearl, J. (1991). Equivalence and synthesis of causal models. In Henrion, M.,
Shachter, R., Kanal, L., and Lemmer, J., editbhmceedings of the Sixth Conference on Uncer-
tainty in Artificial Intelligence pages 220-227.

552

