
Journal of Machine Learning Research 3 (2002) 115-143 Submitted 5/01; Revised 3/02; Published 8/02

Learning Precise Timing with LSTM Recurrent Networks

Felix A. Gers felix@idsia.ch

IDSIA
Galleria 2
6928 Manno, Switzerland
www.idsia.ch

Nicol N. Schraudolph schraudo@inf.ethz.ch

Inst. of Computational Science
ETH Zentrum
8092 Zürich, Switzerland
www.icos.ethz.ch

Jürgen Schmidhuber juergen@idsia.ch

IDSIA
Galleria 2
6928 Manno, Switzerland
www.idsia.ch

Editor: Michael I. Jordan

Abstract

The temporal distance between events conveys information essential for numerous sequen-
tial tasks such as motor control and rhythm detection. While Hidden Markov Models tend
to ignore this information, recurrent neural networks (RNNs) can in principle learn to make
use of it. We focus on Long Short-Term Memory (LSTM) because it has been shown to
outperform other RNNs on tasks involving long time lags. We find that LSTM augmented
by “peephole connections” from its internal cells to its multiplicative gates can learn the
fine distinction between sequences of spikes spaced either 50 or 49 time steps apart without
the help of any short training exemplars. Without external resets or teacher forcing, our
LSTM variant also learns to generate stable streams of precisely timed spikes and other
highly nonlinear periodic patterns. This makes LSTM a promising approach for tasks that
require the accurate measurement or generation of time intervals.
Keywords: Recurrent Neural Networks, Long Short-Term Memory, Timing.

1. Introduction

Humans quickly learn to recognize rhythmic pattern sequences, whose defining aspects are
the temporal intervals between sub-patterns. Conversely, drummers and others are also
able to generate precisely timed rhythmic sequences of motor commands. This motivates
the study of artificial systems that learn to separate or generate patterns that convey infor-
mation through the length of intervals between events.

Widely used approaches to sequence processing, such as Hidden Markov Models (HMMs),
typically discard such information. They are successful in speech recognition precisely be-
cause they do not care for the difference between slow and fast versions of a given spoken

c©2002 Felix A. Gers, Nicol N. Schraudolph and Jürgen Schmidhuber.

Gers, Schraudolph and Schmidhuber

word. Other tasks such as rhythm detection, music processing, and the tasks in this paper,
however, do require exact time measurements. Although an HMM could deal with a finite
set of intervals between given events by devoting a separate internal state for each interval,
this would be cumbersome and inefficient, and would not use the very strength of HMMs
to be invariant to non-linear temporal stretching.

Recurrent neural networks (RNNs) hold more promise for recognizing patterns that are
defined by temporal distance. In fact, while HMMs and traditional discrete symbolic gram-
mar learning devices are limited to discrete state spaces, RNNs are in principle suited for
all sequence learning tasks because they have Turing capabilities (Siegelmann and Sontag,
1991). Typical RNN learning algorithms (Pearlmutter, 1995) perform gradient descent in
a very general space of potentially noise-resistant algorithms using distributed, continuous-
valued internal states to map real-valued input sequences to real-valued output sequences.
Hybrid HMM-RNN approaches (Bengio and Frasconi, 1995) may be able to combine the
virtues of both methodologies, but to our knowledge have never been applied to the problem
of precise event timing as discussed here.

We have previously introduced a novel type of RNN called Long Short-Term Memory
(LSTM—Hochreiter and Schmidhuber, 1997) that works better than traditional RNNs on
tasks involving long time lags. Its architecture permits LSTM to bridge huge time lags be-
tween relevant input events (1000 steps and more), while traditional RNNs with more costly
update algorithms such as BPTT (Williams and Peng, 1990), RTRL (Robinson and Fallside,
1987, Williams and Zipser, 1992), or combinations thereof (Schmidhuber, 1992, Williams
and Zipser, 1992), already fail to learn in the presence of 10-step time lags (Hochreiter,
1991, Bengio et al., 1994, Hochreiter and Schmidhuber, 1997, Gers et al., 2000, Hochreiter
et al., 2001).

For instance, some of our previous tasks required an LSTM network to act upon events
that occurred 50 discrete time steps ago, independently of what happened over the inter-
vening 49 steps. Right before the critical moment, however, there was a helpful “marker”
input informing the network that its next action would be crucial. Thus the network did
not have to learn to measure a time interval of 50 steps; it just had to learn to store relevant
information for 50 steps, and use it once the marker was observed.

But what if there are no such markers at all? What if the network itself has to learn
to measure and internally represent the duration of task-specific intervals, or to generate
sequences of patterns separated by exact intervals? Here we will study to what extent
this is possible. The highly nonlinear tasks in the present paper do not involve any time
marker inputs; instead they require the network to time precisely and robustly across long
time lags in continual input streams. Clearly, such tasks cannot generally be solved by
common time-window based approaches, because their generalization ability is limited by
the time window size. Unfortunately, this means that we cannot use standard benchmarks
for measuring and timing because there aren’t any—to our knowledge no other network has
yet learned to generalize from time lags of size 15 to time lags of size 45, etc. Hence we are
forced to create a new set of comparative tasks.

Outline. Section 2 gives an overview of “traditional” LSTM, as used in our previous
publications. Section 3 identifies a weakness in its connection scheme, introduces “peephole
connections” as a remedy, and describes the modifications to the LSTM learning algorithm
they necessitate. Section 4 compares the performance of peephole LSTM to traditional

116

Learning Precise Timing with LSTM Recurrent Networks

∗

∗

∗

cw

g

state
cell

cell output

zwin

zoutw

yg
and forgetting

input squashing

output gating

input gating

CECϕw
y

ϕ

forget gate

memorizing

cell input

z

z

out

in

c

y

ϕ

out

c

in

output gate

yin

input gate

yout

y

c

s

s

c

Figure 1: LSTM memory block with one cell (rectangle). The so-called CEC maintains the
cell state sc, which may be reset by the forget gate. Input and output gate control
read and write access to the CEC; g squashes the cell input. See text for details.

LSTM on timings tasks of the kind described above, and Section 5 provides some further
discussion of our approach.

2. Traditional LSTM

We are building on LSTM with forget gates (Gers et al., 2000), simply called “LSTM” in
what follows. The basic unit of an LSTM network is the memory block containing one or
more memory cells and three adaptive, multiplicative gating units shared by all cells in the
block (Figure 1). Each memory cell has at its core a recurrently self-connected linear unit
we call the “Constant Error Carousel” (CEC). By recirculating activation and error signals
indefinitely, the CEC provides short-term memory storage for extended time periods. The
input, forget, and output gate can be trained to learn, respectively, what information to
store in the memory, how long to store it, and when to read it out. Combining memory
cells into blocks allows them to share the same gates (provided the task permits this), thus
reducing the number of adaptive parameters.

Throughout this paper j indexes memory blocks; v indexes memory cells in block j (with
Sj cells), such that cvj denotes the v-th cell of the j-th memory block; wlm is the weight on
the connection from unit m to unit l. Index m ranges over all source units, as specified by
the network topology; if a source unit activation ym(t−1) refers to an input unit, current
external input ym(t) is used instead. The output yc of memory cell c is calculated based on
the current cell state sc and four sources of input: zc is the input to the cell itself, while zin,
zϕ and zout feed into the input, forget, and output gate, respectively. LSTM operates in

117

Gers, Schraudolph and Schmidhuber

discrete time steps t = 0, 1, 2, . . ., each involving the update of all units’ activation (forward
pass) followed by the computation of error signals for all weights (backward pass).

2.1 Forward Pass

Input. During each forward pass we first calculate the net cell input

zcv
j
(t) =

∑
m

wcv
j m ym(t−1) , (1)

then apply the (optional) input squashing function g to it. The result is multiplied by
the activation of the memory block’s input gate, calculated by applying a logistic sigmoid
squashing function fin with range [0, 1] to the gate’s net input zin:

yinj (t) = finj (zinj (t)) , zinj (t) =
∑
m

winjm ym(t−1) . (2)

The activation yin of the input gate multiplies the input to all cells in the memory block,
and thus determines which activity patterns are stored (added) into it. During training,
the input gate learns to open (yin ≈ 1) so as to store relevant inputs in the memory block,
respectively close (yin ≈ 0) so as to shield it from irrelevant ones.

Cell State. At t = 0, the activation (or state) sc of a memory cell c is initialized to zero;
subsequently the CEC accumulates a sum, discounted by the forget gate, over its input.
Specifically, we first calculate the memory block’s forget gate activation

yϕj (t) = fϕj (zϕj (t)) , zϕj (t) =
∑
m

wϕjm ym(t−1) , (3)

where fϕ is a logistic sigmoid function with range [0, 1]. The new cell state is then obtained
by adding the squashed, gated cell input to the previous state multiplied by the forget gate
activation:

scv
j
(t) = yϕj (t) scv

j
(t−1) + yinj (t) g(zcv

j
(t)) , scv

j
(0) = 0 . (4)

Thus activity circulates in the CEC as long as the forget gate remains open (yϕ ≈ 1). Just
as the input gate learns what to store in the memory block, the forget gate learns for how
long to retain the information, and—once it is outdated—to erase it by resetting the cell
state to zero. This prevents the cell state from growing to infinity, and enables the memory
block to store fresh data without undue interference from prior operations (Gers et al.,
2000).

Output. The cell output yc is calculated by multiplying the cell state sc by the activation
yout of the memory block’s output gate:

ycv
j
(t) = youtj (t) scv

j
(t) . (5)

Here we introduce a minor simplification unrelated to the central idea of this paper. Tra-
ditional LSTM memory cells incorporate an input squashing function g and an output

118

Learning Precise Timing with LSTM Recurrent Networks

squashing function (called h in earlier LSTM publications); we remove the latter from
equation 5 for lack of empirical evidence that it is needed.

By multiplying the output from the CEC, the output gate controls read access to the
memory block. Its activation is calculated by applying a logistic sigmoid squashing function
fout with range [0, 1] to its net input:

youtj (t) = foutj (zoutj (t)) , zoutj (t) =
∑
m

woutjm ym(t−1) . (6)

Finally, assuming a layered network topology with a standard input layer, a hidden layer
consisting of memory blocks, and a standard output layer, the activation of the output units
k is calculated as:

yk(t) = fk(zk(t)) , zk(t) =
∑
m

wkm ym(t) , (7)

where m ranges over all units feeding the output units, and fk is the output squashing
function. This concludes the forward pass of a traditional LSTM network.

2.2 Gradient-Based Backward Pass

LSTM’s backward pass is an efficient fusion of error back-propagation (BP) for output
units and output gates, and a customized, truncated version of real-time recurrent learning
(RTRL—e.g., Robinson and Fallside, 1987, Williams and Zipser, 1992) for weights to cell
input, input gates, and forget gates. Here we present the equations necessary to implement
the LSTM backward pass; see Gers et al. (2000) for a full derivation of the algorithm.

Output units and gates. Following previous notation (Gers et al., 2000), we minimize
the objective function E by gradient descent (subject to error truncation), changing the
weights wlm (from unit m to unit l) by an amount ∆wlm given by the learning rate α times
the negative gradient of E. For the output units we obtain the standard back-propagation
weight changes:

∆wkm(t) = α δk(t) ym(t−1) , δk(t) = − ∂E(t)
∂zk(t)

. (8)

Here we use the customary squared error objective function based on targets tk, yielding:

δk(t) = f ′k(zk(t)) ek(t) , (9)

where ek(t) := tk(t)− yk(t) is the externally injected error. The weight changes for connec-
tions to the output gate (of the j-th memory block) from source units m (as specified by
the network topology) are also obtained by standard back-propagation:

∆woutjm(t) = α δoutj (t) ym(t) , (10)

δoutj (t) tr= f ′outj (zoutj (t))

 Sj∑

v=1

scv
j
(t)
∑

k

wkcv
j
δk(t)

 , (11)

where the tr= sign indicates error truncation (see below).

119

Gers, Schraudolph and Schmidhuber

Error flow and truncation. An error signal arriving at a memory cell output is scaled by
the output gate before it enters the memory cell’s CEC, where it can flow back indefinitely
without ever being changed as long as the forget gate’s activation remains near 1.0 (which
is why LSTM can bridge arbitrary time lags between input events and target signals).
When the error escapes from the memory cell through an open input gate and the input
nonlinearity g, it gets scaled once more and then serves to change incoming weights before
being truncated. Truncation means that errors arriving at net inputs of memory blocks and
their gates do not get propagated back further in time (though they do serve to change the
incoming weights); it makes the LSTM learning algorithm very efficient.

In conventional RNN architectures, truncating errors in this fashion would preclude the
network from learning problems with time lags exceeding the truncation horizon. LSTM, by
contrast, has an alternative (arguably better) mechanism for bridging long time lags—the
CEC—and consequently is not so much affected by error truncation. In previous experi-
ments Hochreiter and Schmidhuber (1997) found that error truncation did not significantly
worsen the LSTM network’s performance.

Truncated RTRL partials. RTRL requires the forward propagation in time of certain
partial derivatives. During each step, no matter whether a target is given or not, we
therefore need to update the partials ∂scv

j
/∂wlm for weights to the cell (l = cvj), to the

input gate (l = in), and to the forget gate (l = ϕ):

∂scv
j
(t)

∂wcv
j m

tr=
∂scv

j
(t−1)

∂wcv
j m

yϕj (t) + g′(zcv
j
(t)) yinj (t) ym(t−1) , (12)

∂scv
j
(t)

∂winjm

tr=
∂scv

j
(t−1)

∂winjm
yϕj (t) + g(zcv

j
(t)) f ′inj

(zinj (t)) ym(t−1) , (13)

∂scv
j
(t)

∂wϕjm

tr=
∂scv

j
(t−1)

∂wϕjm
yϕj (t) + scv

j
(t−1) f ′ϕj

(zϕj (t)) ym(t−1) . (14)

Initially these partials are set to zero: ∂scv
j
(0)/∂wlm = 0 for l ∈ {in, ϕ, cvj }.

RTRL weight changes. To calculate weight changes ∆wlm for connections to the cell
(l = cvj), the input gate (l = in), and the forget gate (l = ϕ) we use the partials from
Equations 12, 13, and 14:

∆wcv
j m(t) = α escv

j
(t)
∂scv

j
(t)

∂wcv
j m
, (15)

∆winjm(t) = α

Sj∑
v=1

escv
j
(t)
∂scv

j
(t)

∂winjm
, (16)

∆wϕjm(t) = α

Sj∑
v=1

escv
j
(t)
∂scv

j
(t)

∂wϕjm
, (17)

where the internal state error escv
j

is separately calculated for each memory cell:

escv
j
(t) tr= youtj (t)

(∑
k

wkcv
j
δk(t)

)
. (18)

120

Learning Precise Timing with LSTM Recurrent Networks

∗

∗

cw

g

state
cell

cell output

win

outw

yg
and forgetting

peephole connections

input squashing

output gating

input gating

CECϕw
y

ϕ

forget gate

memorizing

cell input

peephole connection

out

in

c

z

z

z

z

outy

output gate

yin

input gate

ϕ

in

y
y
out

c

cs

sc

Figure 2: LSTM memory block with peephole connections from the CEC to the gates.

3. Extending LSTM with Peephole Connections

A Limitation of traditional LSTM. In traditional LSTM each gate receives connections
from the input units and the outputs of all cells, but there is no direct connection from the
CEC it is supposed to control (Figure 1). All it can observe directly is the cell output,
which is close to zero as long as the output gate is closed. The same problem occurs for
multiple cells in a memory block: when the output gate is closed none of the gates has
access to the CECs they control. The resulting lack of essential information may harm
network performance, especially in the tasks we are studying here.

Peephole connections. Our simple but effective remedy is to add weighted “peephole”
connections from the CEC to the gates of the same memory block (Figure 2). The peephole
connections allow all gates to inspect the current cell state even when the output gate is
closed. This information can be essential for finding well-working network solutions, as we
will see in the experiments below.

During learning no error signals are propagated back from gates via peephole connections
to the CEC (see backward pass, Section 3.2). Peephole connections are treated like regular
connections to gates (e.g., from the input) except for update timing. For conventional LSTM
the only source of recurrent connections is the cell output yc, so the order of updates within
a layer is arbitrary. Peephole connections from within the cell, or recurrent connections
from gates, however, require a refinement of LSTM’s update scheme.

Update order for peephole LSTM. Each memory cell component should be updated
based on the most recent activations of connected sources.

121

Gers, Schraudolph and Schmidhuber

In the simplest case this requires a two-phase update scheme; when recurrent connections
from gates are present, the first phase must be further subdivided into three steps (a,b,c):

1. (a) Input gate activation yin,

(b) forget gate activation yϕ,

(c) cell input and cell state sc,

2. output gate activation yout and cell output yc.

Thus the output gate is updated only after the cell state sc, so that it sees via its peephole
connection the current value of sc(t), already affected by input and forget gate.

Below we present the modifications and additions to the LSTM forward and backward
pass, respectively, due to the presence of peephole connections. Appendix A gives the entire
learning algorithm for peephole LSTM in pseudo-code.

3.1 Modified Forward Pass for Peephole LSTM

Steps 1a, 1b. The input and forget gate activation are computed as:

yinj (t) = finj (zinj (t)) , zinj (t) =
∑
m

winjm ym(t−1) +
Sj∑

v=1

winjcv
j
scv

j
(t−1) ; (19)

yϕj (t) = fϕj (zϕj (t)) , zϕj (t) =
∑
m

wϕjm ym(t−1) +
Sj∑

v=1

wϕjcv
j
scv

j
(t−1) . (20)

The peephole connections for input and forget gate are incorporated in Equations 19 and
20 by including the CECs of memory block j as source units. These equations replace
Equations 2 and 3 of traditional LSTM.

Step 1c. The cell input and cell state sc are calculated as before via Equations 1 and 4.

Step 2. The output gate activation yout with peephole connections is computed as:

youtj (t) = foutj (zoutj (t)) , zoutj (t) =
∑
m

woutjm ym(t−1) +
Sj∑

v=1

woutjcv
j
scv

j
(t) . (21)

Equation 21 replaces Equation 6 of traditional LSTM. The output of the memory cell, and of
the entire LSTM network, are then calculated as before via Equations 5 and 7, respectively.

3.2 Update Rules for Peephole Connections

The revised update scheme for memory blocks allows for treating peephole connections like
regular connections, so the equations given for traditional LSTM in Section 2.2 need only
be supplemented with corresponding update rules for the partial derivatives and weights
associated with peephole connections. Analogous to Equations 13 and 14, we now also

122

Learning Precise Timing with LSTM Recurrent Networks

maintain partial derivatives for the peephole connections to input gate and forget gate:

∂scv
j
(t)

∂winjcv′
j

tr=
∂scv

j
(t−1)

∂winjcv′
j

yϕj (t) + g(zcv
j
(t)) f ′inj

(zinj (t)) s
cv′
j

(t−1) , (22)

∂scv
j
(t)

∂w
ϕjcv′

j

tr=
∂scv

j
(t−1)

∂w
ϕjcv′

j

yϕj (t) + scv
j
(t−1) f ′ϕj

(zϕj (t)) s
cv′
j

(t−1) , (23)

with ∂scv
j
(0)/∂winjcv′

j
= ∂scv

j
(0)/∂wϕjcv′

j
= 0. The changes to the peephole connection

weights are calculated the same way as in Equations 10, 16, and 17:

∆woutjcv
j
(t) = α δoutj (t) scv

j
(t) , (24)

∆winjcv′
j

(t) = α

Sj∑
v=1

escv
j
(t)
∂scv

j
(t)

∂w
injcv′

j

, (25)

∆w
ϕjcv′

j
(t) = α

Sj∑
v=1

escv
j
(t)
∂scv

j
(t)

∂wϕjcv′
j

. (26)

The storage complexity of the backward pass does not depend on the length of the input
sequence. Like standard LSTM, but unlike BPTT and RTRL, LSTM with forget gates and
peephole connections is local in space and time. The increase in complexity due to peephole
connections is small: 3 weights per cell.

4. Experiments

We study LSTM’s performance on three tasks that require the precise measurement or
generation of delays, and are unsolvable by traditional RNNs. We compare traditional to
peephole LSTM, analyze the solutions, or explain why none was found.

Measuring spike delays (MSD). See Section 4.2. The goal is to classify input sequences
consisting of sharp spikes. The class depends on the interval between spikes. We consider
two versions of the task: continual (MSD) and non-continual (NMSD). NMSD sequences
stop after the second spike, whereas MSD sequences are continual spike trains. Both NMSD
and MSD require the network to measure intervals between spikes; MSD also requires the
production of stable results in presence of continually streaming inputs, without any external
reset of the network’s state. Can LSTM learn the difference between almost identical pattern
sequences that differ only by a small lengthening of the interval (e.g., from n to n+1 steps)
between input spikes? How does the difficulty of this problem depend on n?

Generating timed spikes (GTS). See Section 4.3. The GTS task can be obtained from
the MSD task by exchanging inputs and targets. It requires the production of continual
spike trains, where the interval between spikes must reflect the magnitude of an input signal
that may change after every spike. GTS is a special case of periodic function generation
(PFG, see below). In contrast to previously studied PFG tasks (Williams and Zipser, 1989,
Doya and Yoshizawa, 1989, Tsung and Cottrell, 1995), GTS is highly nonlinear and involves
long time lags between significant output changes, which we cannot expect to be learned by

123

Gers, Schraudolph and Schmidhuber

Out

Forget Gate

Cell

one

with

Block

Memory

Input Gate

In

Output Gate

Figure 3: Three-layer LSTM topology with one input and one output unit. Recurrence is
limited to the hidden layer, which consists of a single LSTM memory block with
a single cell. All 9 “unit-to-unit” connections are shown, but bias and peephole
connections are not.

conventional RNNs. In contrast to previous work, which did not focus on stability issues,
here we demand that the generation be stable for 1000 successive spikes. We systematically
investigate the effect of minimal time lag on task difficulty.

Additional periodic function generation tasks (PFG). See Section 4.4. We study
the problem of generating periodic functions other than the spike trains above. The classic
examples are smoothly oscillating outputs such as sine waves, which are learnable by fully
connected teacher-forced RNNs whose units are all output units with teacher-defined ac-
tivations (Williams and Zipser, 1989). An alternative approach trains an RNN to predict
the next input; after training outputs are fed back directly to the input so as to generate
the waveform (Doya and Yoshizawa, 1989, Tsung and Cottrell, 1995, Weiss, 1999, Townley
et al., 1999). Here we focus on more difficult, highly nonlinear, triangular and rectangular
waveforms, the latter featuring long time lags between significant output changes (Hochre-
iter, 1991, Bengio et al., 1994, Hochreiter et al., 2001). Again we demand that the generation
be stable for 1000 successive periods of the waveform.

4.1 Network Topology and Experimental Parameters

We found that comparatively small LSTM nets can already solve the tasks above. A single
input unit (used only for tasks where there is input) is fully connected to the hidden layer
consisting of a single memory block with one cell. The cell output is connected to the cell
input, to all three gates, and to a single output unit (Figure 3). All gates, the cell itself,
and the output unit are connected to a bias unit (a unit with constant activation one) as

124

Learning Precise Timing with LSTM Recurrent Networks

well. The bias weights to input gate, forget gate, and output gate are initialized to 0.0, −2.0
and +2.0, respectively. (Although not critical, these values have been found empirically to
work well; we use them for all our experiments.) All other weights are initialized to uniform
random values in the range [−0.1, 0.1]. In addition to the three peephole connections there
are 14 adjustable weights: 9 “unit-to-unit” connections and 5 bias connections. The cell’s
input squashing function g is the identity function. The squashing function of the output
unit is a logistic sigmoid with range [0, 1] for MSD and GTS (except where explicitly stated
otherwise), and the identity function for PFG. (A sigmoid function would work as well, but
we focus on the simplest system that can solve the task.)

Our networks process continual streams of inputs and targets; only at the beginning of
a stream are they reset. They must learn to always predict the target tk(t), producing a
stream of output values (predictions) yk(t). A prediction is considered correct if the absolute
output error |ek(t)| = |tk(t)−yk(t)| is below 0.49 for binary targets (MSD, NMSD and GTS
tasks), below 0.3 otherwise (PFG tasks). Streams are stopped as soon as the network makes
an incorrect prediction, or after a given maximal number of successive periods (spikes): 100
during training, 1000 during testing.

Learning and testing alternate: after each training stream, we freeze the weights and
generate a test stream. Training and test stream are generated stochastically in the same
manner. Our performance measure is the achieved test stream size: 1000 successive periods
are deemed a “perfect” solution. Training is stopped once a task is learned or after a
maximal number of 107 training streams (108 for the MSD and NMSD tasks). Weight
changes are made after each target presentation. The learning rate α is set to 10−5; we
use the momentum algorithm (Plaut et al., 1986) with momentum parameter 0.999 for the
GTS task, 0.99 for the PFG and NMSD task, and 0.9999 for the MSD task. We roughly
optimized the momentum parameter by trying out different orders of magnitude.

For tasks GTS and MSD, the stochastic input streams are generated online. A perfect
solution correctly processes 10 test streams, to make sure the network provides stable per-
formance independent of the stream beginning, which we found to be critical. All results
are averages over 10 independently trained networks.

4.2 Measuring Spike Delays (MSD)

The network input is a spike train, represented by a series of ones and zeros, where each
“one” indicates a spike. Spikes occur at times T (n) set F +I(n) steps apart, where F is the
minimum interval between spikes, and I(n) is an integer offset from a fixed set, randomly
reset for each spike:

T (0) = F + I(0) , T (n) = T (n−1) + F + I(n) (n ∈ N) .

The target given at times t = T (n) is the delay I(n). (Learning to measure the total interval
F + I(n)—that is, adding the constant F to the output—is no harder.) A perfect solution
correctly processes all possible input test streams. For the non-continual version of the task
(NMSD) a stream consists of a single period (spike).

MSD Results. Table 1 reports results for NMSD with I(n) ∈ {0, 1} for various minimum
spike intervals F . The results suggest that the difficulty of the task (measured as the average
number of training streams necessary to solve it) increases drastically with F (see Figure

125

Gers, Schraudolph and Schmidhuber

LSTM Peephole LSTM
T F I(n) ∈ % Sol. Train. [103] % Sol. Train. [103]

10 {0, 1} 100 160 ± 14 100 125 ± 14
20 {0, 1} 100 732 ± 97 100 763 ± 103

NMSD 30 {0, 1} 100 17521 ± 2200 80 12885 ± 2091
40 {0, 1} 20 37533 ± 4558 70 25686 ± 2754
50 {0, 1} 0 — 10 32485
10 {0, 1} 10 8850 20 27453 ± 11750

MSD 10 {0, 1, 2} 20 29257 ± 13758 60 9791 ± 2660

Table 1: Results comparing traditional and peephole LSTM on the NMSD and MSD tasks.
Columns show the task T, the minimum spike interval F , the set of delays I(n),
the percentage of perfect solutions found, and the mean and standard derivation
of the number of training streams required.

0

10

20

30

40

0 10 20 30 40 50

T
ra

in
in

g
S

tr
ea

m
s

[1
06]

Time Delay F

LSTM

Peephole LSTM

Figure 4: Average number of training streams required for the NMSD task with I(n) ∈
{0, 1}, plotted against the minimum spike interval F .

4). A qualitative explanation is that longer intervals necessitate finer tuning of the weights,
which requires more training. Peephole LSTM outperforms LSTM for some sets, though
peephole connections are not mandatory for the task. They correlate the opening of the
output gate to high cell states. Otherwise the output gate has to learn to be open all the
time, using its bias input, which may take longer, because the cells states might have higher
activation values than the bias (activation one). The continual MSD task for F = 10 with
I(n) ∈ {0, 1} or I(n) ∈ {0, 1, 2}, is solved with or without peephole connections (Table 1).

126

Learning Precise Timing with LSTM Recurrent Networks

LSTM Peephole LSTM
I(n) ∈ % Training % Training

Sol. Str. [103] Sol. Str. [103]
{0, 1} 100 48 ± 12 100 46 ± 14
{0, 1, 2} 100 25 ± 4 100 10.3 ± 3.3
{0,.., 3} 100 12.3 ± 2.4 100 7.4 ± 2.2
{0,.., 4} 100 8.5 ± 1.3 100 3.6 ± 0.4
{0,.., 5} 100 4.5 ± 0.4 100 6.0 ± 1.4
{0,.., 6} 100 6.1 ± 1.0 100 7.1 ± 2.8
{0,.., 7} 100 8.5 ± 2.9 70 15 ± 6.5
{0,.., 8} 100 14.1 ± 4.2 50 22 ± 9
{0,.., 9} 90 39 ± 28 50 33 ± 17
{0,.., 10} 60 23 ± 5 20 395 ± 167
{0, 2} 100 33 ± 8 100 18 ± 5
{0, 3} 100 12.5 ± 4.2 100 23 ± 6
{0, 4} 100 12.1 ± 2.8 100 13.7 ± 2.7
{0, 5} 100 8.5 ± 2.3 100 10.4 ± 2.0
{0, 6} 100 7.7 ± 1.5 100 12.7 ± 3.1
{0, 7} 100 7.7 ± 1.5 100 14.5 ± 6.0
{0, 8} 100 7.5 ± 2.0 100 6.3 ± 1.3
{0, 9} 100 5.8 ± 1.6 100 7.5 ± 1.6
{0, 10} 100 5.6 ± 0.9 100 6.7 ± 1.7

Table 2: The percentage of perfect solutions found, and the mean and standard derivation
of the number of training streams required, for conventional versus peephole LSTM
on the NMSD task with F =10 and various choices for the set of delays I(n).

In the next experiment we evaluate the influence of the range of I(n), using the identity
function instead of the logistic sigmoid as output squashing function. We let I(n) range
over {0, i} or {0,.., i} for all i ∈ {1,.., 10}. Results are reported in Table 2 for NMSD with
F = 10. The training duration depends on the size of the set from which I(n) is drawn,
and on the maximum distance (MD) between elements in the set. A larger MD leads to
a better separation of patterns, thus facilitating recognition. To confirm this, we ran the
NMSD task with F = 10 and I(n) ∈ {0, i} with i ∈ {2,.., 10} (size 2, MD i), as shown in
the bottom half of Table 2. As expected, training time decreases with increasing MD. A
larger set of possible delays should make the task harder. Surprisingly, for I(n) ∈ {0,.., i}
(size i+1, MD i) with i ranging from 1 to 5 the task appears to become easier (due to the
simultaneous increase of MD) before the difficulty increases rapidly for larger i. Thus the
task’s difficulty does not grow linearly with the number of possible delays, corresponding
to values (states) inside a cell the network must learn to distinguish.

We also observe that the results for I(n) ∈ {0, 1} are better than those obtained with
a sigmoid function (compare with Table 1). Fluctuations in the stochastic input can cause

127

Gers, Schraudolph and Schmidhuber

temporary saturation of sigmoid units; the resulting tiny derivatives for the backward pass
will slow down learning (LeCun et al., 1998).

MSD Analysis. LSTM learned to measure time in two ways. The first is to slightly
increase the cell state sc at each time step, so that the elapsed time can be told by the
value of sc. This kind of solution is shown on the left-hand side of Figure 5. (The state
reset performed by the forget gate is essential only for continual online prediction over many
periods.) The second way is to establish internal oscillators and derive the elapsed time
from their phases (right-hand side of Figure 5). Both kinds of solutions can be learned with
or without peephole connections, as it is never necessary here to close the output gate for
more than one time step (see bottom row of Figure 5).

Why may the output gate be left open? Targets occur rarely, hence the network output
can be ignored most of the time. Since there is only one memory block, mutual perturbation
of blocks is not possible. This type of reasoning is invalid though for more complex measur-
ing tasks involving larger nets or more frequent targets. In that case it becomes mandatory
to realize a solution where the output gate only opens when a target is requested, which
cannot be done without peephole connections. Figure 6 compares the behavior of LSTM,
where the output gate is open over long periods, to peephole LSTM, where the output gate
opens only when a target is provided. In some cases the “cleaner” solutions with peep-
hole connections took longer to be learned (see Tables 1 and 2), because they require more
complex behavior. Overall there is no clear statistical advantage either for or against using
peephole connections on the MSD task.

4.3 Generating Timed Spikes (GTS).

The GTS task reverses the roles of inputs and targets of the MSD task: the spike train
T (n), defined as for the MSD task, now is the network’s target, while the delay I(n) is
provided as input.

GTS Results. The GTS task could not be learned by networks without peephole con-
nections; thus we report results with peephole LSTM only. Results with various minimum
spike intervals F (Figure 7) suggest that the required training time increases dramatically
with F , as with the NMSD task (Section 4.2). The network output during a successful test
run for the GTS task with F =10 is shown on the top left of Figure 8. Peephole LSTM also
solves the task for F =10 and I(n) ∈ {0, 1} or {0, 1, 2}, as shown in Figure 7 (left).

GTS Analysis. Figure 8 shows test runs with trained networks for the GTS task. The
output gates open only at the onset of a spike and close again immediately afterwards.
Hence, during a spike, the output of the cell equals its state (middle row of Figure 8).
The opening of the output gate is triggered by the cell state sc: it starts to open once the
input from the peephole connection outweighs a negative bias. The opening self-reinforces
via a connection from the cell output, which produces the high nonlinearity necessary for
generating the spike. This process is terminated by the closing of the forget gate, triggered
by the cell output spike. Simultaneously the input gate closes, so that sc is reset.

In the particular solution shown on the right-hand side of Figure 8 for F =50, the role of
the forget gate in this process is taken over by a negative self-recurrent connection of the cell
in conjunction with a simultaneous opening of the other two gates. We tentatively removed

128

Learning Precise Timing with LSTM Recurrent Networks

0

0.5

1

in
tk

yk

0

0.5

1

0

1

sc
yc 0

10

20

0

1

0 10 20 30

Time

yin

yout
yϕ

0

1

0 10 20 30

Time

Figure 5: Two ways to time. Test run with trained LSTM networks for the MSD task
with F = 10 and I(n) ∈ {0, 1}. Top: target values tk and network output yk;
middle: cell state sc and cell output yc; bottom: activation of the input gate yin,
forget gate yϕ, and output gate yout.

the forget gate (by pinning its activation to 1.0) without changing the weights learned with
the forget gate’s help. The network then quickly learned a perfect solution. Learning from
scratch without forget gate, however, never yields a solution! The forget gate is essential
during the learning phase, where it prevents the accumulation of irrelevant errors.

The exact timing of a spike is determined by the growth of sc, which is tuned through
connections to input gate, forget gate, and the cell itself. To solve GTS for I(n) ∈ {0, 1}

129

Gers, Schraudolph and Schmidhuber

0

1

2

3

in
tk

yk

0
1
2

in
tk

yk

0

4

sc

yc

-2

0
sc

yc

0

1

0 10 20 30

Time

yin

yout
yϕ

0

1

40 50 60 70

Time

yin

yout
yϕ

Figure 6: Behavior of peephole LSTM (left) versus LSTM (right) for the MSD task with
F =10 and I(n) ∈ {0, 1, 2}. Top: target values tk and network output yk; middle:
cell state sc and cell output yc; bottom: activation of the input gate yin, forget
gate yϕ, and output gate yout.

or I(n) ∈ {0, 1, 2}, the network essentially translates the input into a scaling factor for the
growth of sc (Figure 9).

4.4 Periodic Function Generation (PFG)

We now train LSTM to generate real-valued periodic functions, as opposed to the spike
trains of the GTS task. At each discrete time step we provide a real-valued target, sampled
with frequency F from a target function f(t). No input is given to the network.

130

Learning Precise Timing with LSTM Recurrent Networks

Peephole LSTM
F I(n) ∈ % Sol. Train. [103]
10 {0} 100 41 ± 4
20 {0} 100 67 ± 8
30 {0} 80 845 ± 82
40 {0} 100 1152 ± 101
50 {0} 100 2538 ± 343
10 {0, 1} 50 1647 ± 46
10 {0, 1, 2} 30 954 ± 393

0

1

2

3

0 10 20 30 40 50

T
ra

in
in

g
S

tr
ea

m
s

[1
06]

Time Delay F

Figure 7: Results for the GTS task. Table (left) shows the minimum spike interval F , set
of delays I(n), percentage of perfect solutions found, and mean and standard
derivation of the number of training streams required. Graph (right) plots the
number of training streams against the minimum spike interval F , for I(n) ∈ {0}.

The task’s degree of difficulty is influenced by the shape of f and the sampling frequency
F . The former can be partially characterized by the absolute maximal values of its first
and second derivatives, max |f ′| and max |f ′′|. Since we work in discrete time, and with
non-differentiable step functions, we define:

f ′(t) := f(t+1) − f(t) , max |f ′| ≡ max
t

|f ′(t)| , max |f ′′| ≡ max
t

|f ′(t+1) − f(t)′| .

Generally speaking, the larger these values, the harder the task. F determines the number
of distinguishable internal states required to represent the periodic function in internal state
space. The larger F , the harder the task. We generate sine waves fcos, triangular functions
ftri, and rectangular functions frect, all ranging between 0.0 and 1.0, each sampled with two
frequencies, F =10 and F =25:

fcos(t) ≡ 1
2

(
1 − cos

(
2π t
F

))
⇒ max |f ′cos| = max |f ′′cos| = π/F,

ftri(t) ≡
{

2 (t mod F)
F if (t mod F) > F

2

2 − 2 (t mod F)
F otherwise

⇒ max |f ′tri| = 2/F, max |f ′′tri| = 4/F,

frect(t) ≡
{

1 if (t mod T) > F
2

0 otherwise
⇒ max |f ′rect| = max |f ′′rect| = 1 .

PFG Results. Our experimental results for the PFG task are summarized in Table 3.
Peephole LSTM found perfect, stable solutions for all target functions (Figure 10). LSTM
without peephole connections could solve only fcos with F = 10, requiring many more
training streams. Without forget gates, LSTM never learned to predict the waveform for
more than two successive periods.

131

Gers, Schraudolph and Schmidhuber

0

1

tk

yk

0

1

tk

yk

-4

0

sc

yc

0

2

sc

yc

0

1

0 10 20 30

Time

yin

yout
yϕ

0

1

0 50 100 150

Time

yin

yout
yϕ

Figure 8: Test run of a trained peephole LSTM network for the GTS task with I(n) ∈ {0},
and a minimum spike interval of F = 10 (left) vs. F = 50 (right). Top: target
values tk and network output yk; middle: cell state sc and cell output yc; bottom:
activation of the input gate yin, forget gate yϕ, and output gate yout.

The duration of training roughly reflected our criteria for task difficulty. We did not
try to achieve maximal accuracy for each task: training was stopped once the “perfect
solution” criteria were fulfilled. Accuracy can be improved by decreasing the tolerated
maximum output error emax

k during training, albeit at a significant increase in training
duration. Decreasing emax

k by one half (to 0.15) for fcos with F = 25 also reduces the
average

√
MSE of solutions by about one half, from 0.17 ± 0.019 down to 0.086 ± 0.002.

Perfect solutions were learned in all cases, but only after (2704 ± 49) · 103 training streams,
as opposed to (149 ± 7) · 103 training streams (yielding 60% solutions) before.

132

Learning Precise Timing with LSTM Recurrent Networks

0

1

0

1

2

yk
an

d
 t

k

In
pu

t:
in

in
tk

yk

-2

0

2
sc

yc

0

1

50 60 70 80 90 100

Time

yin

yout

yϕ

Figure 9: Test run of a trained peephole LSTM network for the GTS task with F =10 and
I(n) ∈ {0, 1, 2}. Top: target values tk and network output yk; middle: cell state
sc and cell output yc; bottom: activation of the input gate yin, forget gate yϕ,
and output gate yout.

PFG Analysis. For the PFG task, the networks do not have any external input, so
updates depend on the internal cell states only. Hence, in a stable solution for a periodic
target function tk(t) the cell states sc also have to follow some periodic trajectory s(t)
phase-locked to tk(t). Since the cell output is the only time-varying input to gates and
output units, it must simultaneously minimize the error at the output units and provide
adequate input to the gates. An example of how these two requirement can be combined
in one solution is shown in Figure 11 for fcos with F =10. This task can be solved with or

133

Gers, Schraudolph and Schmidhuber

LSTM Peephole LSTM
tgt. F % Training % Training
fn. Sol. Str. [103]

√
MSE Sol. Str. [103]

√
MSE

10 90 2477 ± 341 0.13 ± 0.033 100 145 ± 32 0.18 ± 0.016
fcos 25 0 > 10000 — 60 149 ± 7 0.17 ± 0.019

10 0 > 10000 — 100 869 ± 204 0.13 ± 0.014
ftri 25 0 > 10000 — 50 4063 ± 303 0.13 ± 0.024

10 0 > 10000 — 80 1107 ± 97 0.12 ± 0.014
frect 25 0 > 10000 — 20 748 ± 278 0.12 ± 0.012

Table 3: Results for the PFG task, showing target function f , sampling frequency F , the
percentage of perfect solutions found, and the mean and standard derivation of
the number of training streams required, as well as of the root mean squared error√
MSE for the final test run.

without peephole connections because the output gate never needs to be closed completely,
so that all gates can base their control on the cell output.

Why did LSTM networks without peephole connections never learn the target function
fcos for F =25, although they did learn it for F =10? The output gate is part of an uncon-
trolled feedback loop: its activation directly determines its own input (here: its only input,
except for the bias) via the connection to the cell output—but no errors are propagated
back on this connection. The same is true for the other gates, except that output gating can
block their (thus incomplete) feedback loop. This makes an adaptive LSTM memory block
without peephole connections more difficult to tune. Additional support for this reasoning
stems from the fact that networks with peephole connections learn fcos with F = 10 much
faster (see Table 3). The peephole weights of solutions are typically of the same magnitude
as the weights of connections from cell output to gates, which shows that they are indeed
used even though they are not mandatory for this task.

The target functions ftri and frect required peephole connections for both values of F .
Figure 12 shows typical network solutions for the frect target function. The cell output yc
equals the cell state sc in the second half of each period (when frect = 1) and is zero in
the first half, because the output gate closes the cell (triggered by sc, which is accessed via
the peephole connections). The timing information is read off sc, as explained in Section
4.2. Furthermore, the two states of the frect function are distinguished: sc is counted up
when frect = 0 and counted down again when frect = 1. This is achieved through a negative
connection from the cell output to the the cell input, feeding negative input into the cell
only when the output gate is open; otherwise the input is dominated by the positive bias
connection. Networks without peephole connections cannot use this mechanism, and did
not find any alternative solution. Throughout all experiments peephole connections were
necessary to trigger the opening of gates while the output gate was closed, by granting
unrestricted access to the timer implemented by the CEC. The gates learned to combine
this information with their bias so as to open on reaching a certain trigger threshold.

134

Learning Precise Timing with LSTM Recurrent Networks

0

1 tk

yk

0

1 tk

yk

0

1 tk

yk

0

1

tk

yk

0

1

0 10 20 30 40

Time

tk

yk

0

1

0 25 50 75 100

Time

tk

yk

Figure 10: Target values tk and network output yk during test runs of trained peephole
LSTM networks on the PFG task for the periodic functions fcos (top), ftri (mid-
dle), and frect (bottom), with periods F =10 (left) and F =25 (right).

5. Discussion

In this section we will discuss limitations and possible improvements of LSTM and give
final conclusions.

5.1 Network initialization

At the beginning of each stream cell states and gate activations are initialized to zero. This
initial state is almost always quite far from the corresponding state in the same phase of

135

Gers, Schraudolph and Schmidhuber

0

1

tk

yk 0

1

tk

yk

-6

-4

-2

0

sc

yc

0.0

-0.2

-0.4

-0.6

sc

yc

0

1

0 10 20 30

Time

yin

yout
yϕ

0

1

0 10 20 30

Time

yin

yout
yϕ

Figure 11: Test runs of a trained LSTM network with (right) vs. without (left) peephole
connections on the fcos PFG task with F =10. Top: target values tk and network
output yk; middle: cell state sc and cell output yc; bottom: activation of the
input gate yin, forget gate yϕ, and output gate yout.

later periods in the stream. Figure 13 illustrates this for the fcos task. After few consecutive
periods, cell states and gate activations of successful networks tend to settle to very stable,
phase-specific values, which are typically quite different from the corresponding values in
the first period. This suggests that the initial state of the network should be learned as
well, as proposed by Forcada and Carrasco (1995), Bulsari and Saxén (1995), instead of
arbitrarily initializing it to zero.

136

Learning Precise Timing with LSTM Recurrent Networks

0

1 tk

yk

0

1 tk

yk

0

1
sc

yc

0

1

2

3

4 sc

yc

0

1

0 10 20

Time

yin

yout
yϕ

0

1

0 25 50

Time

yin

yout
yϕ

Figure 12: Test runs of trained peephole LSTM networks on the frect PFG task with F =10
(left) and F =25 (right). Top: target values tk and network output yk; middle:
cell state sc and cell output yc; bottom: activation of the input gate yin, forget
gate yϕ, and output gate yout.

5.2 Limitations of LSTM

LSTM excels on tasks in which a limited amount of data (which need not be specially
marked though) must be remembered for a long time. Where additional processing of short-
term information is necessary LSTM performs at least as well as other RNN algorithms
(Hochreiter and Schmidhuber, 1997, Gers et al., 2000). Here we briefly point out the
limitations of LSTM, and RNNs in general.

137

Gers, Schraudolph and Schmidhuber

-4

-3

0 5 10 15 20

Cycle

sc

0.9

1

0 5 10 15 20
0

0.1

0.2

yin ,
yϕ

you
t

Cycle

yin

yout
yϕ

Figure 13: Cell states and gate activations at the onset (zero phase) of the first 20 cycles
during a test run with a trained LSTM network on the fcos PFG task with
F =10. The initial state (at cycle 0) is quite far from the equilibrium state.

Memory capacity remains a problem for RNNs. For LSTM, memory is limited by the
number of memory blocks in the network. It is unlikely that this limitation can be over-
come simply by increasing the network size homogenously. Modularization of the network
topology—and thus the task—will be necessary to keep learning effective. How such mod-
ularization can be learned or performed effectively and how the network modules should be
interconnected is not generally clear.

RNNs are also limited in the complexity of the solutions they can learn. LSTM for
example easily learns to instantiate a counter (equivalent to a one-symbol stack), and by
combining two counters it can even learn a simple context-sensitive language (Gers and
Schmidhuber, 2001). This seems to be the current limit though—no RNN has learned to
instantiate a stack or a queue for a non-trivial number of symbols (say, a dozen).

Due to the error truncation we employed, the gating curcuitry of the LSTM architecture
in its present form is not fully recurrent; the gates therefore depend on (classes of) individual
input patterns for their operation. Thus in cases where memorization, recall, or forgetting
are to be triggered by specific, temporally extended, possibly noisy input sequences, it may
become necessary to preprocess the input signal with an appropriate feature detector before
passing it on to the LSTM network. We have encountered this limitation when trying to
extract prosodic information from speech data (Cummins et al., 1999).

5.3 Conclusion

We have presented a neural network architecture that can learn to recognize and robustly
generate precisely timed events separated by significant time lags.

Previous work demonstrated LSTM’s advantages over traditional RNNs on tasks in-
volving long time lags between relevant input events. Those tasks, however, did not require
the network to extract information conveyed by the duration of intervals between these
events. Here we have shown that LSTM can solve such highly nonlinear tasks as well, by
learning to precisely measure time intervals, provided we furnish LSTM cells with peephole

138

Learning Precise Timing with LSTM Recurrent Networks

connections that allow them to inspect their current internal states. It is remarkable that
peephole LSTM can learn exact and extremely robust timing algorithms without teacher
forcing, even in case of very uninformative, rarely changing target signals. This makes it
a promising approach for numerous real-world tasks whose solution partly depend on the
precise duration of intervals between relevant events.

Since the original development of LSTM our work has concentrated on improving struc-
ture and wiring of the nonlinear, multiplicative gates surrounding and protecting LSTM’s
constant error carousels. The LSTM variant with peepholes and forget gates used in this
paper clearly outperforms traditional LSTM, and has become our method of choice for RNN
applications. We are using it to find prosody information in speech data (Cummins et al.,
1999), and to detect and generate rhythm and music (Eck and Schmidhuber, 2002).

139

Gers, Schraudolph and Schmidhuber

Appendix A. Peephole LSTM with Forget Gates in Pseudo-code

init network:
reset: CECs: scv

j
= ŝcv

j
=0; partials: dS=0; activations: y= ŷ=0;

forward pass:
input units: y = current external input;

roll over: activations: ŷ=y; cell states: ŝcv
j
=scv

j
;

loop over memory blocks, indexed j {
Step 1a: input gates (19):
zinj =

∑
m winjm ŷm +

∑Sj

v=1 winjcv
j
ŝcv

j
; yinj = finj (zinj);

Step 1b: forget gates (20):
zϕj =

∑
m wϕjm ŷm +

∑Sj

v=1wϕjcv
j
ŝcv

j
; yϕj = fϕj (zϕj);

Step 1c: CECs, i.e the cell states (1, 4):
loop over the Sj cells in block j, indexed v {
zcv

j
=
∑

mwcv
j m ŷm; scv

j
= yϕj ŝcv

j
+ yinj

g(zcv
j
); }

Step 2:
output gate activation (21):
zoutj

=
∑

m woutjm ŷm +
∑Sj

v=1woutjcv
j
scv

j
; youtj

= foutj
(zoutj

);

cell outputs (5):
loop over the Sj cells in block j, indexed v { ycv

j
= youtj scv

j
; }

} end loop over memory blocks

output units (7): zk =
∑

m wkm ym; yk = fk(zk);
partial derivatives:
loop over memory blocks, indexed j {

loop over the Sj cells in block j, indexed v {
cells (12), (dSjv

cm :=
∂scv

j

∂wcv
j

m
):

dSjv
cm = dSjv

cm yϕj + g′(zcv
j
) yinj ŷm;

input gates (13, 22), (dSjv
in,m :=

∂scv
j

∂winjm
, dSjv

in,cv′
j

:=
∂scv

j

∂w
injcv′

j

):

dSjv
in,m = dSjv

in,m yϕj + g(zcv
j
) f ′inj

(zinj
) ŷm;

loop over peephole connections from all cells, indexed v ′ {
dSjv

in,cv′
j

= dSjv

in,cv′
j

yϕj + g(zcv
j
) f ′inj

(zinj
) ŝv

′
c ; }

forget gates (14, 23), (dSjv
ϕm :=

∂scv
j

∂wϕjm
, dSjv

ϕcv′
j

:=
∂scv

j

∂w
ϕjcv′

j

):

dSjv
ϕm = dSjv

ϕm yϕj + ŝcv
j
f ′ϕj

(zϕj) ŷm;

loop over peephole connections from all cells, indexed v ′ {
dSjv

ϕcv′
j

= dSjv

ϕcv′
j

yϕj + ŝcv
j
f ′ϕj

(zϕj) ŝv
′

c ; }

} } end loops over cells and memory blocks

140

Learning Precise Timing with LSTM Recurrent Networks

backward pass (if error injected):

errors and δs:

injection error: ek = tk − yk;
δs of output units (9): δk = f ′k(zk) ek;

loop over memory blocks, indexed j {
δs of output gates (11):

δoutj = f ′outj
(zoutj)

(∑Sj

v=1 scv
j

∑
k wkcv

j
δk

)
;

internal state error (18):
loop over the Sj cells in block j, indexed v {
escv

j
= youtj

(∑
k wkcv

j
δk

)
; }

} end loop over memory blocks

weight updates:

output units (8): ∆wkm = α δk ym;

loop over memory blocks, indexed j {
output gates (10):
∆wout,m = α δout ŷm; ∆wout,cv

j
= α δout scv

j
;

input gates (16):
∆win,m = α

∑Sj

v=1 escv
j
dSjv

in,m;

loop over peephole connections from all cells, indexed v ′ {
∆win,cv′

j
= α

∑Sj

v=1 escv
j
dSjv

in,cv′
j

; }

forget gates (17):
∆wϕm = α

∑Sj

v=1 escv
j
dSjv

ϕm;

loop over peephole connections from all cells, indexed v ′ {
∆wϕcv′

j
= α

∑Sj

v=1 escv
j
dSjv

ϕcv′
j

; }

cells (15):
loop over the Sj cells in block j, indexed v {

∆wcv
j m = α escv

j
dSjv

cm; };
} end loop over memory blocks

141

Gers, Schraudolph and Schmidhuber

Acknowledgment

This work was supported by the Swiss National Science Foundation under grant number
2100-49’144.96, “Long Short-Term Memory”.

References

Y. Bengio and P. Frasconi. An input output HMM architecture. In Advances in Neural Information
Processing Systems 7, San Mateo CA, 1995. Morgan Kaufmann.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

A.B. Bulsari and H. Saxén. A recurrent network for modelling noisy temporal sequences. Neuro-
computing, 7:29–40, 1995.

Fred Cummins, Felix Gers, and Jürgen Schmidhuber. Language identification from prosody without
explicit features. In Proceedings of EUROSPEECH’99, volume 1, pages 371–374, 1999.

K. Doya and S. Yoshizawa. Adaptive neural oscillator using continuous-time backpropagation learn-
ing. Neural Networks, 2(5):375–385, 1989.

D. Eck and J. Schmidhuber. Learning the long-term structure of the blues. In Proc. Intl. Conf.
Artificial Neural Networks, Lecture Notes in Computer Science. Springer Verlag, Berlin (in press),
2002.

Mikel L. Forcada and Rafael C. Carrasco. Learning the initial state of a second-order recurrent
neural network during regular-language inference. Neural Computation, 7(5):923–930, 1995.

F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context free and context
sensitive languages. IEEE Transactions on Neural Networks, 2001.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(10):2451–2471, 2000.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Insti-
tut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. See
www7.informatik.tu-muenchen.de/˜hochreit.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: The
difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Y. LeCun, L. Bottou, G.B. Orr, and K.-R. Müller. Efficient backprop. In Genevieve B. Orr and
Klaus-Robert Müller, editors, Neural Networks—Tricks of the Trade, volume 1524 of Lecture
Notes in Computer Science, pages 5–50. Springer Verlag, Berlin, 1998.

B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE
Transactions on Neural Networks, 6(5):1212–1228, 1995.

D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning back propagation. Technical
Report CMU–CS–86–126, Carnegie–Mellon University, Pittsburgh, PA, 1986.

142

Learning Precise Timing with LSTM Recurrent Networks

A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical
Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.

J. Schmidhuber. A fixed size storage O(n3) time complexity learning algorithm for fully recurrent
continually running networks. Neural Computation, 4(2):243–248, 1992.

H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Applied Mathematics
Letters, 4(6):77–80, 1991.

S. Townley, A. Ilchmann, M. G. Weiss, W. McClements, A. C. Ruiz, D. Owens, and D. Praetzel-
Wolters. Existence and learning of oscillations in recurrent neural networks. Technical Re-
port AGTM 202, Universitaet Kaiserslautern, Fachbereich Mathematik, Kaiserslautern, Germany,
1999.

Fu-Sheng Tsung and Garrison W. Cottrell. Phase-space learning. In Advances in Neural Information
Processing Systems, volume 7, pages 481–488. The MIT Press, 1995.

M. G. Weiss. Learning oscillations using adaptive control. Technical Report AGTM 178, Universitaet
Kaiserslautern, Fachbereich Mathematik, Kaiserslautern, Germany, 1999.

R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent
network trajectories. Neural Computation, 2(4):490–501, 1990.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent net works.
Neural Computation, 1(2):270–280, 1989.

R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent networks and their
computational complexity. In Y. Chauvin and D. E. Rumelhart, editors, Back-propagation:
Theory, Architectures and Applications, chapter 13, pages 433–486. Hillsdale, NJ: Erlbaum, 1992.

143

