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Abstract
One of the most important fundamental properties of Bayesian networks is the representational
power, reflecting what kind of functions they can or cannot represent. In this paper, we establish
an association between the structural complexity of Bayesian networks and their representational
power. We use the maximum number of nodes’ parents as the measure for the structural complexity
of Bayesian networks, and the maximum XOR contained in a target function as the measure for the
function complexity. A representational upper bound is established and proved. Roughly speaking,
discrete Bayesian networks with each node having at mostk parents cannot represent any function
containing(k+ 1)-XORs. Our theoretical results help us to gain a deeper understanding on the
capacities and limitations of Bayesian networks.
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1. Introduction

Bayesian networks (BNs) are probabilistic models that combine probability theory and graph theory
(Pearl, 1988). They represent causal and probabilistic relations among random variables that are
governed by probability theory. Probabilistic inferences and optimal decisions can be made directly
from Bayesian networks. Bayesian networks have been widely used in many applications, because
they provide intuitive and causal representations of real-world applications, and they are supported
by a rigorous theoretical foundation.

A Bayesian network consists of two parts: a directed acyclic graph and a set of conditional
probabilities. The directed acyclic graph represents qualitative dependencies among random vari-
ables, and the conditional probabilities quantify these dependencies. The following is a definition
of Bayesian networks.

Definition 1 A Bayesian network, or simply BN, is a directed acyclic graph G=< N,E > and a
set P of probability distributions, where N= {A1, · · · ,An} is the set of nodes and E is the set of
arcs connecting pairs of nodes. P is the set of local conditional distributions, one for each node
conditioned on the parents of the node. The local conditional distribution of a node Ai is denoted
by P(Ai |pai), where pai denotes the parents of Ai.
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There are two types of random variables for which nodes represent: discrete variables that take
values from a finite set, and numeric or continuous variables that take values from a set of continuous
numbers. BNs can thus be classified into three corresponding categories: discrete BNs, continuous
BNs, and mixed BNs. In this paper, we restrict our discussion to discrete BNs.

A BN G onA1, · · ·, An defines a joint probability distributionPG as below:

PG(A1, · · · ,An) =
n

∏
i=1

P(Ai |pai).

Obviously, the complexity of different BN structures can be different. The simplest case is a set of
nodes without arcs, and the most complex one is the maximum graph without a circle. It is common
to use the maximum number of nodes’ parents as a measure for its structural complexity. Thus, we
have the following definition.

Definition 2 Given a BN G, the maximum number of parents of a node on G is called the structural
order, denoted by Os(G).

It is well known that any node in a BN is conditionally independent of its nondescendants, given
its parents (Pearl, 1988). Actually, a node is only affected by the nodes in its Markov blanket (Pearl,
1988), defined below.

Definition 3 The Markov blanket of a node A in a BN G is a set of nodes that are made up of A’s
parents and children, and the parents of A’s children.

For example, in Figure 1 the Markov blanket ofA5 is A5, A2, A3, A4 andA7.
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Figure 1: An example of a Markov blanket.

BNs can be learned and constructed as classifiers from a given set of training examples with class
labels (Friedman et al., 1997). A classifier is a function that maps from examples to class labels.
Assume thatA1, A2, · · ·, An aren attributes. An exampleE is represented by a vector(a1,a2, · · · ,an),
whereai is the value ofAi . Again, in this paper, we restrict our discussion to discrete attributes, and
in addition, the class label must be binary. We useC to represent the classification variable taking
values+ (positive class) or− (negative class), and usec to represent the value thatC takes.

An especially simple BN structure, often used for classification, is called a naive Bayesian
classifier, or simply naive Bayes. In naive Bayes, the conditional independence assumption is made;
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that is, all attributes are independent given the value of the class variable. Given an exampleE =
(a1, · · · ,an), the equation below represents formally such a conditional independence assumption:

p(a1,a2, · · · ,an|c) =
n

∏
i=1

p(ai |c).

According to Bayes Theorem and the conditional independence assumption, the classification func-
tion of naive Bayes can be represented as:

G(E) =
p(C = +)
p(C =−)

n

∏
i=1

p(ai |C = +)
p(ai |C =−)

.

Figure 2 (a) is an example of naive Bayes represented as a BN.

C

AA A 4321A

C

A AA A 4321

(a) (b)

Figure 2: (a) an example of naive Bayes. (b) an example of an ANB.

Since the conditional independence assumption hardly holds true, the structure of naive Bayes
is often extended by adding arcs, reflecting dependencies among attributes. The resulting BNs are
called augmented naive Bayes, or simply ANB. In an ANB, the classification node directly points
to all attributes, and links among attributes are allowed (except that they do not form any directed
cycle). Figure 2 (b) shows an example of an ANB represented as a BN.

The ANB is a special structure of general BNs, in which the class node is identified and all
attributes are within the Markov blanket of the class node. In a general BN, no node is specified as
the class node, and each node can be the class node. When we choose a nodeAi as the class node,
nodes not inAi ’s Markov blanket do not affect the classification and can be deleted, assuming the
value of the nodes in the Markov blanket is known. Thus, we can view a BN as a set of classifiers
with different class nodes.

One of the most fundamental issues of BNs is the representational power. Here the representa-
tional power of a set of BNs is defined as the set of target functions whose results can be reproduced
by BNs from the set. Essentially, the representational power of BNs reflects their fundamental
capacities and limitations. A natural question about BNs is: what are the differences in representa-
tional power with different structural complexities? Intuitively, the more complex the structure of
a BN, the more complex the target function it can represent. However, to our knowledge, little is
known about the representational power of BNs. In our previous work (Zhang and Ling, 2001b),
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we investigated the representational power of naive Bayes and ANB. We will review related results
on naive Bayes and ANB in the next two sections.

2. Related Work

In the binary domain, where all attributes are Boolean, it is easy to show the representational power
of both naive Bayes and ANB. Let us briefly review the relevant results (Duda and Hart, 1973).

Suppose that attributesA1, A2, · · ·, An are binary, taking value 0 or 1. Letpi andqi represent
the probabilityp(Ai = 1|C = +) andp(Ai = 1|C = −) respectively, and letE = (a1, · · · ,an) be an
example. Then the corresponding naive BayesG(E) is:

G(E) =
p(C = +)
p(C =−)

n

∏
i=1

pi
ai (1− pi)1−ai

qi
ai (1−qi)1−ai

.

It is straightforward to obtain a linear classifier by applying the logarithm to the above equation.
Thus, naive Bayes is a linear classifier in the binary domain.

For the discrete domain, a general case of the binary domain (since discrete attributes may have
more than two values), there was no satisfying result. Assume thatA1, A2, · · ·, An aren discrete
attributes, each attributeAi may havem valuesai1, ai2, · · ·, aim (m≥ 2). Domingos and Pazzani
(1997) and Peot (1996) introducedm new Boolean attributesBi1, Bi2, · · ·, Bim for each attribute
Ai , and proved that naive Bayes is linear over these new binary attributes. However, the linear
separability is onm1×m2 · · ·×mn new attributes, not the original attributes.

In fact, naive Bayescan represent nonlinear functions (Zhang and Ling, 2001a). For example,
let A = {1,2,3}, B = {1,2,3}. A function f is defined as in Figure 3. Obviously, it is not linearly
separable. However, there is a naive Bayes that representsf . Consider a Naive BayesG on two
specific nominal attributesA andB, whereA = {1,2,3}, B = {1,2,3}. Table 1 is the conditional
probability table (CPT) forA, andB has the same CPT asA. It is easy to verify that the classification
of G is the same as in Figure 3. Thus,f is representable byG. Therefore, naive Bayes can represent
some, but not all (as we will see later), nonlinear functions in the discrete domain. The exact
representational power of naive Bayes in the discrete domain is still unknown.

+ - +
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+ +
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Figure 3: A nonlinear functionf .
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A = 1 A = 2 A = 3
C =− 0.3 0.4 0.3
C = + 0.5 0 0.5

Table 1: The conditional probability table forA.

The representational power of arbitrary ANB is also known in the binary domain. Assume that
each nodeAi can have up tok parents, and letpai = {Ai1, · · · ,Aik} denote the parents ofAi . Then

p(Ai |c, pai) =




θ1 Ai = 0,Ai1 = 0,Ai2 = 0, · · · ,Aik = 0
1−θ1 Ai = 1,Ai1 = 0,Ai2 = 0, · · · ,Aik = 0
θ2 Ai = 0,Ai1 = 1,Ai2 = 0, · · · ,Aik = 0
1−θ2 Ai = 1,Ai1 = 1,Ai2 = 0, · · · ,Aik = 0
· · ·
θm Ai = 0,Ai1 = 1,Ai2 = 1, · · · ,Aik = 1
1−θm Ai = 1,Ai1 = 1,Ai2 = 1, · · · ,Aik = 1

= θ(1−Ai)(1−Ai1)···(1−Aik)
1 (1−θ1)Ai(1−Ai1)···(1−Aik) · · ·(1−θm)AiAi1···Aik

and

G(E) =
p(C = +)
p(C =−)

n

∏
i=1

p(Ai |+, pai)
p(Ai |−, pai)

.

When we apply the logarithm to it and convert the product into a sum, we get a set of terms of at
mostk+1 degree as follows:

ĀiĀi1 · · · Āik,

whereĀi is eitherAi or 1−Ai . The same is true for̄Ai j . Thus the representational power of an ANB
in which each node has at mostk parents is equal to a polynomial of degreek+ 1. Thus, in the
binary domain, naive Bayes represents linear functions, TAN1 represents quadratic functions, and
so on.

However, the representational power of an ANB in the discrete domain is much more complex
than that in the binary domain, and the derivation above cannot be extended to the discrete domain.
Indeed, there is no one-to-one relation between the maximum parent number of an ANB and the
degree of polynomials. We have shown that naive Bayes does not correspond to linear functions
any more in the discrete domain. To our knowledge, there has been little work undertaken by other
researchers on the linearity of naive Bayes, and the representational power of ANB with different
structures, in the discrete domain.

In our previous work (Zhang and Ling, 2001b), we investigated the representational power of
naive Bayes and ANB. We extend and generalize our previous work in this paper. In the next section,
we will briefly review our previous work and introduce a few concepts that we will use in this paper.

1. TAN stands for tree augmented naive Bayes, a special case of ANB in which each attribute can have at most one
parent other than the class node, thus forming a tree structure among attributes.
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3. The Representational Power of Naive Bayes and ANB

Definition 4 Given n discrete attributes A1, A2, · · ·, An, and a class variable C, a function f from
A1×A2×·· ·×An to C is called an n-dimensional discrete function.

To discuss the representational power of ANB, we need a measure for the complexity of target
functions. The VC-dimension is widely used for hypothesis space complexity (Vapnik and Chevo-
nenkis, 1971), but it might not provide enough granularity. Some work has been done on complexity
measure for Boolean functions by the computational complexity (Paterson, 1992), which uses the
size of the minimum combinational network that computes the function.2 However, this does not
seem to be direct enough to measure the complexity with respect to the difficulty in Bayesian learn-
ing.

In our previous work (Zhang and Ling, 2001b), we proposed a measure which uses the max-
imum XOR contained in the function as the complexity of a function in the discrete domain. We
adopt this measure in this paper.

The reason to use the maximum XOR (also known as the parity function) as the complexity
measure for a function comes from the intuition that then variables making up ann-XOR depend on
each other; i.e., the value of ann-XOR function cannot be determined until the values of all variables
are known. Bayesian networks represent target functions by exploiting conditional dependencies
among variables. Since there is no such conditional dependencies among variables in an XOR, the
maximum XOR contained in a function seems to be an appropriate heuristic for the complexity of
a function. As we will see, this measure is indeed appropriate to Bayesian network representation.
Let us first briefly review the related concepts.

Definition 5 An n-XOR function with n Boolean variables is defined to return 1 if and only if an
even number of variables are 1. We call n the order of the XOR.

By this notation, 2-XOR is a regular (2-variable) XOR (parity function). We propose to use
the highest order of XOR “contained” in a discrete function as its complexity measure (Zhang and
Ling, 2001b); that is, the maximum subfunction that forms an XOR pattern.

Definition 6 Assume that f is an n-dimensional discrete function from A1×A2×·· ·×An to C. An
(n−1)-dimensional partial function fp from A1×·· ·×Ai−1×Ai+1×·· ·×An to C, and Ai = ai j , is
called an (n−1)-dimensional subfunction of f at Ai = ai j , denoted by f(ai j ), where1≤ i ≤ n.

Similarly, we can get an arbitraryk-dimensional subfunction off , by fixing (n− k) attributes,
where 2≤ k≤ n−1. An important feature ofn-XOR is that anyk-dimensional subfunction is also
ak-XOR.

Definition 7 An n-dimensional discrete function f is said to contain a k-XOR, if there is a k-
dimensional subfunction fp on attributes Ak1, Ak2, · · ·, Akk, and for each attribute Aki, there are
two different values, aki1, aki2, denoted by aki and āki, such that a partial function fp′ of fp from
{ak1, āk1}× · · ·×{akk, ākk} to {+,−} is a k-XOR function.

Figure 4 (a) shows a discrete function in two dimensions containing a 2-XOR (onA = 1 and 3,
and B = 1 and 3), and (b) shows abinary function in three dimensions containing a 2-XOR (on B-C
with A = 1).

2. A combinational network consists of NOT, AND and OR gates, and its size is the number of such gates.
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Figure 4: (a) a function containing a 2-XOR in two dimensions. (b) a function containing a 2-XOR
in three dimensions.

Definition 8 An n-dimensional discrete function f is said to have an order of m, if the maximum
XOR it contains is an m-XOR, denoted by Of ( f ).

This complexity measure for a discrete function is different from the one that uses the size of the
minimum combinational network (Paterson, 1992) in two ways. First, it is applicable to any discrete
functions, rather than just the binary functions. Second, it is simpler, since we only consider the
part of a function that consists of the highest order of XOR, instead of the whole function.

In the discrete domain, it has been shown that naive Bayes can produce nonlinear boundaries,
but it still cannot represent any nonlinear function containing a 2-XOR (Zhang and Ling, 2001a).
In our previous work, we proved upper bounds on the representational power of naive Bayes and
TAN, and presented a conjecture on the upper bound of general ANB (Zhang and Ling, 2001b).

As we discussed earlier, however, ANB is a special form of BN. What is the representational
power of general BNs? More precisely, what is the relation between the structural complexity of a
BN and its representational power? This paper will answer this question by extending the previous
results on ANB to general BNs.

4. The Representational Power of General BNs

Naive Bayes and ANB represent a classification function with the root as the class variable. What
does a general BN represent? One way to view a BN from a classification viewpoint is that each
node could be a class variable. Thus, a BN represents a set of classification functions. Formally, we
have the following definition.
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Definition 9 Given a BN G on A1, · · ·, An and an example E= (a1, · · · ,ai−1,ai+1, · · · ,an), the clas-
sification function fi corresponding to node Ai is defined as:

fi(a1, · · · ,ai−1,ai+1, · · · ,an) = max
ai

PG(ai |a1, · · · ,ai−1,ai+1, · · · ,an).

The set of classification functions represented by G is{ f1, · · · , fn}, denoted by R(G).

Definition 10 A BN G’s representational order Or(G) is defined as:

Or(G) = max{Of ( fi) : fi ∈ R(G)}.

4.1 The Representational Power of BNs of Order 1

For a BN of order 1, each node has at most one parent. In fact, the structure of such a BN is a forest.
Naive Bayes belongs to this class. We have shown that naive Bayes can represent linear functions
and some nonlinear functions, but cannot represent any function containing a 2-XOR (Zhang and
Ling, 2001b). The following lemma extends the result on naive Bayes to BNs with order of 1, thus
establishing an upper bound for BNs of order 1.

Lemma 1 For any BN G, if Os(G) = 1, then Or(G)≤ 1.

Proof: Suppose thatG is a BN onA1, · · ·, An andOs(G) = 1. If Or(G) were 2 or above, then there
would be a functionf of order 2, i.e.,f contains a 2-XOR, thatG can represent.

Suppose thatf were fromA1, · · ·, Ak−1, Ak+1, · · ·, An to Ak. Sincef contains a 2-XOR, according
to Definition 7, there are two attributesAi andAj , i and j 6= k, and each of them has two different
values,ai , āi , andaj , āj , respectively, and two different valuesak andāk of Ak such that:

f (a1, · · · ,ai , · · · ,aj , · · · ,an) = ak (1)

f (a1, · · · ,ai , · · · , āj , · · · ,an) = āk (2)

f (a1, · · · , āi , · · · ,aj , · · · ,an) = āk (3)

f (a1, · · · , āi , · · · , āj , · · · ,an) = ak (4)

whereal is a value ofAl , l 6= i, j andk.
If one of Ai andAj is out of the Markov blanket ofAk, it does not affect the value ofAk when

other attributes are assigned values. Therefore, it is not possible that Equation (1), (2), (3) and (4)
hold true simultaneously.

Assume that bothAi andAj are in the Markov blanket ofAk. Since each node has at most one
parent,Ai andAj are connected directly withAk. There are two cases for the connection patterns.

(1) Ak points to bothAi andAj . In this case, it is a structure of naive Bayes withAk as the class
variable. It is known that naive Bayes cannot represent 2-XOR (Zhang and Ling, 2001b).

(2) Ai points toAk andAk points toAj . In this case, the joint distributionPG can be represented
as below.

PG(Ai ,Aj ,Ak) = P(Ak)P(Ai |Ak)P(A j|Ai ,Ak) = P(Ak)P(Ai |Ak)P(A j|Ak).

This means thatPG can be represented by a naive Bayes withAk as the class variable. Therefore,
if G could represent 2-XOR, the correspondent naive Bayes could too.

Therefore,G cannot represent any function of order 2.
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4.2 The Representational Power of General BNs

Let us consider the representational power of general BNs. We will prove that a BN with nodes
having at mostk parents cannot represent any function ofk+1 order. First we prove a lemma which
is a special case of the main theorem. Its proof helps to illustrate ideas in the proof of the main
theorem.

Lemma 2 For any BN G with(m+1) nodes each of which has at most(m−1) parents, Or(G) ≤
Os(G) = m−1.

Proof: Suppose thatG is a BN on discrete attributesA1, · · ·, Am+1 andOs(G) = m−1, i.e., each node
has at mostm−1 parents. Letf be a function represented inG. We will prove by contradiction
that f cannot contain anm-XOR. Assume thatf contains anm-XOR from A1, · · ·, Am to Am+1.
According to Definition 7, there would be two valuesai , āi for each attributeAi , 1≤ i ≤m+1, such
that the partial functionfG of G’s classification function from{a1, ā1}× · · ·× {am, ām} to {am+1,
ām+1} is anm-XOR. To simplify our notation, we denoteam+1, ām+1 by + and− respectively. Then
we have 2m inequalities below:

fG(A1,A2, · · · ,Am)
{ ≥ 1 if the number ofAi taking valueai is even

< 1 if the number ofAi taking valueai is odd,

wherei = 1, · · · ,mand fG(A1,A2, · · · ,Am) is specified below.

fG(A1,A2, · · · ,Am) =
pG(A1,A2, · · · ,Am,+)
pG(A1,A2, · · · ,Am,−)

,

wherepG(A1,A2, · · · ,Am,+) and pG(A1,A2, · · · ,Am,−) are the joint distributions ofG in the class
of Am+1 = am+1 and the class ofAm+1 = ām+1 respectively. Obviously, all ofA1,A2, · · · ,Am should
be inAm+1’s Markov blanket.

SinceG is a BN, we have:

pG(A1,A2, · · · ,Am,+) = p(+|pam+1)
m

∏
i=1

p(Ai |pai), (5)

pG(A1,A2, · · · ,Am,−) = p(−|pam+1)
m

∏
i=1

p(Ai |pai), (6)

wherepai is an assignment of all ofAi ’s parents, 1≤ i ≤ m+1.
Note that if a term in Equation (5) and (6) does not contain + or−, then it is cancelled out infG

and does not affect classification. Thus, all terms infG should have a form eitherp(Am+1|pam+1)
or p(Ai |pai), wherei 6= m+1 andAm+1 ∈ pai .

Let A1 = a1. We have 2m−2 inequalities below:

pG(a1,A2, · · · ,Am,+)
pG(a1,A2, · · · ,Am,−)

≥ 1, (7)

where the number ofAi taking valueai is odd (i 6= 1).
Multiplying all these 2m−2 inequalities together, we have:

odd

∏ pG(a1,A2, · · · ,Am,+)
pG(a1,A2, · · · ,Am,−)

≥ 1. (8)
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Similar to (7), we have 2m−2 inequalities below:

pG(a1,A2, · · · ,Am,+)
pG(a1,A2, · · · ,Am,−)

< 1, (9)

where the number ofAi taking valueai is even (i 6= 1).
Multiplying all these 2m−2 inequalities together, we have:

even

∏ pG(a1,A2, · · · ,Am,+)
pG(a1,A2, · · · ,Am,−)

< 1. (10)

Dividing (8) by (10), we have:

odd

∏ pG(a1,A2, · · · ,Am,+)
pG(a1,A2, · · · ,Am,−)

even

∏ pG(a1,A2, · · · ,Am,−)
pG(a1,A2, · · · ,Am,+)

> 1. (11)

Denote the left side of the above inequality byL1.
Let A1 = ā1, we have the similar inequality below.

even

∏ pG(ā1,A2, · · · ,Am,+)
pG(ā1,A2, · · · ,Am,−)

odd

∏ pG(ā1,A2, · · · ,Am,−)
pG(ā1,A2, · · · ,Am,+)

> 1. (12)

Let us denote the left side byL2. Notice thatL1 and 1
L2

are almost the same except fora1 and

ā1. Next we try to prove thatL1 = 1
L2

by showing that all items containinga1 or ā1 will be cancelled
out in bothL1 andL2.

Let Am+1 be+ or−. Note thatpG(A1, · · · ,Am,Am+1) can be decomposed in terms of (5) and (6),
so all items in the inequalities are in the form ofp(Ai |pai), and none of them are zero (otherwise,
it is impossible forA1, · · ·, Am, Am+1 to form anm-XOR). For the itemp(Ai |pai) in which botha1

andā1 do not occur, it is obvious that if that item occurs in the numerator ofL1, it should occur in
the denominator ofL2. Thus, we only need to consider the items containinga1 or ā1. There are two
cases.

(1) The items in the form ofp(A1|pa1) occur, whereA1 is a1 or ā1. SinceA1 has at mostm−1
parents andAm+1 should be inpa1 (otherwise this term will be cancelled out fromfG), then there
is at least one attribute other thanAm+1 which is not inpa1. Let p̄a1 denote all the attributes that
are not inpa1, and lett be the number of such attributes (t ≥ 1). Then there are 2t−1 assignments
of p̄a1 to make the number of attributesAi takingai (i 6= 1) even, and 2t−1 assignments odd. Thus,
eachp(A1|pa1) occurs 2t−1 times in both the numerator and denominator ofL1, and is therefore
cancelled out. The same situation happens forL2.

(2) The items in the formp(Ai |pai) occur, wherei 6= 1 andA1 is in pai . Similar to (1), since
there is at least one attribute other thanAm+1 not in pai , eachp(Ai |pai) occurs the same times in the
numerator and denominator ofL1 or L2, and thus is cancelled out.

Therefore,L1 = 1
L2

. It is impossible to satisfy both inequalities (11) and (12). Therefore, we
conclude that no such an ANB can representf .

Now we are ready to prove the main theorem about the representational upper bound of BNs.

Theorem 3 For any BN G, Or(G)≤ Os(G).
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Proof: Suppose thatG is a BN on discrete attributesA1, · · ·, An andOs(G) = m−1, i.e., each node
has at mostm−1 parents. Letf be a function represented inG. We will prove by contradiction
that f cannot contain anm-XOR. Assume thatf contains anm-XOR from A1, · · ·, Am to Am+1.
According to Definition 7, there would be two valuesai andāi for each attributeAi , 1≤ i ≤ m+1,
such that the partial functionfG of G’s classification function from{a1, ā1}× · · · × {am, ām} to
{am+1, ām+1} is anm-XOR, while Ak = ak (m+ 1 < k≤ n). To simplify our notation, we denote
am+1, ām+1 by + and− respectively. Here we have two types of attributes: unfixed attributesA1,
· · ·, Am andAm+1 that compose anm-XOR, and fixed attributesAm+2, · · ·, An that have valuesam+2,
· · ·, an respectively.

Obviously all ofA1, · · ·, Am should be inAm+1’s Markov blanket, and we only need to consider
the nodes inAm+1’s Markov blanket.

ConsiderA1 = a1 andA1 = ā1, we have the inequalities below similar to (11) and (12):

odd

∏ pG(a1,A2, · · · ,Am,am+2 · · · ,an,+)
pG(a1,A2, · · · ,Am,am+2, · · · ,an,−)

even

∏ pG(a1,A2, · · · ,Am,am+2, · · · ,an,−)
pG(a1,A2, · · · ,Am,am+2, · · · ,an,+)

> 1, (13)

even

∏ pG(ā1,A2, · · · ,Am,am+2, · · · ,an,+)
pG(ā1,A2, · · · ,Am,am+2, · · · ,an,−)

odd

∏ pG(ā1,A2, · · · ,Am,am+2, · · · ,an,−)
pG(ā1,A2, · · · ,Am,am+2, · · · ,an,+)

> 1, (14)

whereodd/evenspecifies that the number ofAi takingai is odd or even, 2≤ i ≤ m. Let us denote
the left sides of the above two inequalities byL3 andL4 respectively. Similarly, we try to prove that
L3 = 1

L4
, and we also only need consider the items containinga1 or ā1. (13) and (14) are different

from (11) and (12) only in that there exist fixed attributes.
Let A1 = a1. There are three cases that a fixed attribute occurs in an item together witha1 in L3

or L4.
(1) A fixed attribute hasA1 and some other attributes (fixed or unfixed) as its parents. That is, the

items in the form ofp(ak|pau
k, paf

k) occur. Hereak is an the value of a fixed attributeAk (k > m+1),

andpau
k are the parents ofAk that are unfixed attributes andA1 ∈ pau

k, andpaf
k are the parents ofAk

that are fixed attributes. SinceAk has at mostm−1 parents andAm+1 should be one of them, there
are at least two attribute in{A2, · · · ,Am} not in pak.3 Based on the same reason in proving Lemma
2, these items occur the same number of times in the numerator and denominator ofL3, and thus are
cancelled out. The similar situation happens forL4.

(2) An unfixed attribute hasA1 and some other attributes (fixed or unfixed) as its parents. That
is, the items in the form ofp(Ak|pau

k, paf
k) occur. HereAk is an unfixed attribute (k < m+ 1), and

pau
k are the parents ofAk that are unfixed attributes andA1 ∈ pau

k, andpaf
k are the parents ofAk that

are fixed attributes. SinceAk has at mostm−1 parents andAm+1 should be one of them, there is at
least one attribute in{A2, · · · ,Am}−{Ak} not in pak.4 Based on the same reason in proving Lemma
2, these items occur the same number of times in the numerator and denominator ofL3, and thus are
cancelled out. The similar situation happens forL4.

(3) The fixed attributes are the parents ofA1. That is, the items in the form ofp(a1|pau
1, paf

1)
occur. SinceAm+1 should be inpau

1, there is at least one attribute in{A2, · · · ,Am} not in pa1.5

Similarly, those items will be cancelled out in bothL3 andL4.

3. For Corollary 1, there is at least one attribute in{A2, · · · ,Am} not in pak.
4. For Corollary 1, there is also at least one attribute in{A2, · · · ,Am}−{Ak} not in pak.
5. For Corollary 1, sinceA1 has at mostm−1 parents from{A2, · · ·, Am, Am+1} in which one isAm+1 and others are

from {A2, · · ·, Am} , there is also at least one of{A2, · · ·, Am} not in pa1.
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ForA1 = ā1, we have the similar result. Thus,L3 = 1
L4

. It is impossible to satisfy both inequali-
ties (13) and (14). Therefore, we conclude that no such BN can representf .

Theorem 3 presents a representational upper bound for general BNs, thus establishing an explicit
association between the structural complexity of a BN and its representational capacity.

Theorem 3 can be further extended to the following corollary.

Corollary 1 If an n-dimensional discrete function f has an order of m (contains an m-XOR), with
attributes A1, · · ·, Am and Am+1 forming the m-XOR, m≥ 2, then no BN of order m, with attributes
A1, · · ·, Am and Am+1 having at most m−1 parents from{A1, · · ·, Am, Am+1}, can represent f .

Corollary 1 shows that, a BN of orderm cannot represent a function of orderm, if each of the
nodes forming them-XOR has at mostm−1 parents from the nodes forming them-XOR. The proof
is similar to the proof of Theorem 3, and the differences are indicated in footnotes in the proof. Of
course, such a function of orderm might still be represented by a BN of orderm with a different
structure. In fact, it is our conjecture on the lower bound of BNs: any function of orderm can be
represented by a BN of orderm.

5. Conclusions

We discuss the representational power of discrete BNs in this paper. We use the maximum number of
parents of nodes in a BN as the measure for its structural complexity, and the order of the maximum
XOR contained in a target function as the measure for the function complexity. Then we establish
a relation between the structural complexity and the representational power of Bayesian networks
by proposing and proving a representational upper bound of BNs. Roughly speaking, any BNs of
orderm cannot represent a target function of orderm+1. Moreover, a Bayesian network of order
m cannot represent a target function of orderm, if each of the nodes that forms them-XOR has at
mostm−1 parents from the nodes forming them-XOR. Our results reveal the ultimate limitation
of BNs in representing discrete classification functions.

Our theoretical results establish a clear association between the topology of Bayesian networks
and the complexity of functions that they can represent. They help us to understand the limitation
of Bayesian networks. In addition, our results can be useful in real-world applications. Before we
learn any Bayesian network from data, we often need to decide the structure of the network. Our
results suggest to detect the number ofn-XOR (n = 2, 3, · · ·) contained in the data. If there exists
2-XOR, then no naive Bayes can learn it perfectly. However, if the number of 2-XOR is small,
then naive Bayes might still be suitable to approximate it (Zhang and Ling, 2001a); otherwise, more
complex structures, such as TAN, should be chosen.

We give only a representational upper bound of BNs in this paper. A natural question is: what is
the representational lower bound of BNs? An interesting and intuitive conjecture is that any function
of orderm can be represented by some BN of orderm. This conjecture is true for naive Bayes and
TAN, but the general case has not been proved. This is one of our future research interests.

Additional interesting future work is to determine the representational power of Bayesian net-
works with hidden nodes. Intuitively, BNs with hidden nodes have a higher representational power.
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