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Abstract

One of the most important fundamental properties of Bayesian networks is the represen-
tational power, re
ecting what kind of functions they can or cannot represent. In this
paper, we establish an association between the structural complexity of Bayesian networks
and their representational power. We use the maximum number of nodes' parents as the
measure for the Bayesian network structural complexity, and the maximumXOR contained
in a target function as the measure for the function complexity. A representational upper
bound is established and proved. Roughly speaking, discrete Bayesian networks with each
node having at most k parents cannot represent any function containing (k+1)-XORs. Our
theoretical results help us to gain a deeper understanding on the capacities and limitations
of Bayesian networks.
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1. Introduction

Bayesian networks (BNs) are probabilistic models that combine probability theory and
graph theory (Pearl, 1988). They represent causal and probabilistic relations among random
variables that are governed by probability theory. Probabilistic inferences and optimal
decisions can be made directly from Bayesian networks. Bayesian networks have been
widely used in many applications, because they provide intuitive and causal representations
of real-world applications, and they are supported by a rigorous theoretical foundation.

A Bayesian network consists of two parts: a directed acyclic graph and a set of condi-
tional probabilities. The directed acyclic graph represents qualitative dependencies among
random variables, and the conditional probabilities quantify these dependencies. The fol-
lowing is a de�nition of Bayesian networks.

De�nition 1 A Bayesian network, or simply BN, is a directed acyclic graph G =< N;E >

and a set P of probability distributions, where N = fA1; � � � ; Ang is the set of nodes and E
is the set of arcs connecting pairs of nodes. P is the set of local conditional distributions,
one for each node conditioned on the parents of the node. The local conditional distribution
of a node Ai is denoted by P (Aijpai), where pai denotes the parents of Ai.
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There are two types of random variables for which nodes represent: discrete variables
that take values from a �nite set, and numeric or continuous variables that take values from
a set of continuous numbers. BNs can thus be classi�ed into three corresponding categories:
discrete BNs, continuous BNs, and mixed BNs. In this paper, we restrict our discussion to
discrete BNs.

A BN G on A1, � � �, An de�nes a joint probability distribution PG as below:

PG(A1; � � � ; An) =
nY
i=1

P (Aijpai) (1)

Obviously, the complexity of di�erent BN structures can be di�erent. The simplest case
is a set of nodes without arcs, and the most complex one is the maximum graph without
circle. It is common to use the maximum number of nodes' parents as a measure for its
structural complexity. Thus, we have the following de�nition.

De�nition 2 Given a BN G, the maximum number of parent of a node on G is called the
structural order, denoted by Os(G).

It is well known that any node in a BN is conditionally independent of its nondescen-
dants, given its parents (Pearl, 1988). Actually, a node is only a�ected by the nodes in its
Markov blanket (Pearl, 1988), de�ned below.

De�nition 3 The Markov blanket of a node A in BN G is a set of nodes that make up of
A's parents and children, and the parents of A's children.

For example, in Figure 1 the Markov blanket of A5 is A2, A3, A4 and A7.
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Figure 1: An example of Markov blanket

BNs are often used for classi�cation (Friedman et al., 1997), and a classi�er is to be
constructed from a given set of training examples with the class label. A classi�er is a
function that maps from examples to class labels. Assume that A1, A2,� � �, An are n

attributes. An example E is represented by a vector (a1; a2; ; � � � ; an), where ai is the value
of Ai. Again, in this paper, we restrict our discussion to discrete attributes, and in addition,
the class label must be binary. We use C to represent the classi�cation variable taking value
+ (positive class) or � (negative class), and use c to represent the value that C takes.
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An especially simple BN structure, often used for classi�cation, is called naive Bayesian
classi�er, or simply Naive Bayes. In Naive Bayes, the conditional independence assump-
tion is made; that is, all attributes are independent given the value of the class variable.
Give an example E = (a1; � � � ; an), the equation below represents formally such conditional
independence assumption:

p(a1; a2; � � � ; anjc) =
nY
i=1

p(aijc):

According to Bayes Theorem and the conditional independence assumption, the classi�ca-
tion function of Naive Bayes can be represented as:

G(E) =
p(C = +)

p(C = �)

nY
i=1

p(aijC = +)

p(aijC = �)
:

Figure 2 (a) is an example of Naive Bayes represented as a BN.

C
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A AA A 4321

(a) (b)

Figure 2: (a) an example of Naive Bayes (b) an example of ANB

Since the conditional independence assumption hardly holds true, the structure of Naive
Bayes is often extended by adding arcs, re
ecting dependencies among attributes. The
resulting BNs are called Augmented Naive Bayes, or simply ANB. In an ANB, the clas-
si�cation node directly points to all attributes, and links among attributes are allowed
(except that they do not form any directed cycle). Figure 2 (b) shows an example of ANB
represented as a BN.

ANB is a special structure of general BNs, in which the class node is identi�ed and all
attributes are within the Markov blanket of the class node. In a general BN, no node is
speci�ed as the class node, and each node can be the class node. When we choose a node
Ai as the class node, nodes not in Ai's Markov blanket do not a�ect the classi�cation and
can be deleted, assuming the value of the nodes in the Markov blanket is known. Thus, we
can view a BN as a set of classi�ers with di�erent class nodes.
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One of the most fundamental issues of BNs is the representational power. Here the
representational power of a set of BNs is de�ned as the set of target functions whose results
can be reproduced by BNs from the set. Essentially, the representational power of BNs
re
ects their fundamental capacities and limitations. A natural question about BNs is:
what are the di�erences in representational power with di�erent structural complexities?
Intuitively, the more complex the structure of a BN, the more complex the target function it
can represent. However, to our knowledge, little is known about the representational power
of BNs. In our previous work (Zhang and Ling, 2001b), we investigated the representational
power of Naive Bayes and ANB. We will review related results on Naive Bayes and ANBs
in the next two sections.

2. Related Work

In the binary domain, where all attributes are Boolean, it is easy to show the representa-
tional power of both Naive Bayes and ANB. Let us brie
y review the relevant results (Duda
and Hart, 1973).

Suppose that attributes A1, A2, � � �, An are binary, taking value 0 or 1. Let pi and
qi represent the probability p(Ai = 1jC = +) and p(Ai = 1jC = �) respectively, and
E = (a1; � � � ; an) be an example. Then the corresponding Naive Bayes G(E) is:

G(E) =
p(C = +)

p(C = �)

nY
i=1

pi
ai(1� pi)

1�ai

qiai(1� qi)1�ai
: (2)

It is straightforward to obtain a linear classi�er by applying logarithm to the above equation.
Thus, Naive Bayes is a linear classi�er in the binary domain.

For the discrete domain, a general case of the binary domain (since discrete attributes
may have more than two values), there was no satisfying result. Assume that A1, A2,
� � �, An are n discrete attributes, each attribute Ai may have m values ai1, ai2, � � �, and
aim (m � 2). Domingos and Pazzani (1997) and Peot (1996) introduced m new Boolean
attributes Bi1, Bi2, � � �, and Bim for each attribute Ai, and proved that Naive Bayes is linear
over these new binary attributes. However, the linear separability is on m1 �m2 � � � �mn

new attributes, not the original attributes.

In fact, Naive Bayes can represent nonlinear functions (Zhang and Ling, 2001a). For
example, let A = f1; 2; 3g, B = f1; 2; 3g, a function f is de�ned as in Figure 3. Obviously,
it is not linearly separable. However, there is a Naive Bayes that represents f . Consider
a Naive Bayes G on two speci�c nominal attributes A and B, where A = f1; 2; 3g, B =
f1; 2; 3g. Table 1 is the conditional probability table (CPT) for A, and B has the same
CPT as A. It is easy to verify that the classi�cation of G is the same as in Figure 3. Thus,
f is representable by G. Therefore, Naive Bayes can represent some, but not all (as we will
see later), nonlinear functions in the discrete domain. The precise representational power
of Naive Bayes in the discrete domain is still unknown.

The representational power of arbitrary ANB is also known in the binary domain. As-
sume that each node Ai can have up to k parents, and let pai = fAi1; � � � ; Aikg denote the

4



The Representational Power of Discrete Bayesian Networks

+ - +

- - -

+ +

1 2 3

1

2

3

0

 

-

  

  B

  A

Figure 3: A nonlinear function f

Table 1: The conditional probability table for A.
A = 1 A = 2 A = 3

C = � 0.3 0.4 0.3

C = + 0.5 0 0.5

parents of Ai. Then

p(Aijc; pai) =

8>>>>>>>>>><
>>>>>>>>>>:

�1 Ai = 0; Ai1 = 0; Ai2 = 0; � � � ; Aik = 0
1� �1 Ai = 1; Ai1 = 0; Ai2 = 0; � � � ; Aik = 0
�2 Ai = 0; Ai1 = 1; Ai2 = 0; � � � ; Aik = 0
1� �2 Ai = 1; Ai1 = 1; Ai2 = 0; � � � ; Aik = 0
� � �

�m Ai = 0; Ai1 = 1; Ai2 = 1; � � � ; Aik = 1
1� �m Ai = 1; Ai1 = 1; Ai2 = 1; � � � ; Aik = 1

= �
(1�Ai)(1�Ai1)���(1�Aik)
1 (1� �1)

Ai(1�Ai1)���(1�Aik) � � �(1� �m)
AiAi1���Aik

and

G(E) =
p(C = +)

p(C = �)

nY
i=1

p(Aij+; pai)

p(Aij�; pai)
(3)

When we apply logarithm to it and convert the product into a sum, we get a set of terms
of at most k + 1 degree as follows:

�Ai
�Ai1 � � � �Aik

where �Ai is either Ai or 1�Ai. The same is true for �Aij . Thus the representational power
of an ANB in which each node has at most k parents equals to a polynomial of degree

5



Charles X. Ling and Huajie Zhang

k + 1. Thus, in binary domains, Naive Bayes represents linear functions, TAN1 represents
quadratic functions, and so on.

However, the representational power of ANBs in the discrete domain is much more
complex than that in the binary domain, and the derivation above cannot be extended to
the discrete domain. Indeed, there is no one-to-one relation between the maximum parent
number of ANB and the degree of polynomials. We have shown that Naive Bayes does not
correspond to linear functions any more in the discrete domain. To our knowledge, there
was little work by other researchers on the linearity of Naive Bayes, and the representational
power of ANB with di�erent structures, in the discrete domain.

In our previous work (Zhang and Ling, 2001b), we investigated the representational
power of Naive Bayes and ANB. We extend and generalize our previous work in this paper.
In the next section, we will brie
y review our previous work and introduce a few concepts
that we will use in this paper.

3. The Representational Power of Naive Bayes and ANB

De�nition 4 Given n discrete attributes A1, A2, � � �, An, and a class variable C, a function
f from A1 �A2 � � � �An to C is called an n-dimensional discrete function.

To discuss the representational power of ANB, we need a measure for the complexity
of target functions. The VC-dimension is widely used for hypothesis space complexity
(Vapnik and Chevonenkis, 1971), but it might not provide enough granularity. There was
some work on complexity measure for Boolean functions by the computational complexity
(Paterson, 1992), which uses the size of the minimum combinational network that computes
the function.2 However, this does not seem to be direct enough to measure the complexity
with respect to the di�culty in Bayesian learning.

In our previous work (Zhang and Ling, 2001b), we proposed a measure which uses the
maximum XOR contained in the function as the complexity of a function in the discrete
domain. We adopt this measure in this paper.

The reason to use the maximum XOR (also known as the parity function) as the com-
plexity measure for a function comes from the intuition that the n variables making up an
n-XOR depend on each other; i.e., the value of an n-XOR function cannot be determined
until the values of all variables are known. Bayesian networks represent target functions by
exploiting conditional dependencies among variables. Since there is no such conditional de-
pendencies among variables in an XOR, the maximum XOR contained in a function seems
to be an appropriate heuristic for the complexity of a function. As we will see, this measure
is indeed appropriate to Bayesian network representation. Let us �rst brie
y review the
related concepts.

De�nition 5 An n-XOR function with n Boolean variables is de�ned as to return 1 if and
only if an even number of variables are 1. n is called the order of the XOR.

1. TAN stands for Tree Augmented Naive Bayes, a special case of ANB in which each attribute can have

at most one parent other than the class node, thus forming a tree structure among attributes.

2. A combinational network consists of NOT, AND and OR gates, and its size is the number of such gates.
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By this notation, 2-XOR is a regular (2-variable) XOR (parity function). We propose to
use the highest order of XOR \contained" in a discrete function as its complexity measure
(Zhang and Ling, 2001b); that is, the maximum subfunction that forms an XOR pattern.

De�nition 6 Assume that f is an n-dimensional discrete function on A1, A2, � � �, An, C.
An (n � 1)-dimensional partial function fp on A1, � � �, Ai�1, Ai+1, � � �, An and C, and
Ai = aij, is called an (n� 1)-dimensional subfunction of f at Ai = aij, denoted by f(aij),
where 1 � i � n.

Similarly, we can get an arbitrary k-dimensional subfunction of f , by �xing (n � k)
attributes, where 2 � k � n � 1. An important feature of n-XOR is that its any k-
dimensional subfunction is also a k-XOR.

De�nition 7 An n-dimensional discrete function f is said to contain a k-XOR, if there
is a k-dimensional subfunction fp on attributes Ak1, Ak2, � � �, Akk, and for each attribute
Aki, there are two di�erent values, aki1 , aki2 , denoted by aki and �aki, such that a partial
function fp0 of fp from fak1; �ak1g � � � � � fakk ; �akkg to f+;�g is a k-XOR function.

Figure 4 (a) shows a discrete function in two dimensions containing a 2-XOR (on A =
1 and 3, and B = 1 and 3), and (b) shows a binary function in three dimensions containing
a 2-XOR (on B-C with A = 1).
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Figure 4: (a) a function containing 2-XOR in two dimensions (b) a function containing
2-XOR in three dimensions

De�nition 8 An n-dimensional discrete function f is said to have an order of m, if the
maximum XOR it contains is an m-XOR, denoted by Of(f).
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This complexity measure for a discrete function is di�erent from the one that uses the
size of the minimum combinational network (Paterson, 1992) in two ways. First, it is
applicable to any discrete functions, rather than just the binary functions. Second, it is
simpler, since we only consider the part of a function that consists of the highest order of
XOR, instead of the whole function.

In the discrete domain, it has been shown that Naive Bayes can produce nonlinear
boundaries, but it still cannot represent any nonlinear function containing a 2-XOR (Zhang
and Ling, 2001a). In our previous work, we proved upper bounds on the representational
power of Naive Bayes and TAN, and presented a conjecture on the upper bound of general
ANB (Zhang and Ling, 2001b).

As we discussed earlier, however, ANB is a special form of BNs. What is the represen-
tational power of general BNs? More precisely, what is the relation between the structural
complexity of a BN and its representational power? This paper will answer this question
by extending the previous results on ANB to general BNs.

4. The Representational Power of General BNs

4.1 Augmented Naive Bayes vs General Bayesian Networks

Naive Bayes and ANB represent a classi�cation function with the root as the class variable.
What does a general BN represent? One way to view a BN from a classi�cation viewpoint
is that each node could be a class variable. Thus, a BN represents a set of classi�cation
functions. Formally, we have the following de�nition.

De�nition 9 Given a BN G on A1, � � �, An and an example E = (a1; � � � ; ai�1; ai+1; � � � ; an),
the classi�cation function fi corresponding to node Ai is de�ned as:

fi(a1; � � � ; ai�1; ai+1; � � � ; an) = max
ai

PG(aija1; � � � ; ai�1; ai+1; � � � ; an):

The set of classi�cation functions represented by G is ff1; � � � ; fng, denoted by R(G).

De�nition 10 A BN G's representational order Or(G) is de�ned as:

Or(G) = maxfOf(fi); fi 2 R(G)g

4.2 The Representational Power of 1-order BNs

For a BN of order 1, each node has at most one parent. In fact, the structure of such a
BN is a forest. Naive Bayes belongs to this class. We have shown that Naive Bayes can
represent linear functions and some nonlinear functions, but cannot represent any function
containing 2-XOR (Zhang and Ling, 2001b). The following lemma extends the result on
Naive Bayes to the BNs with order of 1, thus establishing an upper bound of BNs of order
1.

Lemma 1 For any BN G, if Os(G) = 1, then Or(G) � 1:
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Proof: suppose that G is a BN on A1, � � �, An and Os(G) = 1. if Or(G) were 2 or
above, then there would be a function f of order 2, i.e., f contains a 2-XOR, that G can
represent it.

Suppose that f were from A1, � � �, Ak�1, Ak+1, � � �, An to Ak. Since f contains a 2-XOR,
according to De�nition 7, there are two attributes Ai and Aj , i and j 6= k, and each of them
has two di�erent values, ai, �ai, and aj , �aj , respectively, and two di�erent values ak and �ak
of Ak such that:

f(a1; � � � ; ai; � � � ; aj ; � � � ; an) = ak (4)

f(a1; � � � ; ai; � � � ; �aj ; � � � ; an) = �ak (5)

f(a1; � � � ; �ai; � � � ; aj ; � � � ; an) = �ak (6)

f(a1; � � � ; �ai; � � � ; �aj ; � � � ; an) = ak (7)

where al is a value of Al, l 6= i, j and k.

If one of Ai and Aj is out of the Markov blanket of Ak , it does not a�ect the value of
Ak when other attributes are assigned values. Therefore, it is not possible that Equation
(4), (5), (6) and (7) hold true simultaneously.

Assume that both Ai and Aj are in the Markov blanket of Ak. Since each node has at
most one parent, Ai and Aj are connected directly with Ak. There are two cases for the
connection patterns.

(1) Ak points to both Ai and Aj . In this case, it is a structure of Naive Bayes with Ak

as the class variable. It is known that Naive Bayes cannot represent 2-XOR (Zhang and
Ling, 2001b).

(2) Ai points to Ak and Ak points to Aj . In this case, the joint distribution PG can be
represented as below.

PG(Ai; Aj; Ak) = P (Ak)P (AijAk)P (AjjAi; Ak) = P (Ak)P (AijAk)P (AjjAk)

This means that PG can be represented by a Naive Bayes with Ak as the class variable.
Therefore, if G could represent 2-XOR, the correspondent Naive Bayes could too.

Therefore, G cannot represent any function of order 2.
�

4.3 The Representational Power of General BNs

Let us consider the representational power of general BNs. We will prove that a BN with
nodes having at most k parents cannot represent any function of k+1 order. First we prove
a lemma which is a special case of the main theorem. Its proof helps to illustrate ideas in
the proof of the main theorem.

Lemma 2 For any BN G with (m+ 1) nodes each of which has at most (m � 1) parents,
Or(G) � Os(G) = m� 1.

Proof:
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Suppose that G is a BN on discrete attributes A1, � � �, Am+1 and Os(G) = m � 1, i.e.,
each node has at mostm�1 parents. Let f be a function represented in G, we will prove by
contradiction that f cannot contain an m-XOR. Assume that f contains an m-XOR from
A1, � � �, Am to Am+1. According to De�nition 7, there would be two values ai, �ai for each
attribute Ai, 1 � i � m+ 1, such that the partial function fG of G's classi�cation function
from fa1; �a1g� � � ��fam; �amg to fam+1, �am+1g is an m-XOR. To simplify our notation, we
denote am+1, �am+1 by + and � respectively. Then we have 2m inequalities below:

fG(A1; A2; � � � ; Am)

(
� 1 if the number of Ai taking value ai is even
< 1 if the number of Ai taking value ai is odd

(8)

where i = 1; � � � ; m and fG(A1; A2; � � � ; Am) is speci�ed below.

fG(A1; A2; � � � ; Am) =
pG(A1; A2; � � � ; Am;+)

pG(A1; A2; � � � ; Am;�)
; (9)

where pG(A1; A2; � � � ; Am;+) and pG(A1; A2; � � � ; Am;�) are the joint distributions of G in
the class of Am+1 = am+1 and the class of Am+1 = �am+1 respectively. Obviously, all of
A1; A2; � � � ; Am should be in Am+1's Markov blanket.

Since G is a BN, we have:

pG(A1; A2; � � � ; Am;+) = p(+jpam+1)
mY
i=1

p(Aijpai); (10)

pG(A1; A2; � � � ; Am;�) = p(�jpam+1)
mY
i=1

p(Aijpai); (11)

where pai is an assignment of all of Ai's parents, 1 � i � m+ 1.
Note that if a term in Equation (10) and (11) does not contain + or �, then it is

cancelled out in fG and does not a�ect classi�cation. Thus, all terms in fG should have a
form either p(Am+1jpam+1) or p(Aijpai), where i 6= m+ 1 and Am+1 2 pai.

Let A1 = a1. We have 2m�2 inequalities below:

pG(a1; A2; � � � ; Am;+)

pG(a1; A2; � � � ; Am;�)
� 1; (12)

where the number of Ai taking value ai is odd (i 6= 1).
Multiply all these 2m�2 inequalities together, we have:

oddY pG(a1; A2; � � � ; Am;+)

pG(a1; A2; � � � ; Am;�)
� 1: (13)

Similar to (12), we have 2m�2 inequalities below:

pG(a1; A2; � � � ; Am;+)

pG(a1; A2; � � � ; Am;�)
< 1; (14)

where the number of Ai taking value ai is even (i 6= 1).
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Multiply all these 2m�2 inequalities together, we have:

evenY pG(a1; A2; � � � ; Am;+)

pG(a1; A2; � � � ; Am;�)
< 1: (15)

Divide (13) by (15), we have:

oddY pG(a1; A2; � � � ; Am;+)

pG(a1; A2; � � � ; Am;�)

evenY pG(a1; A2; � � � ; Am;�)

pG(a1; A2; � � � ; Am;+)
> 1 (16)

Denote the left side of the above inequality by L1.
Let A1 = �a1, we have the similar inequality below.

evenY pG(�a1; A2; � � � ; Am;+)

pG(�a1; A2; � � � ; Am;�)

oddY pG(�a1; A2; � � � ; Am;�)

pG(�a1; A2; � � � ; Am;+)
> 1 (17)

Let us denote the left side by L2. Notice that L1 and
1
L2

are almost the same except a1
and �a1. Next we try to prove that L1 =

1
L2

by showing that all items containing a1 or �a1
will be cancelled out in both L1 and L2.

Let Am+1 be + or �. Note that pG(A1; � � � ; Am; Am+1) can be decomposed in terms of
(10) and (11), so all items in the inequalities are in the form of p(Aijpai), and none of them
is zero (otherwise, it is impossible for A1, � � �, Am, Am+1 to form an m-XOR). For the item
p(Aijpai) in which both a1 and �a1 do not occur, it is obvious that if that item occurs in the
numerator of L1, it should occur in the denominator of L2. Thus, we only need to consider
the items containing a1 or �a1. There are two cases.

(1) The items in the form of p(A1jpa1) occur, where A1 is a1 or �a1. Since A1 has at most
m � 1 parents and Am+1 should be in pa1 (otherwise this term will be cancelled out from
fG), so there is at least one attribute other than Am+1 which is not in pa1. Let �pa1 denote
all the attributes that are not in pa1, and t be the number of such attributes (t � 1). Then
there are 2t�1 assignments of �pa1 to make the number of attribute Ai taking ai (i 6= 1) even,
and 2t�1 assignments odd. Thus, each p(A1jpa1) occurs 2t�1 times in both the numerator
and denominator of L1, and is therefore cancelled out. The same situation happens for L2.

(2) The items in the form p(Aijpai) occur, where i 6= 1 and A1 is in pai. Similar to (1),
since there is at least one attribute other than Am+1 not in pai, each p(Aijpai) occurs the
same times in the numerator and denominator of L1 or L2, and thus is cancelled out.

Therefore, L1 =
1
L2
. It is impossible to satisfy both inequalities (16) and (17). Therefore,

we conclude that no such ANB can represent f .
�

Now we are ready to prove the main theorem about the representational upper bound
of BNs.

Theorem 3 For any BN G, Or(G) � Os(G).

Proof: suppose that G is a BN on discrete attributes A1, � � �, An and Os(G) = m� 1,
i.e., each node has at most m � 1 parents. Let f be a function represented in G, we will
prove by contradiction that f cannot contain an m-XOR. Assume that f contains an m-
XOR from A1, � � �, Am to Am+1. According to De�nition 7, there would be two values
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ai and �ai for each attribute Ai, 1 � i � m + 1, such that the partial function fG of G's
classi�cation function from fa1; �a1g � � � � � fam; �amg to fam+1; �am+1g is an m-XOR, while
Ak = ak (m + 1 < k � n). To simplify our notation, we denote am+1, �am+1 by + and
� respectively. Here we have two types of attributes: un�xed attributes A1, � � �, Am and
Am+1 that compose an m-XOR, and �xed attributes Am+2, � � �, An that have values am+2,
� � �, an respectively.

Obviously all of A1, � � �, Am should be in Am+1's Markov blanket, and we only need to
consider the node in Am+1's Markov blanket.

Consider A1 = a1 and A1 = �a1, we have the inequalities below similar to (16) and (17):

oddY pG(a1; A2; � � � ; Am; am+2 � � � ; an;+)

pG(a1; A2; � � � ; Am; am+2; � � � ; an;�)

evenY pG(a1; A2; � � � ; Am; am+2; � � � ; an;�)

pG(a1; A2; � � � ; Am; am+2; � � � ; an;+)
> 1 (18)

evenY pG(�a1; A2; � � � ; Am; am+2; � � � ; an;+)

pG(�a1; A2; � � � ; Am; am+2; � � � ; an;�)

oddY pG(�a1; A2; � � � ; Am; am+2; � � � ; an;�)

pG(�a1; A2; � � � ; Am; am+2; � � � ; an;+)
> 1: (19)

where odd/even speci�es that the number of Ai taking ai is odd or even, 2 � i � m. Let
us denote the left sides of the above two inequalities by L3 and L4 respectively. Similarly,
we try to prove that L3 =

1
L4
, and we also only need consider the items containing a1 or

�a1. (18) and (19) are di�erent from (16) and (17) only in that there exist �xed attributes.
Let A1 = a1. There are three cases that a �xed attribute occurs in an item together

with a1 in L3 or L4.
(1) A �xed attribute has A1 and some other attributes (�xed or un�xed) as its parents.

That is, the items in the form of p(akjpa
u
k ; pa

f

k) occur, where ak is an the value of a �xed
attribute Ak (k > m + 1), and pauk are the parents of Ak that are un�xed attributes and

A1 2 pauk , and pa
f

k are the parents of Ak that are �xed attributes. Since Ak has at mostm�1
parents and Am+1 should be one of them, there are at least two attribute in fA2; � � � ; Amg
not in pak.

3 Based on the same reason in proving Lemma 2, these items occur the same
times in the numerator and denominator of L3, and thus are cancelled out. The similar
situation happens for L4.

(2) An un�xed attribute has A1 and some other attributes (�xed or un�xed) as its

parents. That is, the items in the form of p(Akjpa
u
k ; pa

f
k) occur, where Ak is an un�xed

attribute (k < m + 1), and pauk are the parents of Ak that are un�xed attributes and

A1 2 pauk , and pa
f
k are the parents of Ak that are �xed attributes. Since Ak has at mostm�1

parents and Am+1 should be one of them, there is at least one attribute in fA2; � � � ; Amg �

fAkg not in pak .
4 Based on the same reason in proving Lemma 2, these items occur the

same times in the numerator and denominator of L3, and thus are cancelled out. The
similar situation happens for L4.

(3) The �xed attributes are the parents of A1. That is, the items in the form of

p(a1jpau1 ; pa
f
1) occur. Since Am+1 should be in pau1 , there is at least one attribute in

fA2; � � � ; Amg not in pa1.
5 Similarly, those items will be cancelled out in both L3 and

L4.

3. For Corollary 1, there is at least one attribute in fA2; � � � ;Amg not in pak .

4. For Corollary 1, there is also at least one attribute in fA2; � � � ;Amg � fAkg not in pak.

5. For Corollary 1, since A1 has at most m� 1 parents from fA2, � � �, Am, Am+1g in which one is Am+1

and others are from fA2, � � �, Amg , there is also at least one of fA2, � � �, Amg not in pa1.
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For A1 = �a1, we have the similar result. Thus, L3 =
1
L4
. It is impossible to satisfy both

inequalities (18) and (19). Therefore, we conclude that no such BN can represent f .
�

Theorem 3 presents a representational upper bound for general BNs, thus establishing
an explicit association between the structural complexity of a BN and its representational
capacity.

Theorem 3 can be further extended to the following corollary.

Corollary 1 If an n-dimensional discrete function f has an order of m (contains an m-
XOR), with attributes A1, � � �, Am and Am+1 forming the m-XOR, m � 2, then no BN of
order m, with attributes A1, � � �, Am and Am+1 having at most m � 1 parents from fA1,
� � �, Am, Am+1g, can represent f .

Corollary 1 shows that, a BN of order m cannot represent a function of order m, if each
of the nodes forming the m-XOR has at most m � 1 parents from the nodes forming the
m-XOR. The proof is similar to the proof of Theorem 3, and the di�erences are indicated
in footnotes in the proof. Of course, such a function of order m might still be represented
by a BN of order m with a di�erent structure. In fact, it is our conjecture on the lower
bound of BNs: any function of order m can be represented by a BN of order m.

5. Conclusions

In this paper, we discuss the representational power of discrete BNs. We use the maximum
number of parents of a node in a BN as the measure for its structural complexity, and the
order of the maximum XOR contained in a target function as the measure for complexity of
the target function. Then we establish a relation between the structural complexity and the
representational power of Bayesian networks, by proposing and proving a representational
upper bound of BNs. Roughly speaking, any BNs of order m cannot represent a target
function of order m+1. Moreover, a Bayesian network of order m cannot represent a target
function of order m, if each of the nodes that forms the m-XOR has at most m� 1 parents
from the nodes forming the m-XOR. Our results show the ultimate limitation of BNs in
representing discrete classi�cation functions.

Our theoretical results establish a clear association between the topology of Bayesian
networks and the complexity of functions that they can represent. They help us to un-
derstand the limitation of Bayesian networks. In addition, our results can be useful in
real-world applications. Before we learn a Bayesian network from data, we often need to
decide the structure of the network. Our results suggest to detect the number of n-XOR
(n = 2, 3, � � �) contained in the data. If there exists 2-XOR, then no Naive Bayes can learn
it perfectly. However, if the number of 2-XOR is small, then Naive Bayes might still be
proper to learn it (Zhang and Ling, 2001a); otherwise, more complex structures, such as
TAN, should be chosen.

We give only a representational upper bound of BNs in this paper. A natural question
is: what is the representational lower bound of BNs? An interesting and intuitive conjecture
is that any function of order m can be represented by some BN of order m. This conjecture
is correct for Naive Bayes and TAN, but the general case has not been proved, and it is one
of our future research interests.
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Additional interesting future work is to determine the representational power of Bayesian
networks with hidden nodes. Intuitively, BNs with hidden nodes have a higher representa-
tional power.
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