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Abstract
We present some greedy learning algorithms for building sparse nonlinear regression and classifi-
cation models from observational data using Mercer kernels. Our objective is to develop efficient
numerical schemes for reducing the training and runtime complexities of kernel-based algorithms
applied to large datasets. In the spirit of Natarajan’s greedy algorithm (Natarajan, 1995), we it-
eratively minimize theL2 loss function subject to a specified constraint on the degree of sparsity
required of the final model until a specified stopping criterion is reached. We discuss various greedy
criteria for basis selection and numerical schemes for improving the robustness and computational
efficiency. Subsequently, algorithms based on residual minimization and thin QR factorization are
presented for constructing sparse regression and classification models. During the course of the
incremental model construction, the algorithms are terminated using model selection principles
such as the minimum descriptive length (MDL) and Akaike’s information criterion (AIC). Finally,
experimental results on benchmark data are presented to demonstrate the competitiveness of the
algorithms developed in this paper.
Keywords: Sparse Learning Machines, Kernel Methods, Greedy Algorithms, Regression, Classi-
fication, Model Selection.

1. Introduction

We consider the supervised learning problem of constructing a regression or a classification model
using observational dataD := (xi ,y(xi)), i = 1,2, . . . ,m, wherexi ∈ R

p denotes the input vector
andy∈ R or {−1,1} denotes the target to be approximated. In particular, we focus on models of
the form ŷ(x) = ∑n

j=1α j k(x,x∗j ), where{x∗j }nj=1 ⊆ D. Further,k(x,xi) is a Mercer kernel (Vapnik,
1995), i.e., the Gram matrixK ∈ R

m×m with elementsKi j = k(xi ,xj) is symmetric positive definite
(SPD). We compactly denote the weight vector asα = {α1,α2, . . . ,αm} ∈ R

m, and the vector of
targets asy = {y(x1),y(x2), . . . ,y(xm)} ∈ R

m. The structure of the model considered here is typical
of that encountered in regularization networks and support vector machines (Evgeniou, Pontil and
Poggio, 2000).

A number of loss functions have been proposed in the literature (Vapnik, 1995) for computing
the weight vector. In the present paper, we will focus on the case whenα is computed by minimizing
theL2 loss function,∑m

i=1(y(xi)− ŷ(x))2. In the absence of regularization, the weight vector can then
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be computed by solvingKα = y. As a consequence the resulting model behaves as an interpolator. In
contrast, when the targets are corrupted by noise,y= Kα+η, whereη∈R

m denotes noise typically
assumed to beN (0,σ2). Hence, one needs to solve(K + σ2I)α = y to compute the regularized
weight vector. Note that computation of the weight vector for both cases would requireO(m2)
memory andO(m3) operations, which would clearly be prohibitive for large datasets.

1.1 Sparse Approximations

In the present paper, we use the termsparseto denote models of the form ˆy(x) = ∑n
j=1α j k(x,x∗j ),

where{x∗j}nj=1 ⊆ D andn < m. In other words, given a dictionary of Mercer kernels centered on
each training data point (i.e.,k(x,xi), i = 1,2, . . . ,m), the learning algorithm chooses only a subset
of the kernels in the final model. Such a solution naturally arises when a support vector machine
(Vapnik, 1995) or the relevance vector machine (Tipping, 2001) is applied to approximate the target.
However, when theL2 loss function is minimized, the resulting weight vector may not be sparse even
in the presence of regularization. In this paper, we present greedy learning algorithms for computing
sparse approximate solutions to theL2 loss minimization problem.1 The motivation for this is to
exploit fast algorithms for matrix computations and also to investigate the generalization ability of
sparse approximate solutions to theL2 loss function.

In particular, we consider the problem when the memory requirements and computational costs
are sought to be minimized by solving the overdetermined least-squares problem: min||Knαn−y||2,
whereKn ∈ R

m×n is a rectangular matrix formed by choosing a subset of them columns of the
original Gram matrix andαn ∈ R

n denotes the truncated weight vector. Note that sinceK is SPD,
Kn has full column rank. This approach intrinsically leads to asparsemodel sincen< mand hence
only a subset of the training data is employed in the final model. In addition, this approach requires
only O(mn) memory andO(n3) operations for computing the weight vector. Further, the sparse
model requires onlyO(n) operations for predicting the target at a testing point.

Since the empirical/training error of the sparse approximation becomes||Knαn− y||2 = ε > 0
for n << m, such a model may also be referred to as a sparse approximate interpolator. Recently,
Natarajan (1999) presented a theoretical justification for regularization via sparse approximate inter-
polation. It was shown that interpolation error (ε) and noise in the target vectory will tend to cancel
out if ε is chosena priori to be the noise intensity. Natarajan’s sparse approximation problem can
be formulated as: find a sparse vectorα ∈ R

m such that||Kα−y|| ≤ ε. Alternatively, this problem
may be interpreted as a subset selection problem of the form: findn columns of the matrixK such
that min

αn
||Knαn−y||2≤ ε.

Clearly, choosingn columns out ofm possible choices involves a combinatorial search over
an mCn space. As shown by Natarajan (1995), this problem is NP-hard, and we have to resort to
suboptimal search schemes to ensure computational efficiency. Note that the problem statement
considered here appears in the literature in different guises, for example, basis selection methods,
basis pursuit, matching pursuits (Chen, Donoho, and Saunders, 1998), and sparse approximate in-
verse computation (Chow and Saad, 1997; Grote and Huckle, 1997).

1. The interested reader is referred to Vincent and Bengio (2001) and Friedman (2001) for a detailed exposition of
algorithms for greedy optimization of general nonlinear loss functions.
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1.2 Outline of the Paper

In this paper, we present some greedy learning algorithms for constructing sparse nonlinear re-
gression and classification models with Mercer kernels. In particular, our focus is on selecting an
optimal subset from a dictionary of Mercer kernels for function approximation and classification.
We examine the computational properties of existing greedy algorithms in the domain of signal pro-
cessing and preconditioned iterative numerical methods. Drawing on developments in these fields,
we derive iterative algorithms based on residual error minimization and thin incremental QR fac-
torization for building sparse regression and classification models. The MDL principle and AIC
are employed as termination criteria to determine the optimum level of sparsity. We show that the
present algorithms are computationally more efficient and require significantly less memory than
existing greedy algorithms. Numerical studies on some popular benchmark problems also suggest
that our algorithms lead to models with good generalization abilities.

This paper is organized as follows: In Section 2, we present some relevant background on
greedy algorithms. Section 3 outlines various considerations involved in developing robust greedy
algorithms with modest memory requirements and low computational cost. Section 4 presents a
residual minimization technique and a greedy thin incremental QR factorization scheme for updat-
ing the weight vector during the iterations of a greedy algorithm. In Section 5, we outline stopping
criteria based on the principles of MDL and AIC to construct parsimonious models. Section 6
presents experimental investigations on a synthetic dataset as well as some real-world datasets, and
Section 7 concludes the paper and discusses future directions of research.

2. Preliminaries

The greedy algorithms in the literature can be broadly classified into sequential forward greedy al-
gorithms (Mallat and Zhang, 1993; Natarajan, 1995; Grote and Huckle, 1997; Smola and Bartlett,
2001; Vincent and Bengio, 2001; Friedman, 2001), backward greedy algorithms (Couvreur and
Bresler, 1999), and mathematical programming approaches (Chen, Donoho, and Saunders 1998;
Girosi, 1998). In general, sequential forward algorithms are computationally cheap and tend to
have modest memory requirements. In contrast, backward greedy algorithms are computationally
much more expensive since the full-order Gram matrix is factorized prior to iteratively annihilating
columns which lead to minimal increment in the residual error (Couvreur and Bresler, 1999). From
a theoretical point of view, backward algorithms have provable convergence properties. In con-
trast, forward algorithms offer no such known guarantees. Mathematical programming approaches
to sparse approximation attempt to reduce theL0 norm of the weight vector by minimizing an ap-
proximation to it; see, for example, Girosi (1998) and Chen, Donoho, and Saunders (1998). The
computational cost associated with this class of algorithms also tends to be much higher than se-
quential forward greedy approaches.

There exist intimate connections between sequential forward greedy techniques and boosting al-
gorithms (Freund and Schapire, 1996). More specifically, gradient boosting algorithms (Friedman,
Hastie and Tibshirani, 2000; Friedman, 2001) can be interpreted as a generalization of forward
greedy algorithms to minimize general loss functions. A theoretical analysis of theL2boost proce-
dure for regression and classification problems has been recently presented by B¨uhlmann and Yu
(2001). It was shown both theoretically and empirically that the performance ofL2boost is compa-
rable to other boosting procedures for both regression and classification problems. It is to be noted
that boosting algorithms use a stagewise approach where the weights corresponding to the basis
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functions2 selected at an earlier stage are not updated. In contrast, our approach is a stepwise proce-
dure where backfitting is carried out at each iteration to adjust the weights of all the basis functions
selected so far.

We mention that efficient learning with kernels has been the focus of research in a number of
recent articles. Of these, the ones that are closest in spirit to the present work, focus on obtaining
reduced order approximations for the Gram matrix either greedily (Smola and Sch¨olkopf, 2000) or
through random subsampling (Williams and Seeger, 2001). However, the techniques presented in
this work have in general more attractive computational and storage properties as compared with
the above schemes and also show more promise for use as an off–the–shelf tool.

In the present paper, we restrict our discussion to sequential forward greedy algorithms applied
to minimization of theL2 loss function. We present below a brief overview of one such repre-
sentative sequential forward greedy scheme, viz. Natarajan’s algorithm. A comparison study by
Adler, Rao and Kreutz-Delgado (1996) has shown that this algorithm generally performs better than
other algorithms in the literature. Hence, we will benchmark the numerical schemes developed in
the present research against Natarajan’s algorithm. Note that Natarajan’s algorithm is equivalent to
the orthogonal least-squares (OLS-RBF) technique presented earlier by Chen, Cowan, and Grant
(1991) for constructing parsimonious radial basis function networks. A detailed investigation of the
OLS-RBF algorithm and its application to machine learning problems can be found in Vincent and
Bengio (2001).

The following notation has been used throughout this paper; we denote the inner product be-
tween two vectors as(x,y) = xTy. ej ∈R

m is used to denote thej-th unit vector. We employ “colon”
notation of the formK(:, I) ∈ R

m×p to denote the matrix formed using column indices chosen from
the setI of cardinality p. We will refer to thei p-th column of the Gram matrixK ∈ R

m×m by
kip ∈ R

m. α j will be used to refer to thej-th element of the vectorα. Further, the superscriptp will
be used to denote the iteration index.

2.1 Natarajan’s Algorithm

Natarajan’s algorithm (Natarajan, 1995) consists of recursively choosing and modifying the columns
of K in an iterative fashion so as to maximally reduce theL2 norm of the residual error vector
r = y−Kα. Let Kp−1 ∈ R

m×(p−1) denote the matrix ofp− 1 columns chosen till the(p− 1)-th
iteration, and letI p−1 represent the set of corresponding column indices inKp−1. Thep-th iteration
then involves choosing a previously unselected columnkip from K such that||r||2 is maximally
reduced.

The initialization step of Natarajan’s algorithm involves normalizing the columns ofK and
setting the initial residual toy, i.e., r0 = y. Let K̃ denote the normalized Gram matrix. The steps

2. In the jargon of boosting, a basis function may be interpreted as a weak learner.
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involved at thep-th iteration are shown below:

i p = arg max
j 6∈I p−1

| (k̃p−1
j , r p−1) | (1)

I p ← [I p−1, i p]

r p ← r p−1− (k̃p−1
i p

, r p−1)k̃p−1
i p

(2)

k̃p
j ← k̃p−1

j − (k̃p−1
i p

, k̃p−1
j )k̃p−1

i p
, ∀ j 6∈ I p (3)

k̃p
j ←

k̃p
j

||k̃p
j ||2

∀ j 6∈ I p (4)

Note that once a suitable index is selected according to (1), the residual is updated accordingly
(2) and all the unselected columns reoriented (3) and normalized (4). The final weight vectorαn ∈
R

n aftern iterations can be computed by solving the least squares problem min‖Knαn−y‖2, where
Kn ∈ R

m×n denotes the rectangular Gram matrix formed using the indices inI n.
It can be noted from (1) that the index selection criterion is applied only to previously unselected

columns. Hence, this scheme does not suffer from the recycling problem encountered in greedy
algorithms such as basis matching pursuit (Mallat and Zhang, 1993) and the scheme of Schaback
and Wendland (2000). Hence, Natarajan’s algorithm is also referred to as order recursive matching
pursuit (ORMP).

Further, the following theorem guarantees a sparse weight vector at the end of the ORMP itera-
tions when an upper boundε on the norm of the residual is specified as the termination criterion.
Theorem 1[Natarajan, 1995]:The number of non-zero elements in the weight vectorα ∈ R

m is at
most

r ≤ d18Opt(
ε
2
)‖ K−1 ‖22 ln(

‖ y ‖2
ε

)e
where Opt( ε

2) denotes the fewest number of non zero entries over solutions that satisfy‖Kα−y‖2≤
ε
2.

A more detailed theoretical analysis of the convergence rate of a class of greedy algorithms has
been recently presented by Zhang (2001). This analysis shows that the residual error is reduced by
O(1/p) at thep-th iteration.

The major computational cost incurred in ORMP is in step (1) and the column update in step
(3), which has to be undertaken for all the unselected columns left at each iteration.3 It can be noted
that O(m2) operations are required at each iteration. For large datasets, this could significantly
increase the training time. Further, the ORMP algorithm requires the computation and storage of
the full-order Gram matrix. Similar computational cost and memory requirements also arise in the
case of the OLS-RBF algorithm andL2Boost procedures applied to a dictionary of Mercer kernels.
In contrast, the techniques presented in this paper have much lower memory requirements, and are
generally faster while achieving comparable (or better) generalization performances.

3. Structure of Greedy Algorithms

In this section, we present an overview of the structure of greedy algorithms developed in this paper.
A fundamental component of a greedy algorithm is the choice of criterion employed to select a new

3. Note that Natarajan’s algorithm may be interpreted as a QR factorization scheme based on the modified Gram Schmidt
algorithm, in which the column pivot is chosen greedily with respect to the vectory.
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column at each iteration. Once a new column is chosen, it is necessary to update the weight vector
α and the residual error vector,r = y−Kα. Further, to ensure robustness, we also need to allow the
flexibility of dropping a previously chosen column. We discuss next various considerations involved
in designing a computationally efficient greedy algorithm.

3.1 Criteria for Basis Selection

This crucial step involves the use of a criterion for deciding which new column should be chosen at
the current iteration. Clearly, it would be preferable to choose the column which leads to the greatest
reduction in the residual error. One way to achieve this would be to examine the current residual
(r), and search for the entry with highest absolute value. Since, we are working with a dictionary of
Mercer kernels, the Gram matrixK is SPD and consequently, the residualr provides the direction
of maximum decrease in the cost function 0.5αTKα−αTy. Assuming that the residual error vector
is implicitly computed at each iteration, this criteria would incur negligible computational cost.
Further, to implement this criterion, one only needs to store up ton columns of the Gram matrix,
wheren is the maximum number of iterations.

In line with Natarajan’s algorithm, an alternative approach would be to work with the residual
corresponding to the normal equations,4 i.e., KTKα = KTy. However, this involvesO(m2) opera-
tions to compute the normal residualKTr, as well as the requirement of computing and storing the
full-order Gram matrix.

A different criterion was proposed by Huckle and Grote (1997) in the context of constructing
sparse approximate inverse preconditioners. They suggested that by solving a sequence of one-
dimensional minimization problems (over the columns not yet selected), the column which leads
to greatest reduction in the residual can be chosen. To illustrate this, letI p−1 denote the indices of
the columns chosen at the(p−1)th iteration. A new column can then be selected at iterationp by
solving(m− p+1) one-dimensional minimization problems of the form

min
µj , j 6∈I p−1

‖ r p−1 +µjKej ‖2

The solution of this minimization problem turns out to be

µj =−(r p−1,Kej)
(Kej ,Kej)

For eachj, theL2 norm of the new residualr p−1 +µjKej can be written as

ρ2
j =‖ r p−1 ‖22−

(r p−1,Kej)2

(Kej ,Kej)

Note that solving all the(m− p+ 1) minimization problems would require the computation and
storage of the full-order Gram matrix. Recently, Smola and Sch¨olkopf (2000) proposed a gen-
eral probabilistic approach for sparse approximation. The success of their approach (cf. Smola
and Bartlett, 2001) suggests that, in practice, by solving around 60 one-dimensional minimization
problems for randomly chosen column indices (where, column indexj 6∈ I p−1), columns which

4. Note that this is essential only when the coefficient matrix is indefinite. However, since the present research is
restricted to Gram matrices based on Mercer kernels (i.e.,K is SPD), this is not strictly required.
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are probabilistically in the top 95th percentile can be chosen. Such a probabilistic approach may
hence lead to a significant reduction in the number of one-dimensional minimization problems to
be solved. However, in the present paper, we pursue the simpler criterion which involves searching
for the index with the largest absolute value inr.

3.2 Updatingα and r

Once a new column is selected, we need to update the weight vectorα and the residual error vector
r. Further, it is desirable to do this step with minimal computational effort.

Smola and Bartlett (2001) update the weight vector by explicitly updating the inverse ofE(:
, I p)TKE(:, I p),5 when an additional column is added at each iteration. However, such explicit
updates when computed frequently could lead to numerical instabilities due to round-off error accu-
mulations. Note that it is also possible to modify many existing iterative schemes based on Krylov
subspace methods (Chow and Saad, 1998) for solving a system of linear algebraic equations to
compute sparse approximate solutions. For example, by enforcing sparsity on the Krylov subspace
{r,Kr,K2r . . .}, the resulting approximation toα will also be sparse.

In the present research, we consider two fast numerical schemes which are expected to be nu-
merically more stable. The first scheme described in Section 4 is an iterative scheme based on
residual error minimization. The second scheme presented in Section 5 uses a thin incremental QR
factorization update scheme. Both these schemes only incurO(mn) operations at each iteration of
the greedy algorithm.

ALGORITHM 1: Exchange Algorithm
1. s← arg min

j∈I p
|r p

j |
2. l ← arg max

j 6∈I p
|r p

j |
3. γ← (r p+αp

sKes,Kel )
(Kel ,Kel )

4. r̃ ← r p + αp
sKes− γKel

5. If ||r̃ ||< ||r p|| then
αp

s ← 0
αp

l ← γ
r p← r̃
I p← [I p\s, l ]

End if

3.3 Exchange Algorithm

Most forward greedy algorithms in the literature do not allow for the possibility of annihilating
a column once it has been chosen. Hence, for some problems, a forward greedy algorithm which
makes a myopic choice at an early iteration may end up choosing an exorbitant number of additional
columns to compensate for the previous choice. To circumvent this possibility, we include a step
which allows for the flexibility of dropping a column based on the progress of the iterations. There
are many possibilities for achieving this. For example, one could integrate backward (Couvreur

5. HereE ∈R
m×m denotes the identity matrix.
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and Bresler, 1999) and forward greedy algorithms to combine the robustness of the former and the
computationally efficiency of the latter approach. However, here we pursue a simpler approach
motivated by the algorithm presented by Chow and Saad (1997) for computing sparse approximate
inverses.

The basic idea is to drop the index for which|r| is lowest (says∈ I p) in favor of a previously
unselected column index with the largest value in|r| (sayl 6∈ I p), if this leads to a reduction in the
current residual. To check whether this exchange strategy will lead to a lower residual, we need to
solve the one-dimensional minimization problem:

min
γ
‖ y−K(αp−αp

ses+ γel ) ‖2

The solution of this minimization problem is given by

γ =
(r p + αp

sKes,Kel )
(Kel ,Kel )

whereαp andr p denotes the weight vector and residual error at iterationp, respectively.
The steps of the exchange algorithm are summarized in Algorithm 1. Note that the operationI p\

s indicates the process of removing the indexs from the setI p. It can be seen that the exchange step
will cost O(m) additional operations at each iteration of the greedy algorithm. A similar exchange
strategy can be coupled to a thin incremental QR factorization scheme as discussed in Section 5.

4. Incremental Greedy Learning Algorithms

Having outlined the essential building blocks of greedy learning algorithms for minimizing theL2

loss function, we present two numerical schemes. First, we present a minimal residual iteration
scheme for updatingα andr. Subsequently, a greedy thin incremental QR factorization scheme will
be outlined.

4.1 Minimal Residual Iterations

The basic idea of the minimal residual iteration scheme (Chow and Saad, 1997) is to zero-out
many terms of the search direction to ensure sparse solutions. The steps of this iterative scheme
are summarized in Algorithm 2. Letr p and αp denote the residual error and the weight vector,
respectively, at the end of thep-th iteration. At the next iteration, we use the search directiond,
which is the residual error vector constrained to have the same sparsity pattern asαp plus a new
entry (see steps 2-4). This new entry is chosen to be the largest component in|r p|. Minimization
is carried out using the steplength computed in step 6. This guarantees that||r p+1|| ≤ ||r p||. The
residual error and weight vector are updated using this steplength in steps 7-8. In the last step, we
apply the exchange strategy described earlier in Algorithm 1. We henceforth refer to the minimal
residual iteration scheme with exchange as MRX.

Note thatd is a sparse vector with onlyp non-zero entries. Hence, computation ofKd in step 5
of Algorithm 2 requires onlyp columns ofK. Hence, the MRX algorithm only requires a maximum
of O(mn) memory. Further, the computational complexity at each iteration isO(mp).

Similar to L2boost (Friedman, 2001; B¨uhlmann and Yu, 2001), the MRX algorithm consists
of repeated least-squares fitting of residuals. However, there are two main differences between
these algorithms: (1) MRX updates the weights corresponding to all the basis functions chosen so
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far as compared toL2boost which only computes the weight corresponding to the newly chosen
basis function, and, (2) in contrast toL2boost which probes along all the basis functions at each
iteration to find the best index, the MRX algorithm uses the current residualr to find the best
index. As a result, the memory requirement ofL2boost isO(m2) since all the columns of the Gram
matrix K are required to probe along each basis function. Finally, it is worth noting that in finite
precision arithmetic, steepest-descent algorithms of the form of MRX may converge very slowly or
fail to converge without preconditioning. Since computing a good preconditioner may increase the
memory requirements significantly, a cheaper alternative would be to recompute the weight vector
at the end of the MRX iterations. We next present a thin QR factorization scheme which in practice
has a much faster convergence rate.

4.2 QR Factorization Update Scheme

As an alternative to MRX, we now present a greedy thin incremental QR factorization scheme for
updatingα and r, when a new column of the Gram matrix is added at each iteration. As shown
below, this enables the residual error vector to be readily updated during the iterations of the greedy
algorithm. The sequence of steps at thep-th iteration are summarized below:

i p = arg max
j 6∈I p−1

| r p−1
j | (5)

I p ← [I p−1, i p]
qp ← [Qp−1⊥ kip] ∈R

m (6)

Qp ← [Qp−1,qp] ∈ R
m×p (7)

Rp ←
[

Rp−1 (Qp−1)Tkip

0 (qp,kip)

]
∈ R

p×p (8)

r p ← r p−1− (qp,y)qp (9)

whereqp← [Qp−1⊥ kip] stores the result of orthogonalizing the new column vectorkip with respect
to the columns of the orthogonal matrixQp−1 ∈ R

m×(p−1). It is to be noted here that a na¨ıve ap-
plication of the classical Gram-Schmidt algorithm can lead to numerical instabilities, particularly
when the Gram matrix is ill-conditioned. In our numerical implementation, we have used a FOR-
TRAN version (Reichel and Gragg, 1990) of the algorithm proposed by Daniel, Gragg, Kaufmann,
and Stewart (1976) to update the thin QR factorization when a new basis function is selected from
the dictionary. This implementation of updating the QR decomposition is based on the use of el-
ementary two-by-two reflection matrices and the Gram-Schmidt process with reorthogonalization,
thereby ensuring efficiency and numerical stability. Further, it may so happen (at later stages of the
iterations) that the new columnkip may numerically lie in span{Qp−1}. To circumvent this prob-
lem, we monitor the reciprocal condition number of the matrixQ̃ := [Qp−1,kip/||kip||], which can
be efficiently computed since the columns ofQp−1 are orthonormal (Reichel and Gragg, 1990). In
practice, we terminate the iterations if the reciprocal condition number is lower than a specified
threshold.

In contrast to existing greedy orthogonal decomposition schemes (Natarajan, 1995; Chen, Cowan,
and Grant, 1991; Vincent and Bengio, 2001), the present approach does not require explicit storage
of all the columns of the Gram matrixK. Instead, one needs to compute only the required column(s)
at runtime. Further, the stepwise QR update leads to a very simple update formula for the residual
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ALGORITHM 2: Minimal Residual Iterations
Input: maximum allowable sparsityn.
Setp = 0, α0 = 0, r0 = y, andI p = [ ]
while p < n, do

1. p← p+1.
2. Findi p = arg max

j 6∈I p−1
|r p−1

j |
3. I p← [I p−1, i p]
4. dj ← r p−1

j ∀ j ∈ I p anddj ← 0 ∀ j 6∈ I p.
5. q← Kd
6. β← (r p−1,q)/(q,q)
7. r p← r p−1−βq
8. αp← αp−1 + βd
9. Apply Algorithm 1

(9). Finally note that there is no explicit solution update stage. The solution may be obtained in one
shot once the stopping criterion is met. Assuming that the scheme terminates at then-th iteration,
the weight vector can then be computed by solving the upper triangular system of equations

Rnαn = (Qn)Ty

whereRn ∈R
n×n andQn ∈R

m×n. From a computational aspect, the greedy thin QR update scheme
requiresO(mp) operations at thep-th iteration. Note that our QR update scheme is expected to be
much faster than existing greedy orthogonal decomposition schemes, since we update a thin QR
factorization at each iteration rather than updating all the unselected columns.

ALGORITHM 3: QR-based Exchange Strategy
If (‖ r̃ ‖<‖ r ‖) then

DowndateQp andRp at thes-th column:
Rp←GT

p−1 . . .GT
s Rp(:, I p \s)

Qp←QpGs. . .Gp−1, whereGi denotes a
rotation in planesi, i +1 for i = s : p−1.

UpdateQp andRp at thel -th column using
Equations (13-15).
Modify r p using the updated factors.

End if

The incremental QR update scheme can be modified to incorporate an exchange algorithm in
the spirit of Section 3.3. However, this involves applying a QR downdate followed by an update
operation. Specifically, at thep-th iteration, one drops the column for which the corresponding
residual is the lowest (says) in favor of a column6∈ I p (say l). Thus we need only modify step
(5) in Algorithm 1. The update always occurs at the tail of the QR factorization and is essentially
described by Equations (6-8). The downdate at thes-th position can be achieved by applying a
sequence of Given’s rotations to annihilate the subdiagonal terms of the upper Hessenberg matrix
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QpTK(:, I p \s), where\sdenotes the removal of the column indexs from the set of column indices
in I p. Therefore, step 5 of Algorithm 1 is modified as shown in Algorithm 3.

5. Stopping Criteria: empirical risk vs. complexity trade-off

From the description of the greedy algorithms in the previous section, it can be observed that the
user is required to specify the required degree of sparsity or an upper bound on the empirical error.
Consider the case when no regularization is employed. Then, if the specified degree of sparsity
is much higher thanthe optimal value(or conversely, if the upper bound on the empirical error is
smaller than the noise intensity), the model will tend toover-fit the data. To illustrate this phe-
nomenon, the typical trends in the generalization error and the training error as a function of the
degree of sparsity are shown in Figure 1 for a model problem. It can be clearly seen that there exists
an optimum level of sparsity beyond which the model will tend to overfit noise.
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Figure 1: Trends in the generalization error for a toy dataset when the number of basis functions
are increased in the absence of regularization.

It is well known that the problem of overfitting can be overcome by trading-off the empirical
risk with model complexity. This observation is embodied in Vapnik’s structural risk minimization
principle (Vapnik, 1995). A more traditional approach to this problem employs a regularization
parameter to improve generalization. In the present context, we may apply the greedy algorithms
to the regularized Gram matrixK + σ2I , whereσ2 is a regularization parameter. Alternatively, a
shrinkage parameter (Friedman, 2001) can be used. As a result, the empirical error is guaranteed
to converge to a non-zero value. An alternative approach would be to enforce regularization via
sparsity, i.e., by finding the optimum level of sparsity which leads to the best generalization perfor-
mance. This approach was adopted in Vincent and Bengio (2001), where a validation dataset (or
generalized cross-validation) was employed to decide the optimum level of sparsity.

In the present work, we explore alternative model selection criteria which have been studied
previously in the literature. Rissanen’s principle of minimum description length is one such enabling
technique which has been employed in the past for constructing parsimonious models (Judd and
Mees, 1995). The basic idea is to choose the model which can describe the data most succinctly,
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i.e., the one which has the shortest description length. From an information theoretic point of
view, this translates into minimizing a code length of the form− log f (D|α)+ L(α), where f (·|α)
represents the data likelihood, given the model parameters (α), while the second term is a measure
of the complexity of the model in question. Numerous ways of describing this code length exist
in the literature; see Hansen and Yu (2001) for a more detailed exposition of the MDL principle.
Of particular interest to us is the two-stage MDL criterion,6 where the model parametersα are
selected andL(α) approximated in the first stage. This is followed by a second stage which involves
computing the description length of the data, i.e,− log f (D|α).

In the present context of greedily minimizing theL2 loss function, applying the two-stage MDL
yields the following approximation to the code length at thel -th stage

m
2

log(r, r)+
l
2

logm (10)

Henceforth, the term MDL refers to the two-stage MDL criterion. We compare the MDL cri-
terion to the Akaike information criterion (AIC) suitably modified for use in small samples thus
(Sugiura, 1978)

m
2

log(r, r)+
l
2

1+ l/m
1− (l +2)/m

(11)
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Figure 2: The trends of the MDL and AIC criteria for Ripley’s synthetic dataset as a function of the
sparsity level.

It can be clearly seen from Equations (10,11) that the first term of both criteria will tend to
decrease as more kernels are chosen from the dictionary. In contrast, the second term which repre-
sents the model complexity increases at a linear rate. As a consequence when MDL/AIC is used as
the termination criterion, the sparsity level for which it reaches a minimum represents an optimal
trade-off between empirical risk and model complexity.

In what follows, we use Ripley’s 2D synthetic classification dataset (Ripley, 1996) to show how
the MDL and AIC fare as stopping criteria, i.e, by terminating the greedy algorithms when the

6. The two-stage MDL criterion is equivalent to the Bayesian information criterion (BIC). Mixture MDL criteria which
adaptively penalize the model complexity term are described by Hansen and Yu (2001).
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minima of MDL/AIC is reached. This data set has 250 training points and 1000 test points and has
a Bayes optimal rate of around 8%. Figure 2 shows the trends in the MDL and AIC criteria as the
degree of sparsity is increased when a Gaussian kernel with width 0.5 is employed. The decision
boundary computed using either of these criteria is shown in Figure 3. Note that for this particular
problem, both these criteria yield the same optimum level of sparsity. However, in practice, we have
observed that the AIC criterion tends to choose larger models as compared to the MDL criterion.
The resulting test errors obtained by employing the sparse model computed using the greedy QR
algorithm is 8.8 %, which is close the Bayes optimal rate for this problem. Further, it is interesting
to note that the decision boundary in Figure 3 is quite similar to those computed using SVMs and
RVMs (Tipping, 2001, pp.222).
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Figure 3: The centers of the basis functions (circled points) chosen by the MDL criteria for Ripley’s
synthetic dataset.

Similar results were obtained for the case of regression using 100 equally spaced samples from
a sinc function corrupted withN (0,0.1) as training points. It can be seen from Figure 4 that
the approximated function using the AIC criterion closely matches the true function using only 8
Gaussian kernels of width 1.0. The root mean square deviation on 1000 equally spaced samples
of the true sinc function is 0.0315. Similar conclusions result when the MDL criterion is used to
decide the optimum level of sparsity.

6. Experimental Investigations

The algorithms presented in this paper were implemented as a library of FORTRAN 77 subroutines
which make extensive use of machine optimized BLAS routines. All the numerical experiments
reported here were conducted on a single R10000 processor of an SGI Origin 2000 machine with 4.6
Gb main memory. Further note that unlike ORMP, the present algorithms do not require the explicit
a priori computation and storage of the full Gram matrixK. For all experimental investigations,
the elements of the Gram matrix are constructed using a Gaussian kernel of the formk(x1,x2) =
exp(− (x1−x2)2

c ). Unless otherwise stated, the width of the Gaussian kernelc is estimated via a five-
fold cross-validation procedure.
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Figure 4: The centers of the basis functions (circled dots) chosen by the AIC criteria for approxi-
mating the sinc(x) function using 100 noisy samples.

p n Methods
MRX QR ORMP

200 0.532± 0.094 0.483± 0.059 0.483± 0.059
5 300 0.452± 0.081 0.405± 0.032 0.405± 0.033

400 0.409± 0.096 0.349± 0.021 0.349± 0.021

200 0.336± 0.006 0.335± 0.006 0.335± 0.006
10 300 0.299± 0.006 0.298± 0.006 0.298± 0.006

400 0.266± 0.005 0.265± 0.005 0.265± 0.005

Table 1: Comparison of statistics of residuals for 100 realizations of the synthetic datasets generated
usingF∗.

6.1 Regression Datasets

The algorithms developed in this work are first tested on a synthetic regression dataset generated
according to (Friedman, 2001). Subsequently, a detailed comparison study is performed on two real
world datasets viz. Boston and Abalone available from the UCI machine learning repository.

We set Gaussian kernel widthc to 0.01, 3.9 and 10.0 for the synthetic, Boston and Abalone
datasets, respectively. We first generated results by employing the regularized Gram matrixK ←
K + σ2I , whereσ2 is chosen to be 0.01 for both the synthetic and Boston datasets and 0.1 for
Abalone.

The synthetic dataset is generated using a linear combination of 20 basis functions (Friedman,
2001), i.e,F∗(x) = ∑20

l=1al gl (x) + N (0,σ2), wherex ∈ R
p and the scalaral s are drawn from a

uniform distribution[0,1]. Heregl (x)= exp{−(x−µl )TΣ−1(x−µl )}, whereµl ∈ R
p is drawn from

a uniform distribution[0,1]p andΣ ∈R
p×p is a randomly generated SPD matrix.

We compare the performance of the minimal residual iteration (MRX) scheme and the incre-
mental QR factorization algorithm with Natarajan’s algorithm (ORMP). The convergence of the
algorithms are analyzed by examining the normalized residual error||y−Kα||2/||y||2.
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Subset Methods
size (n) MRX QR ORMP

50 14.13± 8.07 13.68± 7.65 12.17± 7.01
100 12.19± 7.22 11.19± 6.51 10.43± 6.47
150 11.08± 6.50 10.48± 6.01 10.05± 7.15
200 8.87± 5.67 8.35± 5.67 10.13± 7.02

Table 2: MSE comparison of MRX, QR & ORMP for the Boston dataset for varying subset sizes.
Subset Methods
size (n) MRX QR ORMP

50 5.04± 0.30 4.83± 0.29 4.92± 0.29
100 4.71± 0.19 4.66± 0.30 4.66± 0.20
150 4.66± 0.29 4.65± 0.28 4.63± 0.25
200 4.52± 0.17 4.51± 0.27 4.45± 0.18
250 4.60± 0.25 4.54± 0.34 4.57± 0.23
300 4.59± 0.24 4.55± 0.21 4.57± 0.25
350 4.68± 0.29 4.53± 0.29 4.64± 0.31

Table 3: MSE Comparison of MRX, QR & ORMP for the Abalone dataset for varying subset sizes.

Table 1 summarizes the results of applying the above techniques to 100 realizations ofF∗ for
dimensionalitiesp=5 andp=10, respectively, over a range of subset sizes (n). For each realization,
a randomly generated training dataset of 2000 points is used. It appears that the incremental QR
and ORMP algorithms are superior to MRX on an average, for either dimensionality (p). However,
the differences in performance between the incremental thin QR update technique and ORMP are
clearly statistically insignificant.
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Figure 5: Convergence of the averaged residual error using greedy algorithms on the Boston
dataset.

Figure 5 and Table 2 show the convergence trends of the residual error and the mean square
testing error, respectively, as the subset size is increased, for the Boston dataset. The trends shown
are averaged over 100 random splits of the mother data into a training set of 481 and a testing set
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Dataset QR + MDL QR + AIC
Boston 13.3± 7.6 (42) 12.9± 7.8 (141)
Abalone 4.7± 0.3 (54) 4.6±0.3 (164)

Table 4: MSE obtained for the Boston dataset when the MDL and AIC criteria are used for com-
puting the optimum sparsity level. The average sparsity level is shown in brackets.

of 25 instances. Clearly, the incremental QR factorization update technique succeeds in reducing
the residual error the most, while still managing an MSE performance comparable to that of ORMP.
This observation along with the attendant computational and storage benefits makes the thin incre-
mental QR update technique the algorithm of choice for this dataset. Also note that although MRX
loses out in the race for reducing the residual error, its MSE performance is not significantly worse
off than ORMP (and QR). Forn=200, it actually performs better than ORMP (see Table 2).
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Figure 6: Convergence of the averaged residual error using greedy algorithms on the Abalone
dataset.

From the results, it can be noted that the best test performance obtained using the greedy thin
QR factorization algorithm is 8.3 mean square error with standard deviation 5.7. This is comparable
with the best performance achieved by a support vector machine (mean square error 8.7 and standard
deviation 6.8) on this dataset; see Table 3 in Sch¨olkopf, Smola, Williamson, and Bartlett (2000).
Further, the thin QR algorithm only required around 0.8 seconds to compute the weight vector at
the specified sparsity level of 200.

For the Abalone dataset, we averaged our results over 10 random splits of the mother data into
3000 and 1177 training and testing points, respectively. Figure 6 and Table 3 show the convergence
trends of the residual error and the mean square testing error, respectively, as the subset size is
increased. We observe that the residuals in this case may differ by as much as 13% across the
methods considered. In contrast, the corresponding testing errors summarized in Table 3 do not
differ significantly.

We also conducted some empirical studies to see how well the stopping criteria based on MDL
and AIC work for the regression problems considered here. The results are summarized in Table 4
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Figure 7: Comparison of the training time required by various approaches as a function of the size
of the training dataset. The subset size (n) is chosen to be 10 % of m.

for the Boston and Abalone datasets. It can be seen from the results that the AIC criterion tends to
select larger models as compared to MDL. However, the results for the Boston dataset are not that
impressive as compared to those obtained using the regularized Gram matrix. In comparison, both
the MDL and AIC criteria worked very well for the Abalone dataset giving test error comparable
to that obtained using the regularized Gram matrix. At this point, it is important to point out a de-
ficiency in the MRX algorithm: that of slow convergence rate and hence a poor approximation for
the residual error when a basis function is added. Since, the MDL and AIC criteria crucially depend
on an accurate estimate of the residual, they may fail to predict the optimal trade-off point when
used in conjunction with the MRX algorithm. However, this still does not explain the lacklustre
performance of the QR algorithm on the Boston dataset. While this feature could well be unique to
this dataset, we believe that in practice, a combination of explicit regularization and sparse approx-
imation should be effective against most problems.

The final experiment demonstrates the scaling performance of the algorithms presented as the
size of the training dataset increases. This study was conducted for the Census dataset (available
from the DELVE repository) for the House-Price-8H prototask. Figure 3 shows the computational
time as a function of the size of the training dataset for various algorithms. Note that the subset
size (n) is set at 10% of the training size. Further note that the timings shown also include the
kernel computation time. As expected, the MRX and the greedy thin QR factorization schemes
scale impressively when compared to ORMP. In fact, our ORMP simulation seemed to scale worse
than what was theoretically expected. We believe this was primarily because our implementation
was rich in BLAS Level-1 operations. In contrast, for the MRX and the thin QR algorithm, we
could employ Level-2 BLAS routines more extensively.

To summarize, we observe that across all the datasets considered, the thin QR algorithm appears
to be quite competitive with ORMP in terms of the testing errors and reduction in the norm of the
residual error. However, the greedy thin QR algorithm and MRX are computationally much cheaper,
and require minimal memory as compared to ORMP.
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Methods
Datasets SVM RVM QR + AIC QR + MDL

Error n Error n Error n Error n
Banana 10.9 135 10.8 11 10.7 41 10.9 29

B.Cancer 26.9 117 29.9 6 28.0 11 31.3 5
Diabetes 20.1 109 19.6 4 19.8 4 19.8 4
German 22.6 411 22.2 12 24.8 32 25.6 12
Image 3.0 167 3.9 35 3.1 199 3.5 175

Waveform 10.3 146 10.9 15 12.6 101 11.6 27

Table 5: Comparison of test set percentage errors and sparsity levels for various benchmark classi-
fication datasets.

Methods
Digits SVM QR + AIC QR + MDL

Errors n Errors n Errors n
0 16 274 10 699 10 698
1 8 104 9 700 9 695
2 25 377 19 700 19 700
3 19 361 23 699 23 699
4 29 334 25 700 25 697
5 23 388 22 700 22 699
6 14 236 14 699 14 676
7 12 235 11 700 11 699
8 25 342 24 699 24 699
9 16 263 13 700 13 700

Table 6: Comparison of test set errors and sparsity levels for USPS for various methods.

6.2 Classification datasets

Table 5 contrasts the performance and sparsity achieved by the proposed algorithmsvis-á-vis the
state-of-the-art Support and Relevance Vector Machines (Tipping, 2001) for a set of benchmark
problems.7 While SVMs and RVMs demonstrate comparable generalization behavior, the latter
is known to generate models which are often sparser. However, a downside for RVM (and to a
lesser extent, the SVM), is the heavy computational cost incurred while training the machine which
renders it impractical for large scale data mining. Viewed in this light, Table 5 clearly illustrates the
ability of greedy thin QR factorization scheme to generate moderately sparse models (often much
sparser than SVMs) while still exhibiting competitive generalization behavior. It is expected that
combined with the relatively low training complexity of the thin QR algorithm, this feature would
serve well for data mining purposes.

Table 6 compares the generalization performance of the proposed schemes w.r.t. SVMs for the
digits in the USPS dataset. The results for SVMs have been taken from Sch¨olkopf et al. (1999).
As is common practice for this dataset, the learning task here is that of binary ”one-versus-the-
rest” classification for each digit in the database. Note that for most digits, the proposed techniques

7. The benchmark datasets have been taken from the repository at http://ida.first.gmd.de/∼raetsch/. In order to compare
our results to Tipping (2001), we averaged over the first 10 splits provided at this website.
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generate models which perform at least as well as SVMs, although the training costs incurred in the
former are much lower than those in the latter. Further, the increased sparsity levels(n) shown in the
table for the proposed techniques are those required by the stopping criteria used. It is important to
point out that setting the allowed sparsity level equal to the number of support vectors obtained while
training SVMs, results in performance similar to those reported by Vincent and Bengio (2001).
Finally, note that in the above experiments, the maximum allowed sparsity level was constrained
to 700. Our experiments showed that it is possible to drive the generalization errors further down
by increasing this sparsity level. This is corroborated by the trends in the MDL and AIC stopping
criteria which (far from rising) continue to decrease even after the sparsity level of 700 is achieved.
This behavior of the model selection criteria seems to be a characteristic feature of this dataset.8

However, the accompanying increase in then may reflect adversely on the runtime complexity of
the resulting model.

7. Concluding Remarks

In this paper, we presented greedy learning algorithms for constructing sparse nonlinear regression
and classification models using Mercer kernels. An attractive feature of the algorithms presented
here is the modest memory requirements and low computational cost incurred. In particular, the
computational cost only grows linearly with increase in the size of the training data. This was
achieved by exploiting the fact that the use of Mercer kernels leads to an SPD Gram matrix. In
particular, this means that the index selection criterion only involves examining the current residual
as opposed to working with the normal equations hence saving significantly on the memory re-
quirements as well as the computational cost. Together with an effective model selection criterion,
the proposed greedy algorithms represent a powerful paradigm for handling both classification and
regression problems. This has been amply demonstrated through extensive numerical studies on
synthetic as well as real-world benchmark problems.

The empirical studies suggest that the generalization abilities of sparse models constructed using
the proposed algorithms for greedy minimization of theL2 loss function are competitive with other
state-of-the-art techniques. Since different datasets have widely varying characteristics, it would
be difficult to make general statements or predictions about the superiority of one greedy algorithm
over the rest. However, if computationally efficiency and memory requirements are a major concern,
it appears that the present algorithms are more attractive than existing greedy techniques such as
ORMP (Natarajan, 1995), OLS-RBF (Chen, Grant, and Cowan, 1991; Vincent and Bengio, 2001)
andL2boost (on Mercer kernels), particularly for large data sets.

It is important to emphasize the absence of tuning parameters (apart from the kernel parameter)
in the proposed approach of achieving regularization via sparse approximate interpolation. This
property along with the attractive computational benefits make the current approach a promising off-
the-shelf tool for machine learning which merits further investigation. An important step towards
fulfilling this aim would be developing online versions of the greedy algorithms to improve their
computational properties further.

From the point of view of runtime complexity, the present algorithms are generally more at-
tractive than SVMs since they typically generate a much sparser solution. However, the converse
cannot be ruled out (see, for example, the results for the USPS and Image data). For such cases,

8. Notice that the other image data set featured in Table 5 also exhibits an exceptionally large value for the sparsity
level(n), suggesting similar trends in the stopping criteria.
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it is natural to consider the possibility of incorporating a sparsity inducing regularizer into the cur-
rent framework (Chen, 2001). Alternatively, the relevance vector machine (Tipping, 2001) can be
employed to prune the weight vector further.
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