
Journal of Machine Learning Research 3 (2002) 271-301 Submitted 11/01; Revised 7/02; Published 10/02

On Online Learning of Decision Lists

Ziv Nevo zivn@cs.technion.ac.il

Ran El-Yaniv rani@cs.technion.ac.il

Department of Computer Science
Technion
Haifa, 32000, Israel

Editor: Dana Ron

Abstract

A fundamental open problem in computational learning theory is whether there is an
attribute efficient learning algorithm for the concept class of decision lists (Rivest, 1987;
Blum, 1996). We consider a weaker problem, where the concept class is restricted to decision
lists with D alternations. For this class, we present a novel online algorithm that achieves a
mistake bound of O(rD log n), where r is the number of relevant variables, and n is the total
number of variables. The algorithm can be viewed as a strict generalization of the famous
Winnow algorithm by Littlestone (1988), and improves the O(r2D log n) mistake bound of
Balanced Winnow. Our bound is stronger than a similar PAC-learning result of Dhagat
and Hellerstein (1994). A combination of our algorithm with the algorithm suggested by
Rivest (1987) might achieve even better bounds.

1. Introduction

Decision lists play an important role in computational learning theory, as well as in prac-
tical systems. Since their introduction by Rivest (1987), it was shown that k-decision lists
generalize classes such as monomials, k-DNF, k-CNF and depth k decision trees (Rivest,
1987), as well as rank-k decision trees (Blum, 1992). Even the simple class of 1-decision lists
coincides with fragments of important classes such as disguised Horn functions, read-once
functions, threshold functions and nested differences of concepts (Eiter et al., 1998). Effi-
cient algorithms for learning decision lists, are therefore of great importance. This article
focuses on online algorithms and analyzes their mistake bound.

An important class of efficient learning algorithms are the attribute efficient algorithms.
An attribute efficient algorithm is able to learn a target class, making a small number of
errors, which depends only logarithmically on the total number of attributes in the examples
vectors, and polynomially on the number of relevant attributes. Such algorithms were shown
to be particularly useful on the important task of feature selection, where relevant attributes
should be distinguished from many irrelevant ones.

Much effort was put in exploring the properties of attribute efficient algorithms. New
algorithms were found for some wide concept classes, and hardness results were given to
others (see Blum et al., 1995; Littlestone, 1989; Bshouty and Hellerstein, 1998, and more).
However, it is still an open problem whether there is an attribute efficient learning al-
gorithm for the concept class of decision lists (Rivest, 1987; Blum, 1996). Recent work

c©2002 Ziv Nevo and Ran El-Yaniv.

Nevo and El-Yaniv

(Servadio, 2000) indicates that the task of attribute-efficient learning of decision lists may
be computationally hard.

We therefore look at the restricted problem of learning decision lists with D alternations.
For this class we present a novel online algorithm that makes at most O(rD log n) mistakes,
where r is the number of relevant attributes (or the number of unique nodes in the decision
list), and n is the total number of attributes in each example. This improves the best
mistake bound, known so far, of O(r2D log n), achieved by Balanced Winnow (Blum and
Singh, 1990; Valiant, 1999).

Our algorithm, called Multi-Layered Winnow, makes use of multiple independent copies
of the famous Winnow algorithm (Littlestone, 1988). Different copies are expected to learn
concepts which correspond to different sections in the decision list (which we call layers).
For that to happen, the predictions of the Winnows are evaluated in an appropriate way,
and a special scheme is used to update Winnows that predicted incorrectly.

The paper is organized as follows. Section 2 contains the basic definitions and tools
that are used in this article. In Section 3 we briefly discuss previous works, which relate to
the online learning of decision lists. Then, in Section 4 we present Multi-Layered Winnow,
analyze its mistake bound, and propose a way to combine it with Rivest’s algorithm. Finally,
in Section 5 we present a numerical example, illustrating some strengths and weaknesses of
the proposed algorithms.

2. Preliminaries

In this section we introduce the learning model, the concept class of decision lists, and the
Winnow algorithm, which is a basic component in our Multi Layered Winnow.

2.1 The Mistake Bound Model

Learning algorithms for boolean concept classes have a major role in computational learning
theory. The task of such algorithms is finding a boolean function h, called the hypothesis,
which is as “similar” as possible to another unknown boolean function, c, called the target
function. To accomplish this task, a learning algorithm first receives the domain of c,
which is usually Xn = {0, 1}n for some n. Sometimes it also gets a set of boolean functions,
C ⊆ 2Xn (called the concept class), to which c belongs. In addition, it is allowed to examine
a number of classified instances of c. A classified instance of c is a pair 〈~x, c(~x)〉, where
~x ∈ Xn is called an instance and c(~x) is said to be its classification.

We will sometime refer to the boolean attributes x1, x2, . . . , xn, which define the instance.
We say that a function c depends on an atrribute xi, if there exist two instances ~x and ~y
such that xj = yj for all j 6= i and c(~x) 6= c(~y). An attribute xi is called a relevant attribute
of c, if c depends on xi.

To analyze the performances of learning algorithms, different models were suggested.
We consider the mistake bound model. Within this model, a worst-case analysis is used
to study the performance of on-line learning algorithms. This model is due to Littlestone
(1988, 1989), and can be defined as follows. Let Xn = {0, 1}n be the instance space (or the
domain) and let C ⊆ 2Xn be a concept class. We consider two players, a learning algorithm
A and an adversary. Both players know Xn and C in advance, and play the following game.

272

On Online Learning of Decision Lists

At first, the adversary chooses a target function c ∈ C, unknown to A. The learning session
now proceeds in trials, where at the t-th trial:

1. The adversary picks an instance ~x (t) ∈ Xn.

2. A outputs h(~x (t)), where h : Xn → {0, 1} is its current hypothesis.

3. The adversary reveals the correct classification of the instance, c(~x (t)).

4. If h(~x (t)) 6= c(~x (t)) then a single mistake is incurred by A (i.e., 0/1 loss).

5. A is allowed to update its hypothesis, in light of the new information.

The adversary can stop the game at any point.
We say that M(c) is a mistake bound for A on some c ∈ C, if for any sequence of

instances (possibly infinite), A never makes more than M(c) mistakes while learning c. We
say that A learns the class C within the mistake bound model if for any c ∈ C its mistake
bound on c is M(c) = poly(n, r, size(c)), and if its running time during each trial is also
poly(n, r, size(c)), where r is the number of relevant attributes in c and size(c) is the size
in bits of c, given some standard representation. We gloss over some technicalities involved
with defining size(c). Precise definitions can be found in a book by Anthony and Biggs
(1992). If furthermore, we have that M(c) = poly(r, size(c)) · polylog(n), then A is said to
be attribute efficient w.r.t. C.

The mistake bound model is closely related to Angluin’s exact learning model (Angluin,
1988) with equivalence queries only. Also, learnability in the mistake bound model implies
learnability in the PAC model, defined by Valiant (1984).

2.2 Decision Lists

Decision lists are maybe the simplest model for hierarchial decision making, but despite
their simplicity, they can be used for representing a wide range of classifiers. A decision
list might be viewed as a hierarchy of experts. When a classification is needed, the first
expert in the hierarchy is addressed. If this expert suggests a classification, then his opinion
is taken to be the classification of the decision list. Otherwise, the second expert in the
hierarchy is asked for his classification. If he chooses to abstain as well, the third expert is
addressed, and so on.

Alternatively, programmers prefer presenting decision lists as sequences of if-then-else
statements, intended for classifying an instance ~x. For example:

if condition1(x) is true then output = output1(x)
else if condition2(x) is true then output = output2(x)
else if condition3(x) is true then output = output3(x)
.
.
.
else output = default_output (x)

Restricting ourselves to boolean functions, the most general form of decision list is an
ordered list of pairs of boolean function, 〈〈t1, o1〉, 〈t2, o2〉, . . . , 〈tr, or〉〈1, odef 〉〉. All functions

273

Nevo and El-Yaniv

have the same range Xn = {0, 1}n. Each pair 〈ti, oi〉 is called a node of the decision list, the
function ti being the test function, and the function oi, the output function. The last node
in a decision list is called the default node, and has a constant test function, that evaluates
to 1. The evaluation of a decision list on an input ~x ∈ Xn, is obtained by first finding the
minimal i, such that ti(~x) = 1, and then outputting oi(~x). A schematic drawing of a simple
decision list is shown in Figure 1(a).

A k-decision list (Rivest, 1987) is a decision list in which all the test functions are
monomials with at most k literals, and the output functions are the constants 0 and 1. That
is, t1, . . . , tr ∈ {li1 ∧ li2 ∧ · · · ∧ lij : 1 ≤ j ≤ k ∧ lis ∈ {xis , x̄is}} and o1, . . . , or, odef ∈ {0, 1}.
Rivest (1987) showed that k-decision lists generalize the basic classes of k-DNF, k-CNF and
depth k decision trees. Blum (1992) extended the last result for rank-k decision trees. Blum
and Singh (1990) mentioned that k-decision lists, in which the output function changes k
times from 1 to 0 and back, can express any function of k terms, that is, any function of
the form f(T1, T2, . . . , Tk) where T1, . . . , Tk are monomials. It was later shown that even
the simple class of 1-decision lists coincides with fragments of important classes such as
disguised Horn functions, read-once functions, threshold functions and nested differences
of concepts (Eiter et al., 1998). We therefore observe that the class of k-decision lists is a
highly expressive subset of the more general class of decision lists. This paper focuses on
finding an efficient learning algorithm for the class of k-decision lists.

A monotone decision list is a decision list in which all test functions are monotone
monomials (i.e., without negations). General properties of monotone decision lists, as well
as their learnability in the query models, were studied by Guijarro et al. (2001). As the
following reductions show, an algorithm for learning the class of monotone 1-decision lists
(all test functions are single variables) with a 〈1, 0〉 default node, can be transformed into an
algorithm for learning k-decision lists. The proofs presented here are inspired by Littlestone
(1988) and are considered “folklore”.

Lemma 1 For any constant k, if A learns the class of monotone 1-decision lists in the
mistake bound model, then A can be used for learning the class of k-decision lists. Fur-
thermore, if A is attribute efficient w.r.t. monotone 1-decision lists, then A can be used for
attribute-efficient learning of k-decision lists, for any finite k.

Proof Let n2 =
∑k

i=0 2i
(
n1

i

)
. Any instance ~x = 〈x1, . . . , xn1〉, given in the learning process,

is first transformed into the instance T (~x) = 〈c1(~x), c2(~x), . . . , cn2(~x)〉, where the ci(~x) range
over all monomials of at most k literals. The transformed instance is then given as input
to A, and the prediction of A is taken.

Notice that the transformation T (~x), maps the original instance space {0, 1}n1 into
{0, 1}n2 . It also induces a mapping from the class of k-decision lists over {0, 1}n1 into the
class of monotone 1-decision lists over {0, 1}n2 . Let L1 = 〈〈t1, o1〉, . . . , 〈tm, om〉, 〈1, om+1〉〉
be a k-decision list over {0, 1}n1 with r1 relevant variables. Then there exist yi1 , ..., yim ∈
{0, 1}n2 such that the decision list L2 = 〈〈yi1 , o1〉, . . . , 〈yim , om〉, 〈1, om+1〉〉 outputs 1 on
T (~x) iff L1 outputs 1 on ~x. It is therefore possible for A to learn L1 over {0, 1}n1 , by
learning L2 over {0, 1}n2 , but its mistake bound should be analyzed w.r.t. n1 and r1.

One can show that n2 ≤ (2n1)k + 1, and thus if A’s mistake bound is polynomial in
the total number of variables it sees n2, it is also polynomial in n. Similarly, if A’s mistake
bound is poly-logarithmic in n2, it also remains so over n1 (recall that k is a constant).

274

On Online Learning of Decision Lists

1

1

1

0

0

1

1

0

0

x7

x7

0

0

1

0

0

0

(a) (b)

1
0 0

(c)

x20

x3

x5

x11

x8

x1

x3 x5

x11 x8 x1

x20

x7

x3 x5

x11 x8 x1 x7

x20 x3 x5

Figure 1: A decision list (a), its layered structure (b), and an isomorphic decision list (c).

Also, A learns a concept with m relevant variables. Using a similar bound we can show
that m ≤ (2r1)k + 1. Therefore, both learnability and attribute efficiency are preserved.

Lemma 2 If A learns the class of monotone 1-decision lists with a 〈1, 0〉 default node, then
A can be used for learning monotone 1-decision lists. Attribute efficiency is also preserved.

Proof Transform each instance ~x, into 〈x1, . . . , xn, 1〉 (an additional variable, xn+1 is always
assigned 1). Applying this transformation, any decision list 〈〈xi1 , o1〉, . . . , 〈xir , or〉, 〈1, 1〉〉,
is now isomorphic to the decision list 〈〈xi1 , o1〉, . . . , 〈xir , or〉, 〈xn+1, 1〉, 〈1, 0〉〉, which has a
〈1, 0〉 default node, and can be learned by A. Adding a single variable and a single node
keeps both learnability and attribute efficiency properties.

Following the above lemmas, we will further focus on monotone 1-decision lists with a
〈1, 0〉 default node, and the term “decision list” will be used, from now on, to refer to this
restricted class. We now introduce a few properties of decision lists.

First, we would like to define what is meant by size(c) when the boolean function c
is a decision list. We therefore have to define an adequate bit representation for decision
lists. We shall use the rather natural representation, in which we write the list of nodes
sequentially. For each node we have to write both test function and output function. Recall
that the test function is simply a single variable, so dlog ne bits would suffice to write the
index of the variable. The output function is either 1 or 0, contributing additional bit for

275

Nevo and El-Yaniv

each node. Summing everything up, we can write any decision list c, using dlog ne+ 1 bits
for each of the r nodes, having size(c) = r(dlog ne+ 1). Note that there is no need to write
the default node as both test and output functions are fixed.

Next we consider an alternative way to look at decision lists.

Definition 3 A layer in a decision list (sometimes called a level) is a sub-list of contiguous
nodes all having the same output function. Any adjacent nodes to the nodes of the layer,
must not have the same output function. The default node does not belong to any layer.

The last definition implies that any decision list can be viewed as an ordered list of
layers 〈〈l1, o1〉, 〈l2, o2〉, . . . , 〈lD, oD〉, 〈1, 0〉〉, where each layer consists of an ordered list of
variables, and the ois alternate between 1 and 0. We can ignore the order of the variables
in each layer, as changing the order within a single layer, results in an isomorphic decision
list. This in turn implies that we can treat each layer as a single node, whose test function
is a disjunction of all the variables in that layer. It turns out, as we later observe, that the
number of layers in a decision list (sometimes referred to as the number of alternations),
is another indication of its complexity, along with the number of nodes. Finally, we notice
the following observation:

Observation 4 Let L be a decision list. Let L̃ be a decision list that satisfies:

• L̃ has the same number of layers as L.

• Every variable xi that first appears in L at level j (i.e., j is the minimal index s.t. xi

appears in layer j), also first appears in L̃ at level j, and vice versa.

Then L̃ is isomorphic to L.

The above observation implies, that adding extra variables already in the list to bottom1

layers, does not change the boolean function, computed by the decision list. This is due
to the hierarchial way in which the output is determined. The upper most layer, which
contains a variable with an assignment 1, determines the output. This variable can appear
again in lower layers (even with different output), but only its upper most appearance has
an effect. Figure 1 shows an example of a decision list, along with its layered structure and
an isomorphic decision list with extra variables.

2.3 The Winnow Algorithm

The Winnow algorithm, first introduced by Littlestone (1988), is a powerful algorithm for
learning a variety of concept classes, and considered to be the canonical example for attribute
efficient learning. One application of Winnow is for learning monotone disjunctions in the
mistake bound model. It achieves a mistake bound of O(r · log n) for a disjunction of r out
of n possible attributes.

Figure 2 presents a simple version of Winnow that maintains a vector ~w ∈ Rn of weights,
one for each of the n variables. A large weight for a specific variable, represents the algo-
rithm’s “belief” that the variable belongs to the disjunction. A fixed parameter α > 1,
controls the rate at which the weights change.

1. Throughout this paper layers with high indices are referred to as low or bottom layers. This notation is
rather common in the literature, though some might find it a bit confusing.

276

On Online Learning of Decision Lists

Winnow (α)

1. Initialize each of the weights w1, . . . , wn to 1.

2. Given an instance, ~x, calculate y := ~w · ~x.

3. Output h(~x) = 1 if y ≥ n, and output h(~x) = 0 otherwise.

4. Receive the correct classification, c(~x).

5. If the algorithm made a mistake:

(a) If the mistake is a false negative (h(~x) = 0, while c(~x) = 1):

For each 1 ≤ j ≤ n, set wj := αxjwj . We call this step a promotion.

(b) If the mistake is a false positive (h(~x) = 1, while c(~x) = 0):

For each 1 ≤ j ≤ n, set wj := α−xjwj . We call this step a demotion.

6. Goto 2.

Figure 2: The Winnow algorithm.

Theorem 5 (Littlestone 1988) Winnow (α) learns the class of monotone disjunctions
in the mistake bound model, making at most (α+1)r logα αn+ α

α−1 mistakes, given that the
target concept is a disjunction of r variables.

Having this result, we will later use multiple instances of Winnow for learning the monotone
disjunctions in each of the layers of a decision list. However, for this scheme to work, we
must rely on another behaviour Winnow exhibits: its ability to tolerate a small number of
misclassified instances.

Definition 6 The number of attribute errors in the data, w.r.t. a monotone disjunction
c (denoted by Ac), is defined as follows. For each example, labeled positive, but satisfies no
variable in c, we add 1 to Ac. For each example, labeled negative, but satisfies k variables
in c we add k to Ac.

Theorem 7 (Littlestone 1989) For any sequence of examples, and any monotone dis-
junction c, the mistake bound for Winnow is O(r log n + Ac).

Theorem 7 can be used directly to analyze the mistake bound of our Multi-Layered Winnow
in those simple cases where the number of layers in the target decision list is small. Our
proof does not rely on this result, but rather provides a straightforward analysis for any
number of layers.

3. Related Results

Since the problem of learning decision lists was introduced by Rivest (1987), a few learning
algorithms were suggested, and were analyzed within the various learning models. However,
none of the proposed algorithms achieve attribute efficiency (not even attribute efficiency

277

Nevo and El-Yaniv

Rivest’s Algorithm (D)

1. Initialize all weights wi,j to 1 (i = 1 . . . D, j = 1 . . . n).

2. Given an instance ~x = 〈x1, . . . , xn〉, calculate ~y := W · ~x.

3. Let k∗ be the minimal k s.t. yk > 0. If there is no such k, set k∗ := D + 1.

4. Output ok∗ , the output function of layer k∗.

5. Receive c(~x).

6. If the algorithm made a mistake:

For each xj = 1, set wk∗,j := 0.

7. Goto 2.

Figure 3: Rivest’s Algorithm.

in the PAC model, which should be easier), and it remains an open question whether such
an algorithm exists. A recent hardness result hints that the task might be computationally
hard (see below).

Nevertheless, some algorithms achieve a weaker notion of attribute efficiency by attaining
a mistake bound that depends logarithmically on n, the total number of attributes, but
exponentially on r, the number of relevant attributes, where the exponent of r is linear in D,
the number of layers. Since the number of layers can be as large as r, such algorithms cannot
be considered attribute efficient as defined. However, on those cases when D << r << n,
they might become rather useful.

We present in this section a few important algorithms for learning decision lists. In
Subsection 3.1 we detail the first published algorithm for learning decision lists, suggested
by Rivest. This algorithm achieves a mistake bound of O(D · n). In Subsection 3.2 we
discuss how Littlestone’s Balanced Winnow algorithm, can be used for learning decision
lists, achieving a mistake bound of O(r2D log n). In comparison, the mistake bound of
our new algorithm, Multi-Layered Winnow, is O(rD log n) (Section 4). In Subsection 3.3,
we discuss what might be done with a computationally unbounded learner and then briefly
quote the main results of a paper by Servedio, where he proved a hardness result, concerning
the learning of decision lists. Subsection 3.4 discusses a PAC learning algorithm by Dhagat
and Hellerstein (1994), with a sample complexity of O(1

ε (log 1
δ + rD log n logD(r

ε))). The
algorithm is basically an Occam algorithm, fitting more into the world of offline algorithms,
but its basic layered approach resembles ideas on which Multi-Layered Winnow is based.

3.1 Rivest’s Algorithm

The first algorithm for learning decision lists was proposed by Rivest (1987). The algorithm
was analyzed within the PAC model, and was later adapted to the Mistake Bound model
(Helmbold et al., 1990). Figure 3 gives a modified version of the original algorithm that
better suits the notion of layers.

278

On Online Learning of Decision Lists

This version assumes that the number of layers, D, is known in advance, and that a
〈1, 0〉 default node ends the list. Small modifications to the algorithm allow for any kind of
default node, and can eliminate the prior knowledge of D.

The algorithm uses a matrix W ∈ {0, 1}D×n, where wi,j = 1, if xj is believed to
be in layer i. At first, all variables are assumed to be in all layers. Given an instance,
the algorithm’s prediction is the output of the first layer, that contains a variable with
an assignment 1. After each mistake, the variables that caused the mistake are elimi-
nated from the predicting layer. The output function of the i-th layer, oi, is set to be
oi = (D − i + 1) mod 2, so that the output functions alternate between 1 and 0, and the
last layer has oD = 1 (odef = oD+1 = 0).

For the mistake bound analysis, notice that an adversary can force the algorithm to
eliminate only one variable from one layer at a time. Since at first, all variables are assumed
to appear in all layers, the algorithm can make O(D · n) mistakes, before eliminating all
redundant variables.

Theorem 8 Rivest’s algorithm learns the class of monotone 1-decision lists with a 〈1, 0〉
default node and D layers, making O(D · n) mistakes.2

3.2 Balanced Winnow

Balanced Winnow was proposed by Littlestone (1989) as yet another algorithm for learning
linear threshold functions. A linear threshold function is a function f : [0, 1]n → {0, 1}, for
which there exist a vector of real coefficients ~µ = µ1, . . . , µn and a threshold θ, such that

f(~x) =

{
1, ~x · ~µ ≥ θ;
0, otherwise.

The algorithm resembles the previously described Winnow algorithm, but it maintains
two vectors of weights ~w1, ~w0 ∈ Rn. Intuitively, a large value for w1

j , indicates that when-
ever xj will have an assignment 1, the output should tend to be 1. Similarly, a large value
for w0

j , indicates that a 1 assignment for xj should divert the output towards 0. The al-
gorithm takes two parameters, α > 1 and 0 < β < 1, that influence the rate at which the
weights change. It is given in Figure 4.

Littlestone showed that Balanced Winnow cannot efficiently learn every linear threshold
function. Instead it learns only functions, which exhibit a stronger type of linear separability.
These functions must have a “δ-wide margin” which separates the positive sub-domain (the
points for which f(~x) = 1) from the negative one. Formally, the coefficients vector of
such functions should be defined using two vectors, ~µ+, ~µ− ∈ R+n, and there must be a
separation parameter 0 < δ ≤ 1

2 such that
n∑

i=1

µ+
i +

n∑
i=1

µ−i = 1;

~µ+ · ~x− ~µ− · ~x ≥ δ whenever f(~x) = 1;
and ~µ+ · ~x− ~µ− · ~x ≤ −δ whenever f(~x) = 0.

Littlestone proved the following theorem (adopted version):
2. It is common to find in the literature an O(r · n) mistake bound, which is obviously less tight.

279

Nevo and El-Yaniv

Balanced Winnow (α, β)

1. Initialize all weights in ~w1 and in ~w0 to 1.

2. Given an instance ~x, calculate y := ~w1 · ~x− ~w0 · ~x
3. Output 1 if y ≥ 0, and 0 otherwise.

4. Receive c(~x)

5. If the algorithm made a mistake:

(a) If c(~x) = 1:

For each 1 ≤ j ≤ n, set w1
j := αxjw1

j .

For each 1 ≤ j ≤ n, set w0
j := βxjw0

j .

(b) If c(~x) = 0:

For each 1 ≤ j ≤ n, set w1
j := βxjw1

j .

For each 1 ≤ j ≤ n, set w0
j := αxjw0

j .

6. Goto 2.

Figure 4: Balanced Winnow

Theorem 9 (Littlestone) Balanced Winnow (1+ δ
2 , 1− δ

2) learns the class of linear thresh-
old functions, that satisfy the above δ-margin separation condition, making at most 6 log 2n

δ2

mistakes.3

It was later mentioned (Blum and Singh, 1990; Dhagat and Hellerstein, 1994; Valiant,
1999), that any decision list can be written as a linear threshold function, but in order to
satisfy the above separation rule, it must be “augmented” in the following sense. One extra
variable, xn+1, must be added, and it is given a constant assignment 1 in all instances. We
can now write, for example, the decision list in Figure 1, as:

f(~x) =

{
1, − 3

59x1 + 11
59x3 + 11

59x5 − 25
59x7 − 3

59x8 − 3
59x11 + 2

59x20 − 1
59xn+1 ≥ 0;

0, otherwise.

It can be easily verified that f(~x) satisfies the δ-margin separation with δ = 1
59 . Thus,

Balanced Winnow can be used for learning decision lists.
In general, for the δ-margin property, the coefficient of a variable in layer i, must be O(r)

times larger than the coefficient of a variable in layer i + 1, so there must be an O(rD) gap
between the coefficients of the variables in the first layer and those of the last. It follows
that the separation parameter for decision lists is δ = O(1/rD). The resulting mistake
bound is given by the following theorem.

Theorem 10 Balanced Winnow learns the class of monotone 1-decision lists with D layers,
making O(r2D log n) mistakes.
3. Learning still occurs with different parameters given to the algorithm. Littlestone (1989) describes

extended results.

280

On Online Learning of Decision Lists

Valiant (1999) used a careful analysis to show that the above bound can be reduced to
O

(
(2r

D)2D log n
)
. However, the

(
2
D

)2D multiplicative constant does not change the asymp-
totic behaviour of Balanced Winnow (recall that we consider the case where D is a constant).

3.3 Computationally Unbounded Learning and Hardness Results

It might well be that achieving a poly(r, size(c)) · polylog(n) mistake bound in learning
decision lists, requires computational resources which are more than polynomial (in r, in
size(c) or in n). In fact a computationally unbounded learner, can learn decision lists making
O(r log n) mistakes, using the “Halving Algorithm”. The Halving Algorithm (Littlestone,
1988) is a general algorithm for learning any finite target class C, within the mistake bound
model. At any stage of the game, the algorithm keeps the set CONS, which is the set of
all target functions in C that are consistent with all instances seen so far (initially this set
equals C). Whenever a prediction is needed, the algorithm takes the majority vote of all
functions in CONS. Thus, whenever a mistake is made, at least half of the functions in
CONS are found wrong and are taken out from CONS. The resulting mistake bound is
therefore dlog |C|e.

In the case where C consists of decision lists over n variables and with r nodes, the
cardinality of C is O((2n)r) (choose r variables out of possible n into the r nodes, then
choose either 1 or 0 output function for each node). The mistake bound of the Halving
algorithm for that C is therefore O(r log n). However, the time complexity of calculating
the output of O((2n)r) decision lists is exponential in r.

A recent study by Servadio (2000) showed a few hardness results, relating to the poly-
nomial time learnability of decision lists. In particular, he proved the following.

Definition 11 A function f : {0, 1}∗ → {0, 1}∗ is said to be length preserving q(n)-one-way
permutation if the following conditions hold:

• |f(x)| = |x| for all x ∈ {0, 1}∗.

• There is a deterministic poly-time algorithm which computes f(x).

• For any probabilistic poly(q(n))-time algorithm A, for any polynomial Q, and for any
sufficiently large n, we have that Prx∈Un [A(f(x)) = x] < 1

Q(q(n)) , where x ∈ Un means
that x is chosen from the set {0, 1}n according to the uniform distribution.

Theorem 12 (Servadio) For any integer c ≥ 2, let log(c, n) denote

c︷ ︸︸ ︷
log log · · · log n. Let

q(c, n) = nlog(c,n). If there is some integer c ≥ 2, such that length-preserving q(c, n)-one-way
permutation exists, then there exists a concept class C of O(log(c, n))-decision lists which
has the following properties in the mistake bound model:

• A computationally unbounded learner can learn C with at most 1 mistake;

• C can be learned in polynomial time;

• C cannot be learned in polynomial time by an attribute efficient algorithm.

281

Nevo and El-Yaniv

This result may indicate, that attribute efficient learning of decision lists, is computa-
tionally hard, however it certainly does not prove it. Notice that the existence of length-
preserving q(c, n)-one-way permutation is not a standard cryptographic assumption (see
discussion by Servadio, 2000). Also, the concept class C, is of O(log(c, n))-decision lists, so
the number of literals in each node, increases with n (though it does so very slowly). It is
therefore still possible that the class of 1-decision lists (where 1 does not depend on n) has
an attribute efficient learning algorithm.

3.4 PAC-Based Related Results

The PAC model (Valiant, 1984) is widely used for analyzing the performance of offline
learning algorithms. In the PAC model, the goal of the learner is to produce an approxi-
mately correct hypothesis (with high probability), after seeing a random sample of classified
instances, called the training set. More formally, it is hypothesized that a fixed distribution
over the instance space is used to draw a number of classified instances (classified using a
target function c ∈ C). A learning algorithm A can then observe the training set and should
generate a hypothesis, whose error is defined to be the probability of drawing an instance
(under the same distribution) on which the hypothesis and the target function disagree.

We say that algorithm A PAC learns C by H, if for any distribution, any target func-
tion c ∈ C and any error parameters ε and δ, there exist polynomials s(n, 1

ε ,
1
δ , size(c)) and

t(n, 1
ε ,

1
δ , size(c)) such that given a training set of size s(n, 1

ε ,
1
δ , size(c)), A runs at time at

most t(n, 1
ε ,

1
δ , size(c)), and outputs a hypothesis h ∈ H that with probability 1 − δ has

error at most ε. Algorithms that need a relatively small training set for PAC learning of
certain classes are said to have a low sample complexity.

We say that algorithm A is consistent with c if after seeing any training set, classified
by c, it produces a hypothesis h, such that h(x) = c(x) for any instance x in the training
set. A is an Occam algorithm for C if for any c ∈ C and for any training set of size m,
classified by c, A is consistent and produces a hypothesis of size at most (size(c))βmα, for
constants α < 1 and β ≥ 1. Blumer et al. (1987) showed that any Occam algorithm for C,
producing hypotheses from H, PAC learns C by H.

Dhagat and Hellerstein (1994) proposed an Occam algorithm for PAC learning (non-
monotone) 1-decision lists with D layers, for which the following theorem holds.

Theorem 13 (Dhagat and Hellerstein) Dhagat and Hellerstein’s algorithm PAC learns
the class of 1-decision lists with D layers and r relevant variables by the class of 1-decision
lists with D layers and O(rD logD(r

ε)) relevant variables. The sample complexity of the
algorithm is bounded by a polynomial s = O

(
1
ε (log 1

δ + rD log n logD(r
ε))

)
, and it runs in

time bounded by a polynomial t = O(sn2).

Their algorithm uses as a subroutine a well known greedy approximation algorithm for the
set cover problem. The set cover problem takes as input a collection S of subsets of a finite
set U , and asks for a subcollection S′ ⊆ S, such that the union of subsets in S′ is U (S′

is a cover of U), and S′ contains the smallest possible number of subsets. The set cover
problem is NP-complete. The greedy approximation algorithm constructs a cover of size
z(ln |U | + 1), where z is the size of the smallest cover. Generally speaking, it is used to
build a small explanation for a phenomenon, from components that describe parts of the
phenomenon.

282

On Online Learning of Decision Lists

Multi-Layered Winnow (D, α)

1. Initialize all weights wi,j to 1.

2. Given an instance ~x = 〈x1, . . . , xn〉, calculate ~y := W · ~x.

3. Let i∗ be the minimal i s.t. yi ≥ n. If there is no such i, set i∗ := D + 1.

4. Output oi∗ , the output function of layer i∗. We say that layer i∗ fired.

5. Receive c(~x).

6. If the algorithm made a mistake:

(a) If i∗ ≤ D:

For each 1 ≤ j ≤ n, set wi∗,j := α−xjwi∗,j (demote layer i∗).

(b) If i∗ > 1:

For each 1 ≤ j ≤ n, set wi∗−1,j := αxjwi∗−1,j (promote layer i∗ − 1).

7. Goto 2.

Figure 5: Multi Layered Winnow.

The basic approach in Dhagat and Hellerstein’s algorithm is finding a set of candidates
for each layer, starting with layer 1 and moving downwards. A specific literal l is considered
a candidate for layer i if all classified instances in the training set, in which l is satisfied
but the classification differs from the output of layer i, can be explained by a “small” set
of candidates from higher layers with the right output. Greedy set cover is used for finding
such a “small” set, where small is defined to be r(ln |U | + 1), with U being the set of
contradicting instances. The candidates for layer 1 are those for which no contradicting
instances exist. After setting the sets of candidates, the hypothesis is built by carefully
putting literals from these sets into the layers of the decision list. Greedy set cover is used
in this stage too.

A major advantage of this algorithm is that it produces a hypothesis which is a deci-
sion list, depending on a relatively small number of variables. However, being an Occam
algorithm, it carries an offline flavor as it must examine all data before giving a conclusion.
It is unclear whether it can be transformed into an online algorithm, and whether it can
be analyzed within the mistake bound model (since its hypothesis is approximately correct,
there is no guarantee it will ever stop making mistakes).

4. Multi Layered Winnow

We now present a novel algorithm for learning a decision list with a 〈1, 0〉 default node and D
layers. The algorithm attempts to learn an appropriate disjunction in each layer separately,
using the basic Winnow algorithm (Section 2.3). A matrix W ∈ RD×n of weights is used,
in which the i-th row represents the weight vector of the Winnow instance in the i-th layer.

283

Nevo and El-Yaniv

As in Rivest’s algorithm oi = (D − i + 1) mod 2. A fixed parameter α > 1 controls the
learning rate. The algorithm is shown in Figure 5.

Notice that Multi-Layered Winnow (1, α) is identical to the Winnow algorithm, shown in
Subsection 2.3 (a decision list with one layer is simply a monotone disjunction). Therefore,
one can view Multi-Layered Winnow as a strict generalization of Winnow.

After each mistake, Multi-Layered Winnow updates the weight vectors of at most two
layers: layer i∗ and layer i∗ − 1. The output of layer i∗ is the wrong output for ~x, and the
output of layer i∗ − 1 is the right one. The reason for the two updates is that any mistake
can occur due to two reasons:

• Layer i∗ was too strong, forcing its output, while a lower layer could classify the
instance correctly.

• Layer i∗−1 was too weak. It should have “captured” the instance before layer i∗, but
failed to do so.

Since there is no obvious way to distinguish between the two cases, we try to correct both
errors, demoting layer i∗, and promoting layer i∗ − 1. However, one of the updates might
be wrong, providing a specific Winnow instance with a misclassification. We therefore have
to prove that after each mistake, at least one of the updates is correct, and that a correct
update can compensate for a false update.

4.1 A Mistake Bound Analysis

Definitions 14–17 refer to the target decision list, which the algorithm attempts to learn.
Definition 18 defines for each update step whether it moved the algorithm’s hypothesis
closer to the target function or not.

Definition 14 The minimal layer of a variable xj (denoted l(xj)) is the index of the
highest layer in which the variable appears. If no such layer exists, l(xj) = D + 1.

Example 1 In the decision list, shown in Figure 1, the minimal layer of x5 is 2 (l(x5) = 2).
The minimal layer of x16 is 5.

Definition 15 For any layer i, the primary variable set (denoted Ri) is defined to be
Ri , {xj : l(xj) = i}.

Example 2 In the decision list, shown in Figure 1, the primary variable set of layer 3 is
R3 = {x11, x8, x1}.

Definition 16 For any layer i, the relevance variable set (denoted R̃i) is defined to be

R̃i ,
⋃

oj=oi

j≤i

Rj .

Example 3 In the decision list, shown in Figure 1, the relevance variable set of layer 3 is
R̃3 = {x11, x8, x1, x7}. Notice that for layer 1, R̃1 = R1 = {x7} (there are no layers with a
smaller index).

284

On Online Learning of Decision Lists

Note: From now on we will ignore zero instances, i.e., instances in which ~x = ~0. Such
instances do not change the mistake bound, as the algorithm always predicts 0 for them,
which is the correct classification in any decision list with a 〈1, 0〉 default node.

Definition 17 Given an instance ~x, we define the dominant layer (denoted ldom(~x)), as

ldom(~x) , min{l(xj) : xj = 1}.
Following the definition of a decision list, this is the layer, whose output determines c(~x).
We also define the dominant variable (denoted xdom(~x)) to be any variable of the (non
empty) set {xj : l(xj) = ldom(~x) ∧ xj = 1}.

Example 4 In the decision list, shown in Figure 1, the dominant layer for the instance
~x = 10000001000 . . . 0 is layer 3 (ldom(~x) = 3). The dominant variable can be either x1

or x8 (but not x11 as it gets a 0 assignment).

Definition 18 When layer i∗ is demoted, we say that it is falsely demoted if there is
a variable xj ∈ R̃i∗, for which wi∗,j is decreased. Otherwise we say that it is correctly
demoted. Similarly, when layer i∗ − 1 is promoted, we say that it is falsely promoted if
there is no variable xj ∈ R̃i∗−1, for which wi∗−1,j is increased. Otherwise we say that it is
correctly promoted.

Lemma 19 On each update, if no layer was demoted, then layer D was correctly promoted.

Proof By inspection of the algorithm, if no layer was demoted it must be that i∗ = D +1,
and layer D was promoted. Since the correct output for ~x was 1, layer ldom(~x) must have
output 1. It follows that xdom(~x) ∈ R̃D. Also, xdom(~x) must have an assignment 1 in ~x, so
its weight in layer D was increased. Layer D was therefore correctly promoted.

Lemma 20 On each update, if no layer was promoted, then layer 1 was correctly demoted.

Proof By inspection of the algorithm, if no layer was promoted, we clearly had i∗ = 1
(layer 1 fired), and thus layer 1 was demoted. If layer 1 was falsely demoted, we must had
a variable xj ∈ R̃1 = R1, for which the weight in layer 1 was decreased. This means xj had
an assignment 1 in ~x. However giving an assignment 1 to xj ∈ R1 forces the target deci-
sion list to output the output function of layer 1. Thus, no mistake should have happened.

Lemma 21 If the algorithm falsely demoted layer i∗ after seeing ~x, then ldom(~x) < i∗.

Proof Clearly, ldom(~x) 6= i∗, as the two layers must have different outputs. By definition,
any variable xj , for which l(xj) < ldom(~x) must had a 0 assignment in ~x. Therefore, if
ldom(~x) > i∗, then any variable xj ∈ R̃i∗ (for which l(xj) ≤ i∗) must had a 0 assignment. It
follows that there was no variable xj ∈ R̃i∗ , for which the weight wi∗,j was decreased, and
that layer i∗ was correctly demoted.

285

Nevo and El-Yaniv

Lemma 22 After each mistake, the algorithm either correctly promotes a layer, or correctly
demotes a layer (or both).

Proof We show that the algorithm cannot falsely demote layer i∗ and falsely promote
layer i∗ − 1. Suppose the algorithm falsely demoted layer i∗. From Lemma 21 we know
that ldom(~x) ≤ i∗ − 1. Also, layer ldom(~x) and layer i∗ − 1 have the same output, so by
definition xdom(~x) ∈ R̃i∗−1. Since xdom(~x) had an assignment 1, its weight in layer i∗ − 1
was increased. Therefore, layer i∗ − 1 was correctly promoted.

The above lemmas imply that we can consider only 5 possible updates:

Case 1: Layer 1 is correctly demoted, while no other layer is promoted.

Case 2: Layer i∗ is correctly demoted, and layer i∗ − 1 is correctly promoted.

Case 3: Layer i∗ is falsely demoted, and layer i∗ − 1 is correctly promoted.

Case 4: Layer i∗ is correctly demoted, and layer i∗ − 1 is falsely promoted.

Case 5: Layer D is correctly promoted, while no other layer is demoted.

The above 5 cases form a partition of all possible updates. Since every mistake is followed
by an update, a bound on the number of updates, entails a mistake bound for the algorithm.
Denoting by M(i) a bound on the number of updates, that fall into Case i, M(1)+M(2)+
M(3) + M(4) + M(5) is a mistake bound for the algorithm. Before bounding each of the
M(i)s, we need the following lemma (inspired by Littlestone, 1988).

Lemma 23 Let w
(t)
i,j denote the weight wi,j after the t-th trial. Then ∀i, j, t, w(t)

i,j < αn.

Proof Initially, all weights w
(0)
i,j are set to 1. Since α > 1, we have that w

(0)
i,j < αn. The

value of w
(t)
i,j was increased in the t-th trial only if

∑n
j=1 w

(t−1)
i,j xj < n and xj = 1. These

conditions can occur only if w
(t−1)
i,j < n. Thus, w

(t)
i,j < αn.

Theorem 24 M(2) + M(3) + M(5) < 2rD(logα n + 1).

Proof Consider the following potential function:

Φ(t) =
D∑

i=1

rD−i
∑

xj∈R̃i

(
logα αn− logα w

(t)
i,j

)
.

Informally, Φ(t) measures in each layer how far are the weights of the relevant variables
from αn (weights of relevant variables should get values as high as possible). Through the
coefficient rD−i, the function gives a higher importance to higher layers than to lower layers.

First, we notice that ∀t : Φ(t) > 0. This is immediate from Lemma 23. Also, since all
weights are initialized to 1 we get:

Φ(0) = logα αn
D∑

i=1

rD−i
∑

xj∈R̃i

1 = logα αn
D∑

i=1

rD−i|R̃i|.

286

On Online Learning of Decision Lists

An upper bound for Φ(0) is achieved by pessimistically assuming that all r relevant variables
appear in all R̃is. Thus we have:

Φ(0) ≤ logα αn
D∑

i=1

rD−ir = logα αn
D∑

i=1

ri < 2rD(logα n + 1).

We now notice that updates of Case 1 and of Case 4 do not change the potential function
(i.e., after an update of type 1 or 4 at the t-th trial, ∆Φ(t) = Φ(t)− Φ(t− 1) = 0). This is
because when layer i∗ is correctly demoted, the weight wi∗,j is unchanged for each variable
xj ∈ R̃i∗ . Similarly, when layer i∗ − 1 is falsely promoted, the weight wi∗−1,j is unchanged
for any xj ∈ R̃i∗−1.

Next, we show that every update of Cases 2, 3 and 5 decreases Φ(t) by at least 1. Since
the potential function is always positive and cannot increase, this proves the theorem.

Case 2: Since layer i∗ is correctly demoted, the weight wi∗,j is unchanged for any variable
xj ∈ R̃i∗ . Therefore, the demotion step does not change the potential function. Since
layer i∗ − 1 is correctly promoted, there is at least one variable xj ∈ R̃i∗−1, that has an
assignment 1. Thus,

∆Φ(t) = Φ(t)− Φ(t− 1) =

=
D∑

i=1

rD−i
∑

xj∈R̃i

(
logα αn− logα w

(t)
i,j

)
−

D∑
i=1

rD−i
∑

xj∈R̃i

(
logα αn− logα w

(t−1)
i,j

)
=

= rD−(i∗−1)
∑

xj∈R̃i∗−1

(
− logα w

(t)
i∗−1,j

)
− rD−(i∗−1)

∑
xj∈R̃i∗−1

(
− logα w

(t−1)
i∗−1,j

)
=

= rD−(i∗−1)
∑

xj∈R̃i∗−1
xj=1

(
logα w

(t−1)
i∗−1,j − logα w

(t)
i∗−1,j

)
=

= rD−(i∗−1)
∑

xj∈R̃i∗−1
xj=1

(
logα w

(t−1)
i∗−1,j − logα αw

(t−1)
i∗−1,j

)
=

= rD−(i∗−1)
∑

xj∈R̃i∗−1
xj=1

logα
1
α = −rD−(i∗−1)

∑
xj∈R̃i∗−1

xj=1

1 ≤ −rD−(i∗−1) ≤ −1.

Case 3: We follow the equalities of Case 2, to state that the correct promotion of layer
i∗ − 1 has the following contribution to ∆Φ(t):

∆Φprom(t) = −rD−(i∗−1)
∑

xj∈R̃i∗−1
xj=1

1

and, similarly, the false demotion of layer i∗ (in which weights are divided by α) contributes
the following:

∆Φdem(t) = rD−i∗
∑

xj∈R̃i∗
xj=1

1.

287

Nevo and El-Yaniv

Clearly xdom(~x(t)) /∈ R̃i∗ , so we can give an upper bound for ∆Φdem(t):

∆Φdem(t) = rD−i∗
∑

xj∈R̃i∗
xj=1

1 ≤ (r − 1)rD−i∗ .

On the other hand, since layer i∗ − 1 is correctly promoted, there is at least one variable
xm ∈ R̃i∗−1, that has an assignment 1, and for which the weight wi∗−1,m is doubled.
Therefore,

∆Φprom(t) = −rD−(i∗−1)
∑

xj∈R̃i∗−1
xj=1

1 ≤ −rD−(i∗−1)

and we can conclude that

∆Φ(t) = ∆Φdem(t) + ∆Φprom(t) ≤ (r − 1)rD−i∗ − rD−(i∗−1) = −rD−i∗ ≤ −1.

Case 5: Same as Case 2, without any layer being demoted and with i∗ = D + 1.

Notice that only Case 3 updates make use of the exponential coefficient rD−i, which con-
tributes the rD factor to the mistake bound. Thus, Case 3 updates are the real “bottleneck”
of our algorithm.

Theorem 25 M(1) + M(2) + M(3) + M(4) < αD+1−α
α−1

[
α

(α−1)2
+ M(5)

]
.

Proof Consider the following potential function:

Ψ(t) =
D∑

i=1

αi+1 − α

(α− 1)2

n∑
j=1

w
(t)
i,j

n
.

Informally, Ψ(t) measures how much “noise” exists in our system (i.e., how high are the
weights, including weights of irrelevant attributes). The function is more sensitive to noise
in lower layers, than to noise in upper layers.

First, we notice that ∀t : Ψ(t) > 0, as the weights are always positive. Next, we give an
upper bound for Ψ(0):

Ψ(0) =
D∑

i=1

αi+1 − α

(α− 1)2

n∑
j=1

1
n

=
D∑

i=1

αi+1 − α

(α− 1)2
<

α

(α− 1)2

D∑
i=1

αi =
α

(α− 1)2
· αD+1 − α

α− 1
.

We now show that every update, except of Case 5 updates, decreases the potential function
by at least 1.

288

On Online Learning of Decision Lists

Case 1: Layer 1 is demoted following trial t. Therefore, layer 1 was the layer that fired,
so before the demotion we had that

∑
xj=1 w

(t−1)
1,j ≥ n. It follows that

∆Ψ(t) = Ψ(t)−Ψ(t− 1) =
D∑

i=1

αi+1 − α

(α− 1)2

n∑
j=1

w
(t)
i,j

n
−

D∑
i=1

αi+1 − α

(α− 1)2

n∑
j=1

w
(t−1)
i,j

n
=

=
α2 − α

n(α− 1)2

n∑
j=1

w
(t)
1,j −

α2 − α

n(α− 1)2

n∑
j=1

w
(t−1)
1,j =

α

n(α− 1)

∑
xj=1

(
1
αw

(t−1)
1,j − w

(t−1)
1,j

)
=

=
α

n(α− 1)
1− α

α

∑
xj=1

w
(t−1)
1,j = − 1

n

∑
xj=1

w
(t−1)
1,j ≤ − 1

n
n = −1.

Cases 2, 3 and 4: As in case 1, since layer i∗ fired, we have that
∑

xj=1 w
(t−1)
i∗,j ≥ n.

Similarly, since layer i∗ − 1 did not fire, it must be that
∑

xj=1 w
(t−1)
i∗−1,j < n. Therefore,

∆Ψ(t) = Ψ(t)−Ψ(t− 1) =
D∑

i=1

αi+1 − α

(α− 1)2

n∑
j=1

w
(t)
i,j

n
−

D∑
i=1

αi+1 − α

(α− 1)2

n∑
j=1

w
(t−1)
i,j

n
=

=
αi∗ − α

n(α− 1)2
∑
xj=1

(
αw

(t−1)
i∗−1,j − w

(t−1)
i∗−1,j

)
+

αi∗+1 − α

n(α− 1)2
∑
xj=1

(
1
αw

(t−1)
i∗,j − w

(t−1)
i∗,j

)
=

=
αi∗ − α

n(α− 1)2
· (α− 1)

∑
xj=1

w
(t−1)
i∗−1,j +

αi∗+1 − α

n(α− 1)2
· 1− α

α

∑
xj=1

w
(t−1)
i∗,j <

<
αi∗ − α

n(α− 1)
· n− αi∗ − 1

n(α− 1)
· n =

1− α

α− 1
= −1.

Case 5: Layer D was promoted, so it surely did not fire. We must have then that∑
xj=1 w

(t−1)
D,j < n. If follows that:

∆Ψ(t) =
αD+1 − α

(α− 1)2
∑
xj=1

αw
(t−1)
D,j − w

(t−1)
D,j

n
=

=
αD+1 − α

(α− 1)2
· α− 1

n

∑
xj=1

w
(t−1)
D,j <

αD+1 − α

(α− 1)2
· α− 1

n
n =

αD+1 − α

α− 1
.

It is now immediate that there cannot be more than αD+1−α
α−1

[
α

(α−1)2
+ M(5)

]
updates

of Cases 1, 2, 3 and 4, as the potential function must remain positive. This completes the
proof.

Theorem 26 Multi-Layered Winnow (D, α) learns the class of monotone 1-decision lists
with a 〈1, 0〉 default node and D layers, making at most (D +1)αD

[
2rD logα(αn) + α

(α−1)2

]
mistakes.

289

Nevo and El-Yaniv

Proof First notice that the running time of the algorithm is O(Dn) per instance, and
therefore polynomial in n, in r and in size(c) (recall that size(c) = O(r log n)). By adding
the bounds from Theorem 24 and Theorem 25 we conclude that the mistake bound, M ,
satisfies

M < M(1) + 2M(2) + 2M(3) + M(4) + M(5) <

<
αD+1 − α

α− 1

[
α

(α− 1)2
+ M(5)

]
+ 2rD logα(αn) <

<
αD+1 − α

α− 1

[
α

(α− 1)2
+ 2rD logα(αn)

]
+ 2rD logα(αn) =

= 2
αD+1 − 1

α− 1
· rD logα(αn) +

αD+2 − α2

(α− 1)3
<

<
D∑

i=0

αi ·
[
2rD logα(αn) +

α

(α− 1)2

]
< (D + 1)αD

[
2rD logα(αn) +

α

(α− 1)2

]
.

Substituting α = 21/D simplifies the bound to become O(D2rD log n).
Using the reductions shown in Lemma 1 and in Lemma 2 we can extend the target class

that Multi-Layered Winnow can learn, as given by the following corollary.

Corollary 27 For any constant k, Multi-Layered Winnow (D, α) learns the class of k-
decision lists with D layers, making O(rkD log nk) = O(krkD log n) mistakes.

The following theorem and corollary state that the mistake bound’s exponential depen-
dence on D is inherent to the algorithm.

Theorem 28 For any decision list with D layers that satisfies n ≥ r α
α−1 , there exists a

sequence of instances, on which Multi-Layered Winnow (D, α) makes at least
∏D

i=1 |Ri|
mistakes.

Proof See Appendix A.

Corollary 29 Consider a decision list with D layers of equal size, that is, |Ri| = r
D for

any 1 ≤ i ≤ D. If such a decision list is defined over n ≥ r α
α−1 attributes, then there

exists a sequence of instances on which Multi-Layered Winnow (D, α) makes at least (r
D)D

mistakes.

4.2 Learning with an Arbitrary (Unknown) Number of Layers

We now want to eliminate the requirement of knowing in advance the number D of layers.
We therefore present a meta-algorithm, which uses Multi-Layered Winnow (D, α) as a
black box. The algorithm simply increases the guess for D, as long as Multi-Layered
Winnow (D, α) makes more mistakes than the worst case bound. Since the bound depends

290

On Online Learning of Decision Lists

Multi-Layered Winnow

for r = 1 to n

for d = 1 to r

for D = 1 to d

Run Multi-Layered Winnow (D, 2) until the number of mistakes it
makes, exceeds 8(2r)d log(2n).

Figure 6: Multi Layered Winnow - works for an arbitrary number of layers with α = 2

also on r, the number of relevant variables, our algorithm also guesses a value for r, and
increases it as well.

To make things a bit simpler, we now analyze the case α = 2 (the same idea works for
any α > 1). For this case, the mistake bound given by Theorem 26 can be upper-bounded
by 8(2r)D log(2n). Consider the algorithm in Figure 6. To see why this algorithm works,
and why each of the three loops is necessary, let c be the target decision list, and suppose c
has D̂ layers and r̂ relevant variables.

Lemma 30 In the outer most loop, r never exceeds r̂.

Proof Consider the run of Multi-Layered Winnow (D, 2), in which r = r̂ and d = D = D̂.
From Theorem 26 we know that a mistake bound for this run is M = (2D+2−2)rD log 2n+
2D+2 − 4. Therefore, the number of mistakes will never exceed 8(2r)d log 2n, and this run
will never end.

Lemma 31 If the inner most loop is started with values for r and d that satisfy
8(2r)d log 2n > 8(2r̂)D̂ log 2n, then d > D̂, but the inner most loop will never continue
beyond D = D̂.

Proof From Lemma 30 we know that r ≤ r̂. It follows that when the inner loop is started
with values for r and d which satisfy the inequality, we must have that d > D̂. As a result,
the inner most loop might run Multi-Layered Winnow(D) with D = D̂, but as in Lemma 30,
the number of mistakes in such run will never exceed 8(2r)d log 2n, and the loop will never
continue beyond D = D̂.

Lemma 32 Any run of Multi-Layered Winnow (D, 2) cannot make more than
8(2r̂)D̂+1 log 2n mistakes.

Proof Consider a specific time, in which the inner most loop is started with specific values
of r and d. If r and d satisfy 8(2r)d log 2n ≤ 8(2r̂)D̂ log 2n, then the result trivially follows.
Otherwise, consider the first time in which

8(2r)d log 2n > 8(2r̂)D̂ log 2n.

291

Nevo and El-Yaniv

Since this is the first run, we know that

8(2r)d−1 log 2n ≤ 8(2r̂)D̂ log 2n

(if d = 1 this is surely true). Multiplying by 2r̂ we get:

8(2r̂)(2r)d−1 log 2n ≤ 8(2r̂)D̂+1 log 2n,

and since r ≤ r̂ we conclude that

8(2r)d log 2n ≤ 8(2r̂)D̂+1 log 2n.

Also, from Lemma 31 we know that d > D̂, and that the inner most loop will never continue
beyond D = D̂. Thus, no run of Multi-Layered Winnow (D, 2) with r ≤ r̂ makes more than
8(2r̂)D̂+1 log 2n mistakes.

Theorem 33 Multi-Layered Winnow learns any decision list over n variables with r̂ rele-
vant variables and D̂ layers, making at most 8(2r̂)D̂+4 log 2n mistakes.

Proof Since the algorithm will never execute an iteration with r > r̂ (Lemma 30), the
number of Multi-Layered Winnow (D, 2) runs is bounded by r̂3. Since no run of Multi-
Layered Winnow (D, 2) will make more than 8(2r̂)D̂+1 log 2n mistakes (Lemma 32), the
total number of mistakes in all runs is bounded by 8(2r̂)D̂+4 log 2n.

4.3 A Hybrid Algorithm — Multi-Layered Winnow + Rivest’s

Looking closely at the mistake bound analysis of Multi-Layered Winnow (D, α), it appears
that false demotions have a major contribution to the mistake bound of the algorithm. In
fact, it is only due to false demotions (Case 3 updates), that the mistake bound has the
expression rD in it. Furthermore, the number of mistakes depends heavily on the number
of relevant variables, for which the weights were decreased. If in all instances, only a single
relevant variable is set (has an assignment 1), there would be no false demotions, and the
mistake bound would become O(rD log n), instead of O(rD log n).

Therefore, we can deduce that Multi-Layered Winnow makes many mistakes, if it en-
counters instances, in which many (relevant) variables are set. This behaviour is contrary
to the behaviour exhibited by Rivest’s algorithm. Since Rivest’s algorithm eliminates all
irrelevant variables, which are set, it makes very few mistakes if it encounters instances
with many 1-assigned variables. On the other hand, its weakness is when all instances
have a small number of variables which are set. This opposite behaviour of the two algo-
rithms, suggests to combine them together. This way, each algorithm can compensate for
the weaknesses of the other.

Figure 7 shows hybrid Multi-Layered Winnow, into which Rivest’s algorithm was incor-
porated. This hybrid runs much like Multi-Layered Winnow, but when a mistake occurs it
adds to the demotion and promotion steps, an elimination step as in Rivest’s algorithm. The

292

On Online Learning of Decision Lists

Multi-Layered Winnow + Rivest’s (D, α)

1. Initialize all weights wi,j to 1.

2. Given an instance ~x = 〈x1, . . . , xn〉, calculate ~y := W · ~x.

3. Let i∗ be the minimal i s.t. yi ≥ n. If there is no such i, set i∗ := D + 1.

4. Let k∗ be the minimal k s.t. yk > 0. If there is no such k, set k∗ := D + 1.

5. Output oi∗ , the output function of layer i∗.

6. Receive c(~x).

7. If the algorithm made a mistake:

(a) If i∗ ≤ D:

For each 1 ≤ j ≤ n, set wi∗,j := α−xjwi∗,j (demotion).

(b) If i∗ > 1:

For each 1 ≤ j ≤ n, set wi∗−1,j := αxjwi∗−1,j (promotion).

(c) If k∗ ≤ D and ok∗ = oi∗ :

For each 1 ≤ j ≤ n, set wk∗,j := (1− xj)wk∗,j (elimination).

8. Goto 2.

Figure 7: A hybrid Multi-Layered Winnow — including Rivest’s elimination step

following theorem shows that the elimination step never eliminates weights of relevant vari-
ables. It follows that the hybrid can only help Multi-Layered Winnow in removing “noise”
(large weights for irrelevant variables), reducing faster the potential function Ψ(t). Thus,
the hybrid’s mistake bound cannot exceed the mistake bound of Multi-Layered Winnow.

Theorem 34 An elimination step on layer k∗, never sets a weight wk∗,j to 0 if xj ∈ R̃k∗.

Proof Suppose it did. Consider the first trial t, in which it happened. Before the con-
tradicting elimination step, for any layer i, there was no xj ∈ R̃i for which wi,j = 0 (the
demotion step never sets a weight to 0). That includes of course the weight for xdom(~x(t)) in
layer ldom(~x(t)). Therefore, in trial t we must had that k∗ ≤ ldom(~x(t)), because k∗ is the first
layer in which there exists a non-zero weight for a 1-assigned variable. But if k∗ = ldom(~x(t)),
then since ok∗ = oi∗ , no mistake should have happened. If k∗ < ldom(~x(t)) then by definition
there was no xj ∈ R̃k∗ with assignment 1. Therefore, there was no xj ∈ R̃k∗ , for which the
weight wk∗,j was set to 0.

By inspection of the algorithm, it is clear that the elimination step is not executed after
each mistake, because the output of layer i∗ might not be the same as the output of layer k∗.
An adversary can use this to make the elimination step rather negligible: it might provide
instances with only a few set variables whenever an elimination step cannot be avoided.

293

Nevo and El-Yaniv

However, the elimination step might sharply reduce the mistake bound of Multi-Layered
Winnow, if most instances contain many variables with an assignment 1. In Section 5 we
show this empirically.

5. A Numerical Example

To gain some insight and for illustration purposes, we compared the empirical mistake
bounds of four online algorithms: Rivest’s algorithm, Balanced Winnow, our Multi-Layered
Winnow and our hybrid algorithm. The PAC algorithm of Dhagat and Hellerstein was not
tested, as we considered an online learning scenario. The Halving algorithm was not tested
because of the overwhelming amounts of memory and time it requires.

All four algorithms were given the task of online learning a few decision lists with a
different number of nodes and layers. The instances for the learning session, were cre-
ated by giving each variable a random assignment, determined by flipping a biased coin,
with probability p for giving 1. Two parameters were changed: the probability p, and
the total number n of variables in each instance. For each choice of p and n and for
each algorithm, we made 10 runs, and took their maximal mistake bound (having in mind
the worst-case nature of mistake-bound analysis) along with the average mistake bound
and the standard deviation. The mistake bound for each run was determined by tak-
ing the number of mistakes the algorithm had made, until it came up with a hypothesis
that was consistent with the next 10,000,000 instances. Table 1 shows typical results for
these tests. The results refer to the following decision list (contains 10 nodes in 4 layers):
〈〈x1, 0〉, 〈x2, 1〉, 〈x3, 1〉, 〈x4, 0〉, 〈x5, 0〉, 〈x6, 0〉, 〈x7, 1〉, 〈x8, 1〉, 〈x9, 1〉, 〈x10, 1〉, 〈1, 0〉〉.

We also calculated the theoretical mistake bound for these algorithms on the given
decision list, as presented in previous sections. These bounds are given in Table 2. Notice
that for Balanced Winnow the theoretical bound uses the parameters α = 313

312 and β = 311
312 ,

which by Theorem 9 fit the separation parameter δ = 1
156 . This separation parameter is

minimal for the given decision list. However, it turns out that using these values for α and β
gives very poor empirical results, which do not reflect the real power of Balanced Winnow.
We therefore used in the tests the values α = 2 and β = 1

3 , which were found best. Also
notice that for the hybrid algorithm we do not know of a better theoretical mistake bound
than the mistake bound of the basic Multi-Layered Winnow.

The results indicate that Rivest’s algorithm is highly sensitive to the proportion of 1’s
in the instances. If there are only a few variables with an assignment 1, the mistake bound
rises dramatically, getting close to the theoretical mistake bound. This means that almost-
worst-case sequences for Rivest’s algorithm are easily produced using random data. On the
other hand, a high proportion of 1’s gives low mistake bounds, even for large n. This gap
is because only 1 valued variables are eliminated from the layers.

A similar behaviour is observed for Balanced Winnow, though the gaps between low and
high values of p are less dramatic. Also, the number of mistakes the algorithm makes is far
from the theoretical bound by a few orders of magnitude. This indicates that worst-case
sequences are relatively hard to produce, and are not likely to occur in a random data.

Multi-Layered Winnow, behaves differently: its empirical mistake bound usually de-
creases with p. This is easily understood by noticing that a high proportion of 1’s can make

4. Did not stop making mistakes after 50,000,000 instances

294

On Online Learning of Decision Lists

Algorithm p n = 20 n = 200 n = 2000
max avg std max avg std max avg std

Rivest’s (4) 0.01 59 57.4 1.0 639 621 8.3 1709 1675 20.5
0.05 56 52.1 2.0 258 247 5.8 426 415 7.7
0.5 20 16.6 2.4 34 31.7 1.8 47 43.9 2.3

Bal-Winnow (2,13) 0.01 73 63.6 5.6 469 424 30.9 > 700 4

0.05 116 89.3 14.1 456 406 21.0 525 490 27.2
0.5 67 58.1 3.9 148 132 11.0 208 167 25.3

ML-Winnow (4,2) 0.01 173 160 8.5 258 245 8.8 334 327 5.9
0.05 187 164 14.0 294 265 16.8 419 390 20.9
0.5 196 172 13.2 404 338 33.7 472 412 38.3

MLW+Rivest (4,2) 0.01 133 131 1.7 220 213 4.7 327 318 5.3
0.05 140 132 5.7 246 230 12.5 362 348 8.5
0.5 114 103 7.7 142 127 10.3 269 224 27.7

Table 1: Mistakes made, while learning a 10 nodes, 4 layers decision list (10 runs). Best
results appear in boldface.

Algorithm n = 20 n = 200 n = 2000
Rivest’s (4) 80 800 8000
Balanced Winnow

(
313
312 , 311

312

)
777087 1262142 1747196

Multi-Layered Winnow (4,2) 3299655 5359251 7418846
Multi-Layered Winnow + Rivest (4,2) 3299655 5359251 7418846

Table 2: Theoretical mistake bounds for a 10 nodes 4 layers decision list.

false demotions and promotions very expensive. As with Balanced Winnow, the theoretical
mistake bound remains far away from the empirical results.

Finally, we observe that the combination of Multi-Layered Winnow and Rivest’s algo-
rithm, yields a balanced behaviour. The algorithm seems to be resistant to the value of
p, and achieves low mistake bounds even for large n. Though the algorithm has the worst
theoretical bounds (for this specific choice of target decision list and values for n), in most
cases it achieves empirically the best results.

Remark: The above numerical example was generated based on one target decision
list of length 10. We obtained qualitatively similar results with a few other target decision
lists (with lengths in the range [10, 100]). Nevertheless, it should be emphasized that these
numerical examples are certainly not exhaustive and therefore can at best provide only a
weak evidence for the above observations.

6. Concluding Remarks and Open Problems

In this work, we considered the problem of online learning the target class of decision
lists. We introduced a new online algorithm for learning decision lists, called Multi-Layered
Winnow. This algorithm achieves a mistake bound of O(rD log n), improving previous

295

Nevo and El-Yaniv

bounds. A combination of our algorithm with Rivest’s is empirically shown to perform
well. We now describe some open problems, regarding online learning of decision lists.

• Is there an attribute efficient learning algorithm for learning decision lists? This
remains the most important open problem.

• Is it possible to give better bounds for the proposed hybrid algorithm? A careful analysis
might possibly show that the elimination step significantly reduces the mistake bound.

• Can Multi-Layered Winnow learn real-valued concepts? We considered the boolean
case where the domain was {0, 1}n. However, Multi-Layered Winnow can be easily
generalized to classify instances over [0, 1]n, just like Winnow was generalized by
Littlestone (1988). It might be interesting to characterize the real-valued functions
that Multi-Layered Winnow can learn.

• Can randomization help? There are a few places where random decisions might have
an effect. For example, it might be randomly chosen whether to demote, promote or
eliminate a layer, and whether to increase or decrease a specific weight.

• Which results may be achieved by using different kinds of loss functions? The results
obtained here, and in all previous results on online decision lists learning, were ob-
tained in terms of 0/1 loss. One can hypothesize decision lists learning algorithms
which generate “soft” predictions (e.g., values in [0, 1]) or other types of non-binary
predictions. Performance guarantees for such algorithms can be considered in terms
of other loss functions (e.g., absolute or square).

• Are there “natural” learning problems (and data sets), for which algorithms, special-
izing in learning decision lists, perform better than general purpose classifiers?

Acknowledgments

We wish to thank Avrim Blum and the anonymous referees for their useful comments.

Appendix A.

In this appendix we prove the following theorem from Section 4.1:

Theorem 28 For any decision list with D layers that satisfies n ≥ r α
α−1 , there exists a

sequence of instances, on which Multi-Layered Winnow (D, α) makes at least
∏D

i=1 |Ri|
mistakes.

For simplicity we use the following notations:

• The acronym MLW refers to the Multi-Layered Winnow from Figure 5.

• RD+1 denotes the set of irrelevant attributes.

• Rj
i (i ≤ j) denotes the set

⋃j
k=i Rk. If i > j then Rj

i denotes the empty set.

296

On Online Learning of Decision Lists

Adversary’s strategy

While there is a layer i with xj ∈ Ri, s.t. wi,j +
∑

xk∈RD+1
i+1

wi,k < n do:

1. Let i¦ be the lowest layer that satisfies the above with xj¦ ∈ Ri¦ .

2. Give MLW the instance in which xl =

{
1 xl ∈ RD+1

i¦+1 or l = j¦

0 otherwise
.

3. While there is a layer i?, for which there is xj ∈ RD+1
i?+1 s.t. wi?,j > 1 do:

(a) Give MLW the instance in which xl =

{
1 xl ∈ RD+1

i?+1

0 otherwise
.

Figure 8: The adversary’s strategy for generating a worst-case sequence.

Also, notice that the assumption in the theorem implies α|RD+1| ≥ n (as n = r + |RD+1|).
The adversary’s strategy for generating a worst-case sequence is given in Figure 8. The

main idea is maximizing the number of false demotions (Case 3 updates), making each
false demotion as “harmful” as possible and making each correct promotion as “useless” as
possible. More specifically, the adversary keeps producing instances which cause a correct
promotion of only a single variable xj ∈ Ri∗−1, but imply a false demotion of all variables
in Ri∗ . This way, any promotion of a single variable from R1 is accompanied by the demotion
of all variables in R2. Each time a single variable in R2 is promoted again, all variables
in R3 are demoted, and so on. It follows that each promotion of a single variable in R1,
causes a cascade of updates (and therefore a sequence of mistakes), which is

∏D
i=2 |Ri| long.

Since there are |R1| such variables, the theorem holds.
Steps 1–2 of the algorithm take care of these worst-case false demotions, while Step 3

performs some sort of “clean-up”, making Multi-Layered Winnow ready for the next false
demotion. The following lemmas prove this formally.

Lemma 35 At any time, in any layer i, wi,j = wi,k for any xj , xk ∈ RD+1.

Proof Notice that the adversary gives MLW only instances in which every attribute from
RD+1 is set. Therefore, MLW promotes and demotes their weights together in each layer.

Lemma 36 Suppose that at some point the following conditions hold:

1. In a single layer i?, wi?,j ≤ wi?,k = α for any xk ∈ RD+1 and for any xj ∈ RD
i?+1.

2. In any layer i 6= i?, wi,j ≤ wi,k ≤ 1 for any xk ∈ RD+1 and for any xj ∈ RD
i+1.

Then by applying Step 3(a) the following statements become true:

1. wi?−1,j ≤ wi?−1,k ≤ α for any xk ∈ RD+1, and for any xj ∈ RD
i? (unless i? = 1).

2. In any layer i 6= i? − 1, wi,j ≤ wi,k ≤ 1 for any xk ∈ RD+1 and for any xj ∈ RD
i+1.

297

Nevo and El-Yaniv

Proof Since layer i? is the only layer for which there is xj ∈ RD+1
i?+1 s.t. wi?,j > 1, MLW

is given in Step 3(a) the instance, in which only attributes in RD+1
i?+1 are set. Since in any

layer i < i?, wi,j ≤ 1 for any xj ∈ RD+1
i?+1, the value of yi for such layers is smaller than n.

Since wi?,j = α for any xj ∈ RD+1, the value of yi? is at least α|RD+1| ≥ n. It follows that
layer i? fires, and that MLW outputs oi? .

MLW’s prediction is clearly a mistake, since the highest layer which contains a set
variable is i? + 1. Therefore, MLW demotes layer i? and promotes layer i? − 1 (unless
i? = 1). Following the demotion in layer i?, the weights wi?,j of variables in RD+1

i?+1 can-
not exceed 1. Following the promotion in layer i? − 1 (if such occured) we will have that
wi?−1,j ≤ wi?−1,k ≤ α for any xk ∈ RD+1, and for any xj ∈ RD

i? . Weights in other layers are
unchanged, therefore the lemma holds.

Lemma 37 Suppose the conditions of Lemma 36 hold before Step 3 starts. Then when
Step 3 is done, in any layer i, wi,j ≤ wi,k ≤ 1 for any xk ∈ RD+1 and for any xj ∈ RD

i+1.

Proof Notice that if the conditions for Lemma 36 hold, then after executing Step 3(a)
there are three possibilities.

1. i? = 1, which proves the lemma.

2. wi?−1,j ≤ wi?−1,k ≤ 1 for any xk ∈ RD+1, and for any xj ∈ RD
i? , which proves lemma.

3. wi?−1,j ≤ wi?−1,k = α for any xk ∈ RD+1, and for any xj ∈ RD
i? . In this case Lemma 36

can be repeatedly applied, this time with layer i? − 1 as the single layer.

By Lemma 35 there cannot be a fourth possibilty in which only some of the xk ∈ RD+1

have wi?−1,k = α, while others do not. Since in Step 3, Step 3(a) is executed as long as
there is a layer i?, for which there is xj ∈ RD+1

i?+1 s.t. wi?,j > 1, Lemma 36 can be applied
again and again, until either Case 1 or Case 2 occur.

Lemma 38 In each execution of steps 1–3 the following statements are true:

1. Before the execution of Step 2, in any layer i, wi,j ≤ wi,k ≤ 1 for any xk ∈ RD+1 and
for any xj ∈ RD

i+1.

2. Layer i¦ + 1 fires when MLW processes the instance it is given in Step 2.

3. MLW makes a mistake at Step 2.

Proof By induction on t, the number of times Steps 1–3 were already executed.

Base case: t = 0. Recall that MLW starts with W = 1 (proved 1). Therefore, i¦ = D,
as for each xj ∈ RD we have that wD,j +

∑
xk∈RD+1

wD,k = |RD+1|+ 1 < n. Also, for any
1 ≤ i ≤ D we have that yi = |RD+1|+ 1 (the number of set attributes in the instance). It
follows that all yi’s are smaller than n (1 ≤ i ≤ D), and that layer D + 1 fires (proved 2).
Thus, MLW predicts 0, which is definitely a mistake since the only relevant variable which
is set is from layer D, so the output should be 1 (proved 3).

298

On Online Learning of Decision Lists

Assume the lemma holds for the first t− 1 iterations. On Step 2 of iteration t− 1, MLW
made a mistake, which was followed by a demotion in layer i¦ + 1 and a promotion in
layer i¦. It follows that when this step is done, layer i¦ is the only layer in which there
might be xj ∈ RD+1

i¦+1 s.t. wi¦,j > 1 (assuming Statement 1 was true for iteration t− 1).
If there is no such xj then Statement 1 is true for iteration t. Otherwise, by Lemma 35

the conditions for Lemma 37 hold. Applying Lemma 37 proves Statement 1 for iteration t.
Statement 2 follows from Statement 1, as MLW is given the instance in which set at-

tributes are either from RD+1
i¦+1 or xj¦ . In any layer i < i¦, wi,j ≤ 1 for any xj with

assignment 1, thus yi < n for these layers. In layer i¦, yi¦ < n by definition, but since
this is the lowest layer which satisfies the condition, we must have that yi¦+1 ≥ n or that
i¦ = D. On both cases, layer i¦+1 fires, proving Statement 2. MLW’s prediction is wrong, as
the highest layer which contains a set variable is i¦ (containing xj¦), proving Statement 3.

Lemma 39 At any time, in any layer i < D − 1, wi,j = wi,k for any xj ∈ RD
i+2 and for

any xk ∈ RD+1.

Proof By Lemma 38 we have that on Step 2 layer i¦ is promoted, while possibly layer
i¦ + 1 is demoted. The instance which causes these updates has all the attributes in RD+1

i¦+1

set, so their weights in the two layers are promoted and demoted together. By Lemma 37
we have that on Step 3(a) layer i? is demoted, and that possibly layer i? − 1 is promoted.
Again, the instance has all the attributes in RD+1

i?+1 set.

Lemma 40 In any layer i < D, Step 3 never promotes weights wi,j for any xj ∈ Ri+1.

Proof Again, this is because Step 3(a) demotes layer i? and possibly promotes layer i?−1,
having only attributes in RD+1

i?+1 set.

Lemma 41 For any layer i and for any xj ∈ Ri, wi,j is promoted only in Step 2 and only
when i¦ = i and j¦ = j.

Proof Using the same arguments as in the proof of Lemma 40 we show that Step 3(a)
never promotes wi,j . By Lemma 38 we know that in Step 2 layer i¦+1 fires. It follows that
only layer i¦ is promoted. Moreover, by the adversary’s strategy xj¦ is the only set variable
not in RD+1

i¦+1. Therefore, no wi,j can be promoted when xj ∈ Ri, unless i¦ = i and j¦ = j.

Lemma 42 Let i¦(t) denote the layer chosen in Step 1 of iteration t. If i¦(t) < D then at
the end of iteration t the followings hold:

1. For any xk ∈ RD+1 it holds that wi¦(t)+1,k = 1
α and wi,k = 1 for any i 6= i¦(t) + 1

2. On iteration t + 1, i¦(t + 1) = i¦(t) + 1, and xj¦ can be any xj ∈ Ri¦(t+1).

If i¦(t) = D then at the end of iteration t, wi,k = 1 for any layer i and for any xk ∈ RD+1.

Proof By induction on t, the iteration number.

299

Nevo and El-Yaniv

Base case: From the proof of Lemma 38 we know that i¦(1) = D. Therefore, no layer
is demoted in Step 2, while layer D is promoted. Observe that for any xk ∈ RD+1, Step 3
will only change wD,k from α to 1, leaving any other wi,k unchanged.

Assume the lemma holds for the first t−1 iterations. If i¦(t) = D then by Lemma 38 and
by the above assumption, we have that for any xk ∈ RD+1, wD,k ∈ {1, 1

α} before iteration t
starts. Either way, after layer D is promoted in Step 2, and after Step 3 is applied, wi,k = 1
for any xk ∈ RD+1 and for i = D, as well as for any other layer i.

Otherwise, we are assured that in layer i¦(t)+1, wi¦(t)+1,k = 1 for any xk ∈ RD+1 before
iteration t starts. It follows that when layer i¦(t) + 1 is demoted in Step 2 of iteration t,
these weights become 1

α . Step 2 also promotes layer i¦(t), but the weights of attributes in
RD+1 are set back to 1 by step 3. Step 3 also makes sure that such weights in layers above
layer i¦(t) will also remain 1. Layers below layer i¦(t) + 1 are not affected by iteration t.

It now must be that for any xj ∈ Ri¦(t)+1, wi¦(t)+1,j +
∑

xk∈RD+1
i¦(t)+2

wi¦(t)+1,k < n, as

before the last time wi¦(t)+1,j was promoted (by Lemma 41 this could only happen in Step
2), this inequality was clearly true. Otherwise, by the MLW algorithm the promotion could
not take place. wi¦(t)+1,j now has the same value as before its last promotion, while for any
xk ∈ RD+1, wi¦(t)+1,k is now 1

α , and by our assumption could not be less at any time. By
Lemma 39 we have that weights in RD

i¦(t)+3 behave just the same. By Lemma 40 we have
that weights in Ri¦(t)+2 cannot exceed their value on the last promotion. It follows that
Statement 2 is true.

Proof (of Theorem 28). We now show that Steps 1–3 can be applied at least
∏D

i=1 |Ri|
times. Since each execution of Step 2 is followed by a mistake, this proves the theorem. If
|R1| > 1 then at some point layer 1 will become the lowest layer that satisifies the loop’s
inequality and will be chosen in Step 1. Using Lemma 42 we get that this iteration will
start a cascade of iterations, which is

∏D
i=2 |Ri| long. First, all relevant variables of layer 2

will be demoted. Each time one of the relevant variables of layer 2 will be promoted again
all relevant variables of layer 3 will be demoted. Each time one of the relevant variables of
layer 3 will be promoted again all relevant variables of layer 4 will be demoted, and so on.
By Lemma 41 we are assured that a relevant variable is never promoted unless chosen. It
follows that in any demoted layer, all relevant variables will in fact be chosen again. Layer 1
will be selected in Step 1 at least |R1| times, which proves this case.

If |R1| = 1 it might be that layer 1 will never be selected in Step 1, when all the weights
in layer 1 are 1. In this case, we can only be sure that layer 2 will be selected, once for each
relevant variable it has. However, this is sufficient, as R1 = 1 does not contribute to the
product.

References

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

Martin Anthony and Norman Biggs. Computational Learning Theory: An Introduction.
Cambridge University Press, Cambridge, 1992.

300

On Online Learning of Decision Lists

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s
Razor. Information Processing Letters, 24:377–380, 1987.

Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters, 42(4):183–185, 1992.

Avrim Blum. On-line algorithms in machine learning. In Proceedings of the Work-
shop on On-Line Algorithms, Dagstuhl, June 1996. Available electronically at
http://www-2.cs.cmu.edu/~avrim

Avrim Blum, Lisa Hellerstein, and Nicholas Littlstone. Learning in the presence of finitely or
infintely many irrelevant attributes. Journal of Computer and System Sciences, 50(1):32–
40, 1995.

Avrim Blum and Mona Singh. Learning functions of k terms. In Proceedings of the Third An-
nual Workshop on Computational Learning Theory, pages 144–153, Morgan Kaufmann,
1990.

Nader H. Bshouty and Lisa Hellerstein. Attribute-efficient learning in query and mistake-
bound models. Journal of Computer and System Sciences, 56:310–319, 1998.

Aditi Dhagat and Lisa Hellerstein. PAC learning with irrelevant attributes. In Proceedings
of the IEEE symposium on Foundation of Computer Science, pages 67–74, Santa Fe, New
Mexico, 1994.

Thomas Eiter, Toshihide Ibaraki, and Kazuhisa Makino. Decision lists and related boolean
functions. Research Report 9804, Institute of Informatics, University of Giessen, 1998.

David Guijarro, Victor Lavin and Vijay Raghavan. Monotone term decision lists. Theoretical
Computer Science, 259(1-2):549–575, 2001.

David Helmbold, Robert Sloan, and Manfred K. Warmuth. Learning nested differences of
intersection closed concept classes. Machine Learning, 5(2):165–196, 1990.

Nicholas Littlestone. Learning when irrelevant attributes abound: a new linear-threshold
algorithm. Machine Learning, 2:285–318, 1988.

Nicholas Littlestone. Mistake Bounds and Logarithmic Linear-Threshold Learning Algo-
rithms. PhD thesis, University of California, Santa Cruz, March 1989.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

Rocco A. Servadio. Computational sample complexity and attribute efficient learning. Jour-
nal of Computer and System Sciences, 60(1):161–178, 2000.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

Leslie G. Valiant. Projection learning. Machine Learning, 37(2):115–130, 1999.

301

