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Abstract

This paper presents a model selection procedure which stresses the importance of the classic
polynomial models as tools for evaluating the complexity of a given modeling problem, and
for removing non-significant input variables. If the complexity of the problem makes a neural
network necessary, the selection among neural candidates can be performed in two phases. In
an additive phase, the most important one, candidate neural networks with an increasing
number of hidden neurons are trained. The addition of hidden neurons is stopped when the
effect of the round-off errors becomes significant, so that, for instance, confidence intervals
cannot be accurately estimated. This phase leads to a set of approved candidate networks. In a
subsequent subtractive phase, a selection among approved networks is performed using
statistical Fisher tests. The series of tests starts from a possibly too large unbiased network
(the full network), and ends with the smallest unbiased network whose input variables and
hidden neurons all have a significant contribution to the regression estimate. This method
was successfully tested against the real-world regression problems proposed at the NIPS2000
Unlabeled Data Supervised Learning Competition; two of them are included here as
illustrative examples.

Keywords: additive procedure, approximate leave-one-out scores, confidence intervals, input
variable selection, Jacobian matrix conditioning, model approval, model selection, neural
networks, orthogonalization procedure, overfitting avoidance, polynomials, statistical tests.

1. Introduction

Many researchers in the neural network community devote a large part of their work t o
the development of model selection procedures (Moody, 1994, Kwok and Yeung,
1997a,b, Anders and Korn, 1999, Rivals and Personnaz, 2000b and 2003a, Vila, Wagner
and Neveu, 2000). However, most of the corresponding publications assume the use of
neural networks, and do not insist enough on the importance of a preliminary evaluation
of the regression complexity, and of a removal of non-significant input variables, before
considering neural networks. Our experience with real-world industrial problems has
confirmed that polynomial models can be efficient tools for both tasks.

Because they are linear in their parameters, polynomials are computationally easier t o
handle than neural networks, and their statistical properties are well established. However,
when the non-linearity of the regression is significant, so that a high degree polynomial
of many monomials would be needed, the modularity and the parsimony of neural



MLPS FOR NONLINEAR MODELING

13841384

networks can be taken advantage of. Thus, it is only once the significant input variables
have been selected, and once the regression has been identified as highly nonlinear, that
specific �neural� modeling methods can be most successful. For this purpose, we also
propose a novel model selection procedure for neural modeling, which is mainly based on
least squares (LS) estimation, on the analysis of the numerical conditioning of the
candidate models, and on statistical tests. This neural network selection procedure was
successfully tested on artificial modeling problems by Rivals and Personnaz (2000b and
2003a).

In Section 2, the goal of the modeling method is described. In Section 3, we present a
polynomial ranking and selection procedure, and a strategy for deciding whether the
polynomial should be kept, or put in competition with other models (networks of radial
basis functions, multi-layer perceptrons, etc.). In Section 4, the specific neural modeling
procedure is presented. In Section 5, the whole method is applied to two representative
modeling problems drawn from the NIPS2000 Unlabeled Data Supervised Learning
Competition.

2. Goal of the Proposed Selection Procedure

We deal with the modeling of processes having an n-input vector x and a measured scalar
output y that is considered as the actual value of a random variable depending on x. We
assume that there exists an unknown function of x, the regression f(x), such that for any
fixed value xa of x:

ya = E(ya) + ea = f(xa) + ea (1)

where E(ya) is the mathematical expectation of ya, and ea is a random noise variable with
zero expectation, the inexplicable part of ya. We consider families of parameterized
functions {g(x, w), x��n, w��q}. Such a family of functions contains the regression if
there exists a value w* of w such that g(x, w*) = f(x). In real-world black-box modeling
problems, such a family of functions is not known a priori, so that candidate families of
various complexities must be put in competition. In this work, we consider models whose
output is linear with respect to the parameters, such as polynomials, networks of fixed
Radial Basis Functions (RBFs), and multi-layer perceptrons that are nonlinear in their
parameters. A data set of m input-output pairs {xk, yk}k=1 to m is assumed available for the
parameter estimation.

The output value g(xa, w) of such a model for a given input xa of interest is a point
estimate of the regression, and may be meaningless if the variance of the model output is
large, due to a too small or not well distributed data set, and/or due to a high non-linearity
of the model. In order to quantify this uncertainty on the point estimate of the
regression, it is necessary to estimate a confidence interval that takes the model variance
into account (Rivals and Personnaz, 1998 and 2000a). Finally, the model must be
numerically well conditioned for the confidence intervals to be reliable. The goal of the
modeling is therefore to select a model of minimal complexity that possesses only the
significant input variables,  approximates the regression as accurately as possible within
the input domain delimited by the data set, and is well-conditioned enough to allow
estimation of a confidence interval.

The selection procedure we propose begins with the removal of possibly non-
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significant input variables and with evaluating the regression complexity using
polynomials (Section 3). When the regression is judged sufficiently complex, i.e., when it
is a very nonlinear function of many significant input variables, we proceed with the
construction and selection of neural networks (Section 4).

3. Polynomial Modeling

In the above formulation of the problem, it is assumed that the input vector x contains
all the input variables necessary to �explain� the regression f(x). When dealing with
industrial processes, these input variables are the values of control variables and
measurable disturbances, and may be easy to identify. When dealing with processes which
are not built by man (economical, ecological, biological systems, etc.), the designer of the
model may only have a list of all the input variables judged potentially significant,
created without a priori restrictions by specialists of the process. In this case, the design
of the model relies heavily on the removal of non-significant or redundant input
variables. This removal can be economically performed with polynomials prior to the use
of neural networks.

Polynomial modeling can be performed in two steps: first, nested polynomials are
constructed, and second, a selection between the best candidates is performed.

3.1. Construction of Nested Polynomials

Given n potentially significant input variables, we build a polynomial of monomials up t o
degree d. For example, if the list of the input variables is x1, x2, �, xn, the polynomial of
degree 2 involves a constant term and the monomials: x1, x2, �, xn, x1 x2, x1 x3, �,
xn-1 xn, x12, �, xn2. The polynomial of degree d possesses a number of monomials equal
to:

Nmono(n, d) = Kn
i∑

i=1

d

 = Cn+i-1
i∑

i=1

d
(2)

where Kn
i  is the number of i to i combinations of n objects with repetitions, and

Cn
i  = i!/n!(n-i)! is the number of i to i combinations of n objects without repetitions. For

example, the polynomial of degree d = 2 of n = 100 input variables possesses 5 150
monomials, but that of degree d = 3 possesses 176 850 monomials.

Following Golub (1983) and Chen et al. (1989), the monomials are iteratively ranked
in order of decreasing contribution to their explanation of the output. We denote the m-
output vector of the data set by y, and the m-vectors corresponding to the monomials by
the {x i}. The monomial j that most decreases the residual sum of squares (RSS) which is
also the monomial such that | cos(y, xj) | is the largest is ranked as first. The remaining
{xi} and the output vector y are orthogonalized with respect to xj using the modified
Gram-Schmidt orthogonalization algorithm. The procedure is repeated in the subspace
orthogonal to xj, and so on. The RSS of polynomials with more than m � 1 parameters
being equal to zero, the procedure is stopped when the m � 1 first monomials (and hence
the corresponding nested polynomials) are ranked. The ranking may not be absolutely
optimal in the sense that, for a given polynomial size, there is a small probability that a
polynomial of different monomials than those chosen by Gram-Schmidt has a slightly
smaller RSS (Stoppiglia, 1997). However we know of no practical example where Gram-
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Schmidt applied to polynomials fails to capture a significant input or an important non-
linearity. Note that the computational cost of this procedure is very low: it merely
involves computation of inner products.

The Gram-Schmidt procedure is related to the construction of Multivariate Adaptive
Regression Splines (MARS, see Hastie et al., 2001), whose polynomial form also allows
selecting significant inputs. As with the Gram-Schmidt procedure, the splines are chosen a
posteriori (the knots of the splines are located at the training examples), and at each
step, MARS adds the spline which leads to the largest decrease of the RSS.

Conversely, Gram-Schmidt should not be compared with the polynomial construction
method used in Structural Risk Minimization approaches, as described by Vapnik (1982).
There, the nested polynomial models are chosen a priori, usually in the �natural� order
of increasing degree x, x2, x3, etc. However, there is no �natural� order in the multi-
dimensional case. Moreover, it means that the product xi xj xk will only appear in a model
already containing all monomials of degree 1 and 2, and whose number of parameters
might already be larger than m . In our approach, the data set is used to rank the
monomials, so a significant monomial of high degree can appear among the first ranked.

3.2. Selection of a Sub-Polynomial

A model can be selected with a) Fisher tests, or b) on the basis of the leave-one-out
(LOO) scores of the models, or possibly c) using replications of measurements.

a) When the size m of the data set is sufficiently large with respect to the complexity of the
regression, the statistical requirements for hypotheses tests to be valid are satisfied. The
tests must be started from a polynomial that gives a good estimate of the regression, and
hence of the noise variance, but may be too complicated: this polynomial is termed the
full polynomial (Chen and Billings, 1988). It can be chosen to be a polynomial with a
suitably large number of the first ranked monomials, for example m/4. The following
tests (Seber, 1977, Vapnik, 1982, Leontaritis and Billings, 1987) can then be used t o
discard possibly non-significant monomials of the full polynomial (see also Rivals and
Personnaz, 1999, for a comparison with LOO selection).

Let us suppose that a polynomial with qu parameters, called the �unrestricted� model,
contains the regression. We are interested in deciding whether a sub-polynomial with
qr < qu parameters, called the �restricted� model, also contains the regression. For this
purpose, we define the null hypothesis H0 (null effect of the qu � qr parameters), i.e., the
hypothesis that the restricted model also contains the regression. We denote by rqu and
rqr the residual vectors1 of the unrestricted model and those of the restricted model.
When H0 is true, and under the assumption of homoscedastic (i.e., uncorrelated and with
the same variance) Gaussian noise, the following ratio r  is the value of a Fisher distributed
random variable with qu � qr and m � qu degrees of freedom:

r = 
rqr' rqr � rqu' rqu

rqu' rqu

 m � q u

qu � q r
 (3)

The decision to reject H0 with an a priori fixed risk a% of rejecting it while it is true

                                                
1 The k-th component of the residual m-vector r of a polynomial model with the least squares
parameters wLS is: rk = yk � g(xk, wLS) = yk � (xk)' wLS.
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is taken when  r > Fm � qu

qu � qr(1�a), where Fm � qu

qu � qr is the inverse of the Fisher cumulative
distribution. When r ≤ Fm � qu

qu � qr(1�a), we may conclude that the restricted model is also a
good approximation of the regression.2

In practice, a sequence of tests is performed starting with the full polynomial as the
unrestricted model: if the null hypothesis is not rejected for a restricted model with one
monomial less (qu � qr = 1), this sub-polynomial is taken as new unrestricted model, and
so on, until the null hypothesis is rejected.

b) When m is not large enough, the conditions that are necessary for the tests to be valid
may not be fulfilled. In this case, cross-validation scoring of the candidate polynomials
may be preferred for the selection of a polynomial. Recall that, in the case of a model
that is linear in its parameters, the LOO errors are expressed analytically as functions of
the residuals, and their evaluation does not require m  parameter estimations (see Vapnik
1982). The k-th LOO error ek can be computed according to:3

ek = rk

1 � PX kk
       k=1 to m (4)

where rk denotes the corresponding residual, and PX (often called the �hat� matrix), is the
orthogonal projection matrix onto the range of X, the experiment matrix X = [x1�xq].
In the general case, the hat matrix is expressed with the generalized inverse XI of X:
PX = X XI. When X is full rank, PX = X (X' X)-1 X'. It is then possible to compute the LOO
score as:

MSELOO = 1
m  ek 2∑

k=1

m

(5)

and to select the smallest polynomial corresponding to a minimum of the MSELOO. This
model may be biased, but is a reasonable approximation of the regression given the too
small data set.

Note that it is often difficult to state a priori whether m is large enough.. Because both
the tests and the LOO scoring are computationally inexpensive, the designer can always
perform both selection procedures. Generally, a too small m  can be suspected when the
tests and LOO lead to polynomials of very different sizes.

c) Finally, the selection is easier when replications of measurements are available (or
when additional replications can be made) for different values of the inputs. In this case,
the value of the noise variance can be estimated independently from any model. This
leads to a test for lack of fit (Draper and Smith, 1989, Rivals and Personnaz, 2003a),
which allows discarding biased polynomials and selection of an unbiased one.

                                                
2 In the frequent case where m � qu is large (> 100), and when H0 is true, we have approximately:

 r (qu � qr) = rqr' rqr � rqu' rqu

rqu' rqu

 (m � qu) � c2(qu�qr)

3 The k-th LOO error is the error for the k-th example of the model obtained with a least squares
solution when this k-th example is left out from the data set. Note that LOO is termed �moving
control� in the book of Vapnik, 1982.
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3.3. Strategy for the Choice between Polynomials and Neural Models

If the selected polynomial model satisfies the performance specifications and does not
have too many monomials, it must be adopted. The advantage of sticking to a
polynomial model is that the unique LS solution is straightforward, as is the statistical
analysis of its properties and its mathematical manipulation in general (e.g., the
construction of a confidence interval). Conversely, for a model whose output is nonlinear
in the parameters (such as a neural network), the same operations involve
approximations whose quality depends on the curvature of the solution surface (Seber and
Wild, 1989, Antoniadis, 1992).

List of the potentially 
significant input variables

END
Choice of a 
polynomial

Choice of a 
neural network, 

see Figure 2

no

yes

yes

The number of 
input variables is 

large(>30)

Degree ≤ 2 is 
sufficient

no

Ranking of the 
monomials with 
Gram-Schmidt

(degree ≤ 2)

Ranking of the 
monomials with 
Gram-Schmidt

A too high degree 
and/or too many 
monomials are 

needed

END
Choice of a 
polynomial

yes no

Figure 1. Strategy for the choice between MLPs (polynomials and neural networks):

Left) When the number of input variables is large, a degree larger than 2 can usually not

be considered, see Equation (2). Fortunately, in practice, the cross-product terms are able

to model interactions between input variables, and the square terms are often nonlinear

enough. However, if the performance of such a polynomial is not satisfactory, one can

resort to a more parsimonious model like a neural network, which can perform highly

nonlinear functions while its number of parameters does not explode. The input

variables of the neural network are those appearing in the first ranked monomials only.

Right) When the number of input variables is small, a higher degree can be considered.

If the polynomial does not meet the specifications, or if it is satisfactory but has a high

degree and/or possesses many monomials, one will resort to a neural network, again

with the significant input variables only.

If the selected polynomial does not satisfy the performance specifications, or if it
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does but has a high degree and possesses many monomials, it reveals that the regression is
a complex function, and the designer may choose to try non polynomial models, whose
input variables are those appearing among the first-ranked monomials (significant
interaction monomials may also be fed to the model):
� Networks of fixed RBFs or wavelets: the outputs of these networks are linear in

the weighting parameters, so the selection method presented for polynomials can be
used to discard the non-significant RBFs or wavelets.

� Neural networks: the outputs of these networks are nonlinear with respect to the
parameters; for such models, we propose the selection procedure described in Section
4.3.
The procedure for input variable pre-selection using polynomials is extremely useful

when the potentially significant input variables are numerous; this is illustrated in Section
5.1 on a real-world example. These considerations concerning the strategy for the choice
of the families of functions are summarized on the organization chart of Figure 1.

4. Neural Modeling

Before we go into the details of the selection procedure for neural networks, we need t o
recall the properties of a nonlinear LS solution, which are obtained using a linearization
of the model output with respect to the parameter vector (Seber and Wild, 1989, Rivals
and Personnaz, 2000a).

4.1. Least Squares Estimation

A LS estimate wLS of the parameters of a model g(x, w) minimizes the cost function:4

l(w) = 1
2

 yk � g(xk, w) 2∑
k=1

m

(6)

Efficient iterative algorithms must be used for the minimization of l(w), e.g., the
Levenberg-Marquardt algorithm, as in this work, or quasi-Newton algorithms.

The Jacobian matrix Z of the network evaluated at wLS plays an important role in the
statistical properties of LS estimation. It is defined as the (m,q) matrix with elements:

Z ki = ∂g(xk, w)
∂wi

 
w=wLS

(7)

If the family of functions contains the regression and if the noise e  is homoscedastic with
variance s2, we have the following properties:
a) The covariance matrix of the LS parameter estimator wLS is asymptotically (i.e., as m

tends to infinity) given by s2 (Z' Z)-1.
b) The variance of the LS estimator g(xa, wLS) of the regression for an input value xa is

asymptotically given by s2 (za)' (Z' Z)-1 za, where za = ∂g(xa, w)/∂w |w=wLS.

                                                
4 For a multilayer neural network, due to symmetries in its architecture (function-preserving
transformations are neuron exchanges, as well as sign flips for odd activation functions like the
hyperbolic tangent), the absolute minimum of the cost function can be obtained for several values of
the parameter vector; as long as an optimal parameter is unique in a small neighborhood, the following
results are valid.
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c) The m-vector r of the residuals with components {rk = yk � g(xk, wLS)} is uncorrelated
with wLS and has the asymptotic property:

r ' r
s2

 � χ2(m�q)

d) An estimate of the (1�a)% confidence interval for the regression for any input value
xa is given by:

 g(xa, wLS) ± tm�q(a) s (za)' (Z ' Z)-1 za (8)

where s2 is the following asymptotically unbiased estimate of the noise variance σ2:

s2 = r ' r
m � q

(9)

and where tm-q is the inverse of the Student cumulative distribution with m�q degrees
of freedom.

In the case of linear models, the Jacobian matrix Z reduces to the experiment matrix X,
and properties (a-d) are exact whatever the value of m > q.
e) If the null hypothesis is true, the ratio r of Equation (3) is approximately Fisher

distributed; provided the considered networks are nested, the same tests as discussed for
the polynomials can be performed (Bates and Watts, 1988, Seber and Wild, 1989).
Finally, we showed (see Rivals and Personnaz, 2000a,b) that the k-th LOO error ek can

be approximated with:

ek � rk

1 � PZ kk
       k=1 to m (10)

where PZ is the orthogonal projection matrix on the range of Z. It is hence possible t o
compute an economic approximate LOO mean square error, denoted by MSEALOO, which
requires one parameter estimation only. The approximation of Equation (10) holds for
any network, i.e., not only for a network which contains the regression.

Note that all the above results are asymptotic; if m is not large, the curvature of the
solution surface is not negligible, and the above approximations will be rough. Moreover,
the network must be well-conditioned enough for the above expressions to be reliably
computed.

4.2. Jacobian Conditioning and Model Approval

The inverse of the squared Jacobian is involved in the expression of the covariance
matrix, and hence in that of the confidence intervals. The most robust way to compute
this inverse is to perform a singular value decomposition Z = U S V' (Golub and Van Loan,
1983), where the elements {[S]ii} denoted by {si} are the singular values of Z. However,
when Z is ill-conditioned, that is, when Z�s condition number cond(Z) = max{si}/min{si}
is large, (Z' Z)-1 cannot be computed accurately. Since the elements of the Jacobian
represent the sensitivity of the network output with respect to its parameters, the ill-
conditioning of Z is generally also a symptom that some parameters are superfluous, i.e.,
that the network is too complex and that the LS solution overfits5 (Rivals and
Personnaz, 1998).
                                                
5. Such a situation might also correspond to a relative minimum. To check the conditioning of Z thus
also helps to discard a neural network trapped in a relative minimum, and leads to retrain this
candidate with different initial parameter values.
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In practice, a well known approach to limiting ill-conditioning is to center and
normalize the input variable values. However, ill-conditioned neural candidates whose
Jacobian condition number still exceeds 108 (for usual computers) should not be approved
(Rivals and Personnaz, 2000a,b and 2003b). This model approval criterion therefore
allows discarding overly complex networks.

This criterion also applies to models that are linear in their parameters, such as
polynomials. However, unless the degree of the polynomial is very large and the size m
of the data set very small, ill-conditioning will seldom appear, provided the input variable
values are properly centered and normalized (this is why we did not mention the problem
of the conditioning of X in Section 3).

4.3. Neural Model Construction and Selection Procedure

Networks with a single hidden layer of neurons with hyperbolic tangent activation
function and a linear output neuron possess the universal approximation property. Thus,
we choose not to consider more complex architectures, e.g., networks with multiple
hidden layers and/or a different connectivity. Therefore, determining the smallest
unbiased network reduces to the problem of identifying the significant input variables and
the minimum necessary number of hidden neurons. We propose the following procedure,
which consists of two phases:
a) An additive (or growing) estimation and approval phase of networks with the input

variables appearing in the first ranked monomials, and an increasing number of hidden
neurons.

b) A subtractive selection phase among the approved networks using statistical tests,
which removes possibly non-significant hidden neurons and input variables.

The principle of the procedure is summarized on the organization chart of Figure 2.

4.3.1. Additive Phase

In an additive phase, the most important one, we consider candidate neural networks with
the input variables pre-selected during the polynomial modeling. Networks with an
increasing number of hidden neurons are trained. Note that several minimizations must be
performed for each candidate network in order to increase the chance of reaching an
absolute minimum, i.e., a LS solution. This additive phase is stopped when the Jacobian
matrix Z of the candidates becomes too ill-conditioned (cond(Z) > 108). The weights, RSS
and MSEALOO of the approved candidates are stored in memory for the subsequent phase.

4.3.2. Subtractive Phase

We have shown that the LOO score alone is often not sufficient to perform a good
selection (see Rivals and Personnaz, 1999). We propose to perform statistical tests, and
to use the MSEALOO only for the choice of a full network model. The full network model
is chosen as the most complex approved network before the MSEALOO starts to increase.
This network can then be considered as a good approximation of the regression if the
ratio of its MSEALOO to its mean square training error MSEtrain = 2/m l(wLS) is of the
order of one. Note that, when replications of measurements are available, the test for
lack of fit (Seber and Wild, 1989) allows the selection of a full network.

The Fisher tests of Section 4.1 are used to establish the usefulness of all the neurons of
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the full network. A sequence of tests is performed starting with the full network as the
unrestricted model, and with the candidate with one neuron less as restricted model. If the
null hypothesis is not rejected, the restricted model is taken as new unrestricted one, and
so on, until a null hypothesis is rejected. The RSS of all sub-networks are available after
the additive phase, so this series of tests is inexpensive. If there are still doubts about the
significance of any of the input variables, additional Fisher tests can be performed on the
corresponding sub-networks (Rivals and Personnaz, 2003a).

Note that this subtractive phase is only a refinement of the additive one: the removal
of non-significant input variables in the polynomial phase and the approval criterion
usually prevents the full network from having too many non-significant input variables
and superfluous hidden neurons.

no

1) Additive phase 2) Subtractive phase

Start with a linear 
network with the input 
variables preselected 

by the polynomial 
modeling phase

The network is 
approved

Train the network
Store wLS, cond(Z), 
RSS, and MSEALOO

Add a hidden 
neuron

All hidden 
neurons are 

useful
no

yes

Remove a 
hidden neuron

Start with the full model 
chosen  among the 

approved networks  using 
the MSEALOO

End

Test the network 
against the subnetwork 

with one hidden 
neuron less

yes

End

Figure 2. Proposed neural modeling procedure.

Finally, this subtractive phase offers several advantages with respect to pruning
methods, such as OBD (for Optimal Brain Damage, see Le Cun et al., 1990) and OBS (for
Optimal Brain Surgeon, Hassibi and Stork, 1993). It has been shown that these methods
are related to the tests of linear hypotheses (Anders, 1997, Rivals and Personnaz,
2003a), but the notion of risk is absent, and thresholds must be set in an ad hoc fashion.
In our method, the threshold for the rejection of the null hypothesis depends
automatically on the risk chosen, the size of the data set, the number of the network
parameters and the number of tested parameters.
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5. Application to Real-World Modeling Problems of the NIPS2000 Competition

The performance of the specific neural modeling procedure of Section 4 has already been
evaluated on several artificial problems (Rivals and Personnaz, 2000b). Here, we wish t o
stress the importance of the polynomial modeling presented in Section 3. For this
purpose, we present here the results obtained on regression problems proposed at the
NIPS2000 Unlabeled Data Supervised Learning Competition. We entered the
competition for all four regression problems (Problems 3, 4, 8, 10), and won all of them.
These are real world problems, and at the time of the competition, the nature of their
input variables, was unknown to the candidates.6 Here, we present Problems 8 and 3,
which are representative of two typical situations: the complexity of Problem 8 arises
from the large number of potentially significant inputs, whereas that of Problem 3 is due
to the high non-linearity of the regression. Moreover, data are missing in the two other
problems: this is an issue that we do not tackle in the present paper.

5.1. Molecular Solubility Estimation (Problem 8 of the Competition)

This problem involves predicting the solubility of pharmaceutical compounds based on
the properties of the compound�s molecular structure. The input variables are 787 real-
valued descriptors of the molecules, based on their one-dimensional, two-dimensional, and
electron density properties. The training set contains 147 examples; the test set contains
50 examples. The mean square errors on the training and test sets are denoted by
MSEtrain and MSEtest respectively. With such a small training set, a reasonable solution
to the problem can be obtained only if the output can be explained by a small number of
the input variables. A preliminary removal of the non-significant inputs using
polynomials is therefore necessary. As a matter of fact, an affine model with all the
variables (except 12 of them which are zero!), and whose parameters are the least squares
solution estimated with the generalized inverse, has a MSEtest of 4.10. This is a poor
performance since the MSEtest of a constant model (the mean of the process outputs)
equals 7.68.

5.1.1. Polynomial Modeling

The whole training set is used for training. Because the number of input variables (775) is
very large, polynomials of degree d = 3 are built omitting cross-product monomials, as
they would require too much memory. We consider m as small, and perform the selection
on the basis of MSELOO. The selected polynomial possesses 6 monomials among the
initial 2 325: x172, x36, x159, x1722, x2223, x5653. Table 1 summarizes the results obtained
with this polynomial.7 Recall that q is the number of parameters of the model, here the
number of monomials plus one.

                                                
6. See: http://q.cis.uoguelph.ca/~skremer/NIPS2000/ for further details concerning the highest
scores and about the data. A goal of the competition was to test whether the use of unlabeled data
could improve supervised learning, so in addition to the training and test sets, an additional unlabeled
set was available. The results presented in this paper were obtained without using this unlabeled set.
7. During the competition, we obtained a score of 1.376846 (the highest score), that is a MSEtest of
5.27 10-1, using Fisher tests. The above value of 5.23 10-1 corresponds to the squared inverse of a
score of 1.382578 we obtained after the competition, thanks to the use of the MSELOO for the
selection, the data set size m being rather small.
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d q MSEtrain MSELOO MSEtest

3 7 2.66 10-1 2.89 10-1 5.23 10-1

Table 1. Selected polynomial.

The ratio of the MSELOO to the MSEtrain of the selected polynomial is close to 1; its
MSELOO is indeed a rough estimate of the MSEtest.

5.1.2. Neural Modeling

The monomials selected above involve 6 input variables: x17, x36, x159, x172, x222, x565.
These inputs were fed to networks with one layer of an increasing number of hidden
neurons with a hyperbolic tangent activation function, and a linear output neuron. The
networks were trained many times with a Levenberg-Marquardt algorithm in order t o
increase the chance of reaching an absolute minimum. The results are shown in Table 2.

Nhid MSEtrain MSEALOO cond(Z)

0 3.77 10-1 4.77 10-1 9.7
1 3.60 10-1 4.50 10-1 9.5 101

2 2.41 10-1 3.84 10-1 1.1 103

3 2.03 10-1 � 1.5 1018

Table 2. Training of neural networks with the 6 pre-selected input variables.

The condition numbers of the networks with more than 2 hidden neurons are larger
than 108, so these networks were not approved. A Fisher test with risk 5% showed that 2
hidden neurons were necessary. The performance of the selected 2 hidden neuron
network is summarized in Table 3. It is a little better than that of the best polynomial
(the MSEtest equals 4.17 10-1 instead of 5.23 10-1). However, the test set of only 50
examples chosen by the organizers of the competition was too small to determine
whether this improvement is really significant (large variance of the MSEtest).

q MSEtrain MSEALOO MSEtest

15 2.41 10-1 3.84 10-1 4.17 10-1

Table 3. Selected neural network (6 pre-selected input variables, 2 hidden neurons).

5.1.3. Discussion

This example with many potentially significant inputs is a typical illustration of the
necessity of using polynomials before resorting to neural networks: the complexity of the
problem was due to the large number of potentially significant input variables rather than
to the non-linearity of the regression.

Note that, on the whole and on this particular problem, B. Lucic obtained the second
best results using �CROMRsel�, a descriptor selection algorithm based on multi-regression
models. According to the text available at the competition website, CROMRsel uses
polynomials and an orthogonalization method. This algorithm is hence probably close t o
our procedure for models that are linear in their parameters. However, CROMRsel does
not use statistical tests, and there is no mention of neural networks.
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Finally, aqueous solubility is a key in understanding drug transport, and the polynomial
or the neural network could be used to identify compounds likely to possess desirable
pharmaceutical properties.

5.2. Mutual Fund Value Prediction (Problem 3 of the Competition)

This problem consisted of predicting the value of a mutual fund of a popular Canadian
bank given the values of five other funds. The values were taken at daily intervals for a
period of approximately three years, week-ends and holidays excluded. The training and
the test sets both contain 200 examples.

5.2.1. Polynomial Modeling

Because the training set size m was rather large, the selection of the optimal polynomial
could be performed with statistical tests. Because the number of inputs was small, we could
build a high degree polynomial with all its monomials; we chose a degree 4 (126
monomials). Starting from a full polynomial of the first m/4 = 50 ranked monomials, the
Fisher tests selected 44 monomials. Some of them were of degree 4, and all 5 inputs were
involved in the selected monomials. Table 4 summarizes the results obtained with the
selected polynomial.8 For comparison, the MSEtest of a constant model equals 5.17, and
Table 4 also displays the results of an affine model with all 5 input variables.

d q MSEtrain MSELOO MSEtest

1 6 7.22 10-2 7.74 10-2 6.33 10-2

4 45 6.72 10-3 1.26 10-2 1.14 10-2

Table 4. Selected polynomial, and degree one polynomial for comparison.

Because the necessary degree and the number of monomials are relatively large, this
polynomial was put into competition with neural networks.

5.2.2. Neural Modeling

Table 5 summarizes the results obtained when training networks with all 5 input variables
and an increasing number of hidden neurons on the whole data set. The networks with
more than 4 hidden neurons were not approved, because of the too large condition
number of their matrix Z.

Nhid MSEtrain MSEALOO cond(Z)

0 7.22 10-2 7.74 10-2 1.1 101

1 4.60 10-2 5.16 10-2 1.2 102

2 2.13 10-2 3.06 10-2 2.9 102

3 1.38 10-2 1.82 10-2 2.8 103

4 1.07 10-2 1.75 10-2 1.5 103

5 8.14 10-3 � 3.0 108

Table 5. Training of neural networks.

                                                
8 The value of the MSEtest of the selected polynomial corresponds to a score of 9.386007, obtained
when the competition was over. During the competition, we used only neural networks for this
problem.
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A Fisher test with risk 5% shows that all 4 hidden neurons are necessary. Further tests
performed on the 5 input variables show that they are indeed significant. Table 6 presents
the results9 obtained with the selected network.

q MSEtrain MSEALOO MSEtest

29 1.07 10-2 1.75 10-2 1.24 10-2

Table 6. Selected neural network (all 5 input variables, 4 hidden neurons).

From the point of view of the MSEtest, these results are a little less satisfactory than
those obtained with the selected polynomial (the value of the MSEtest is 1.14 10-2 with
the polynomial, against 1.24 10-2 with the neural network). However, the neural network
is well conditioned, and its MSEtrain is close to the MSEtest: it is hence very unlikely t o
overfit, whereas the MSEtrain of the polynomial is much smaller than its MSEtest.

5.2.3. Discussion

In contrast to the previous example, the complexity of the present problem is not due t o
a large number of inputs, but due to the high non-linearity of the regression: 4 hidden
neurons or a degree 4 are needed to represent the behavior of the process. This example
also illustrates that polynomials are powerful models, provided their monomials are
properly selected.

Finally, the excellent performance obtained with both models confirms that one
mutual fund�s price is related to the other (even though this relation is complex). This is
quite a reasonable assumption because the commodities in which they invest are the same,
and because they are affected by the same general economic trends (boom/bust).

6. Conclusion

The success of the proposed method for practical modeling problems is due to the
following features:
� beginning with polynomial models provides an evaluation of the complexity of the

regression at low computational cost, and leads to the removal of the less significant
inputs;

� thanks to this preliminary selection, the training of neural networks is facilitated;
� networks with far too many hidden neurons are automatically discarded on the basis of

the condition number of their Jacobian matrix, so that no test set is necessary t o
discard overfitting networks;

� superfluous neurons and non-significant inputs are removed at low computational cost
using Fisher tests; the main advantage of these tests over pruning methods like OBD
or OBS is that the decision to discard a neuron or an input variable takes into account
the fixed risk, the size of the data set, and the number of parameters.

                                                
9 The value of the MSEtest of the selected neural network corresponds to the squared inverse of the
score of 8.982381 we obtained at the competition, which was the highest score. Note that we made
multiple submissions at the NIPS competition resulting in scores between 7.56 and the latter value,
depending on the random initialization of the selected 4 hidden neuron network parameters. The
second best score obtained at NIPS equals 8.849004.
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As a result of the previous features, the procedure is essentially constructive. These
advantages can be exploited in the numerous applications involving a large number of
potential descriptors: solubility prediction (topological, geometrical, electronic
descriptors), avalanche forecasting (weather and snow factors), economical and financial
problems, etc.

Further research includes improving the diagnosis on whether a data set size is too
small, possibly by analyzing the correlations of the residuals. We will also focus on the
extension of the method to dynamic modeling, where the fact that the inputs are
correlated with the outputs and the large variety of predictors (input-output versus state-
space, non-recursive versus recursive) make the selection task more difficult.
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