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Abstract

A central problem in learning is selection of an appropriate model. This is typically done
by estimating the unknown generalization errors of a set of models to be selected from and
then choosing the model with minimal generalization error estimate. In this article, we
discuss the problem of model selection and generalization error estimation in the context of
kernel regression models, e.g., kernel ridge regression, kernel subset regression or Gaussian
process regression.

Previously, a non-asymptotic generalization error estimator called the subspace infor-
mation criterion (SIC) was proposed, that could be successfully applied to finite dimen-
sional subspace models. SIC is an unbiased estimator of the generalization error for the
finite sample case under the conditions that the learning target function belongs to a spec-
ified reproducing kernel Hilbert space (RKHS) H and the reproducing kernels centered on
training sample points span the whole space H. These conditions hold only if dimH ≤ `,
where ` (< ∞) is the number of training examples. Therefore, SIC could be applied only
to finite dimensional RKHSs.

In this paper, we extend the range of applicability of SIC, and show that even if
the reproducing kernels centered on training sample points do not span the whole space
H, SIC is an unbiased estimator of an essential part of the generalization error. Our
extension allows the use of any RKHSs including infinite dimensional ones, i.e., richer
function classes commonly used in Gaussian processes, support vector machines or boosting.
We further show that when the kernel matrix is invertible, SIC can be expressed in a
much simpler form, making its computation highly efficient. In computer simulations on
ridge parameter selection with real and artificial data sets, SIC is compared favorably with
other standard model selection techniques for instance leave-one-out cross-validation or an
empirical Bayesian method.

Keywords: Generalization error, model selection, subspace information criterion, cross-
validation, kernel regression, reproducing kernel Hilbert space, finite sample statistics,
Gaussian processes, unbiased estimators.
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1. Introduction

The goal of supervised learning is to obtain an underlying input-output dependency from
the given training examples (e.g., Vapnik, 1982, 1995, 1998; Bishop, 1995; Devroye et al.,
1996). If the dependency is successfully learned, appropriate output values can be inferred
for previously unseen input points, i.e., the learning machine generalizes.

Estimating the generalization capability is one of the central issues in supervised learn-
ing. So far, a large number of generalization error estimation methods have been proposed
(Mallows, 1964, 1973; Akaike, 1974; Takeuchi, 1976; Sugiura, 1978; Craven and Wahba,
1979; Bunke and Droge, 1984; Wahba, 1990; Murata et al., 1994; Vapnik, 1995; Konishi and
Kitagawa, 1996; Cherkassky et al., 1999; Sugiyama and Ogawa, 2001), in particular also
from the standpoints of Bayesian statistics (Schwarz, 1978; Akaike, 1980; MacKay, 1992a;
Watanabe, 2001) and stochastic complexity (Rissanen, 1978, 1987, 1996; Yamanishi, 1998).
An accurate estimator of the generalization error can be used for model selection. Fur-
thermore, it eventually induces a new learning algorithm, e.g., the support vector machine
(e.g., Vapnik, 1995; Schölkopf et al., 1998; Burges, 1998; Cristianini and Shawe-Taylor, 2000;
Schölkopf et al., 2000; Müller et al., 2001; Schölkopf and Smola, 2002), that is inspired by
the VC-theory (Vapnik, 1982, 1995, 1998).

In the development of generalization error estimation methods, asymptotic approxima-
tions in the number of training examples are often used (Akaike, 1974; Takeuchi, 1976;
Murata et al., 1994; Konishi and Kitagawa, 1996, see also Shibata, 1981; Nishii, 1984 for
asymptotic properties and consistency). However, in supervised learning, the small sample
case is of high practical importance. One of the remarkable generalization error estima-
tion methods that work with finite samples is the VC-bound (Vapnik, 1995), which gives
a probabilistic upper bound of the generalization error. The bound is derived within a
general framework so it is applicable to a wide range of models, although in practice the
bound can be loose and hard to compute. Note that recent advances like the span bound
on the leave-one-out error (Vapnik and Chapelle, 2000) are considerably tighter and work
extremely well in practice.

Another generalization error estimation method that works effectively with finite sam-
ples is the subspace information criterion (SIC) (Sugiyama and Ogawa, 2001). Among
several interesting theoretical properties, SIC is proved to be an unbiased estimator of the
generalization error. SIC has been successfully applied to the selection of subspace models
in linear regression. Theoretical and experimental comparison of SIC with various model
selection methods was given by Sugiyama and Ogawa (2002b), and an analytic form of the
optimal ridge parameter was derived based on SIC (Sugiyama and Ogawa, 2002a). SIC can
also be applied to image restoration (Sugiyama et al., 2001; Sugiyama and Ogawa, 2002c).
Furthermore, SIC was extended to sparse regressors (Tsuda et al., 2002).

SIC is applicable if an unbiased estimate of the learning target function is available.
So far, a general method for obtaining such an unbiased estimate was given when the
learning target function belongs to a specified reproducing kernel Hilbert space (RKHS)
and the reproducing kernels centered on training sample points span the whole RKHS (see
Figure 1a). Therefore, SIC could be applied only to finite dimensional RKHSs.

In this paper, we extend the range of application of SIC beyond this rather limiting
scenario, and show that even if the reproducing kernels centered on training sample points
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Figure 1: Original SIC and extension carried out in this paper. H is a reproducing kernel
Hilbert space that includes the learning target function f(x). SK is the subspace
spanned by reproducing kernels centered on training sample points, i.e., SK is
spanned by {K(x, xi)}`

i=1, where ` is the number of training examples. g is the
orthogonal projection of f onto SK , i.e., the best approximation to f in SK . f̂ is a
learning result function searched in the subspace SK . Let JG be the generalization
error between f̂ and f , and J ′G be the generalization error between f̂ and g. (a)
Setting of the original SIC proposed by Sugiyama and Ogawa (2001). It was
shown that when SK = H, SIC is an unbiased estimator of JG with finitely many
samples. SK = H implies that a RKHS H whose dimension is at most ` (< ∞) is
considered. (b) Setting of this paper. We consider the case that SK ⊂ H, which
allows any RKHS H including infinite dimensional ones, and we show that SIC
is an unbiased estimator of J ′G with finite samples.

do not span the whole RKHS, SIC is an unbiased estimator of an essential part of the
generalization error (see Figure 1b). This implies that it is possible to use any, possibly
infinite dimensional, RKHSs that give rise to rich function classes commonly used, e.g.,
in Gaussian processes, support vector machines or boosting. The result is obtained under
the assumption that the basis functions used for regression are the reproducing kernels
centered on training sample points (i.e., kernel regression models). We further show that
when the kernel matrix is invertible, SIC can be expressed by a much simpler form, making
its computation stable.

The rest of this paper is organized as follows. In Section 2, the regression problem is
formulated. In Section 3, the kernel regression model and learning methods are introduced.
In Section 4, the derivation of the original subspace information criterion (SIC) is reviewed
following Sugiyama and Ogawa (2001). In Section 5, we extend SIC such that infinite
dimensional RKHSs are allowed. An efficient expression of SIC and discussions on the
generalization measure are also given. Section 6 is devoted to computer simulations for
experimentally investigating the usefulness of the proposed method. Finally, Section 7
gives concluding remarks and future prospects. The nomenclature used in this article is
summarized in Table 1.
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Table 1: Nomenclature

f(x) Learning target function
D Domain of input x
n Dimension of input space D
H Reproducing kernel Hilbert space that includes f(x)

K(·, ·) Reproducing kernel of H
xi Training sample point
yi Training sample value: yi = f(xi) + εi

εi Noise included in yi

σ2 Noise variance
(xi, yi) Training example

` Number of training examples
SK Subspace of H spanned by {K(x, xi)}`

i=1

g(x) Orthogonal projection of f(x) onto SK

ε Noise vector: ε = (ε1, ε2, . . . , ε`)>

z Noiseless sample value vector: z = (f(x1), f(x2), . . . , f(x`))>

y Noisy sample value vector: y = (y1, y2, . . . , y`)>

> Transpose of a matrix or vector
Eε Expectation over noise

f̂(x) Kernel regression model: f̂(x) =
∑`

i=1 αiK(x, xi)
αi Parameter in kernel regression model f̂(x)
α Parameter vector: α = (α1, α2, . . . , α`)>

α∗ (Quasi) true parameter vector
α̂ Estimated parameter vector
X Learning matrix that gives α̂: α̂ = Xy
α̂u Unbiased estimate of true parameter vector: Eεα̂u = α∗

Xu Learning matrix that gives α̂u: α̂u = Xuy
λ Ridge parameter
K Kernel matrix: Ki,j = K(xi, xj)
I Identity matrix

〈·, ·〉H Inner product in H
‖ · ‖H Norm in H
〈·, ·〉 Euclidean inner product in R`

‖ · ‖ Euclidean norm in R`

‖ · ‖K Weighted norm by K: ‖ · ‖2
K = 〈K·, ·〉

tr (·) Trace of a matrix
JG Generalization error: JG = Eε‖f̂ − f‖2

H
J ′G Essential part of JG: J ′G = Eε‖f̂ − g‖2

H† Moore-Penrose generalized inverse
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2. Problem Formulation

Let us discuss the regression problem of approximating a target function from a set of `
training examples. Let f(x) be a learning target function of n variables defined on a subset
D of the n-dimensional Euclidean space Rn. The training examples consist of sample points
xi in D and corresponding sample values yi in R:

{(xi, yi) | yi = f(xi) + εi}`
i=1,

where yi is degraded by unknown additive noise εi. We assume that εi is independently
drawn from a distribution with mean zero and variance σ2. The purpose of regression is to
obtain the optimal approximation f̂(x) to the learning target function f(x) that minimizes
a generalization error.

In this paper, we assume that the unknown learning target function f(x) belongs to
a specified reproducing kernel Hilbert space (RKHS) H (see e.g., Aronszajn, 1950; Wahba,
1990; Vapnik, 1998; Cristianini and Shawe-Taylor, 2000). The reproducing kernel of a
functional Hilbert space H, denoted by K(x, x′), is a bivariate function defined on D × D
that satisfies the following conditions:

• For any fixed x′ in D, K(x, x′) is a function of x in H.

• For any function f in H and for any x′ in D, it holds that

〈f(·), K(·, x′)〉H = f(x′),

where 〈·, ·〉H stands for the inner product in H.

In previous work (Sugiyama and Ogawa, 2001), it was assumed that {K(x, xi)}`
i=1 span

the whole RKHS H (see Figure 1a). This holds only if dimH ≤ ` (< ∞). In contrast, now
we remove this restriction on the dimension of the RKHS H. Thus, the dimension could be
infinity and we can treat a rich class of function spaces such as the Gaussian RKHS (see
Figure 1b).

We measure the generalization error of f̂(x) by

JG = Eε‖f̂ − f‖2
H, (1)

where Eε denotes the expectation over the noise and ‖·‖H is the norm in the RKHSH. Using
the RKHS norm for error measure is rather common in the field of function approximation
(e.g., Daubechies, 1992; Donoho and Johnstone, 1994; Donoho, 1995). A brief discussion
on this generalization measure is given in Section 5.3.

As can be seen from Eq.(1), the generalization error JG includes the unknown learning
target function f(x) so it can not be directly calculated. The aim of this paper is to give
an estimator of Eq.(1) that can be calculated without using f(x).

3. Regression Model and Learning Methods

In this section, we describe our regression model and examples of the learning methods that
can be dealt with.
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3.1 Kernel Regression Model with Linear Learning Methods

We will employ the following kernel regression model f̂(x):

f̂(x) =
∑̀
i=1

αiK(x, xi), (2)

where {αi}`
i=1 are parameters to be estimated from training examples, and K(·, ·) is the

reproducing kernel of H. The reason why the above kernel regression model is chosen will
be explained in Section 5.1.

Let us denote the estimated parameters by {α̂i}`
i=1. In this article, we focus on the case

that the estimated parameters are given by linear combinations of sample values {yi}`
i=1.

More specifically, letting

y = (y1, y2, . . . , y`)>, (3)
α̂ = (α̂1, α̂2, . . . , α̂`)>,

where > denotes the transpose of a vector (or a matrix), we consider the case that the
estimated parameter vector α̂ is given by

α̂ = Xy,

where X is an `-dimensional matrix that does not depend on the noise {εi}`
i=1. The learning

matrix X, which we call the learning matrix, can be any matrix, but it is usually determined
on the basis of a prespecified learning criterion. In the rest of this section, examples of
learning matrices are described.

3.2 Kernel Ridge Regression

Kernel ridge regression determines the parameter vector α so that the following regularized
training error is minimized (Saunders et al., 1998; Cristianini and Shawe-Taylor, 2000):

α̂ = argmin
α


∑̀

i=1


∑̀

j=1

αjK(xi, xj)− yi




2

+ λ α>Kα


 , (4)

where λ is a positive scalar called the ridge parameter, and K is the so-called kernel matrix,
i.e., the (i, j)-th element of K is given by

Ki,j = K(xi, xj). (5)

A minimizer of Eq.(4) is given by the following learning matrix:

X = (K + λI)−1, (6)

where I denotes the identity matrix. Note that Bayesian learning with a particular Gaussian
process prior agrees with kernel ridge regression (see e.g., Williams and Rasmussen, 1996;
Williams, 1998; Cristianini and Shawe-Taylor, 2000).
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Instead of α>Kα, any regularizers of the form α>Tα can be used in a similar fashion,
where T is an `-dimensional symmetric positive semi-definite matrix. In this case, the
learning matrix is given by

X = (K2 + λT )†K, (7)

where † denotes the Moore-Penrose generalized inverse (see e.g., Albert, 1972; Hunter, 2000).
In the following, we may refer to the above generalized form as kernel ridge regression.

It should be noted that, according to the representer theorem (Kimeldorf and Wahba,
1970), a minimizer of the regularized training error in the RKHS H can be expressed in the
form of Eq.(2). Therefore, using kernel regression models does not impose any restriction
on the choice of basis functions in the regression model.

3.3 Kernel Subset Regression

Let S be a subset of indices {1, 2, . . . , `}. Kernel subset regression determines the parameter
vector α so that the training error is minimized in a subset of basis functions specified by
S, i.e.,

α̂ = argmin
α


∑̀

i=1


∑

j∈S

αjK(xi, xj)− yi




2


subject to αj = 0 for all j 6∈ S. (8)

A minimizer of Eq.(8) is given by the following learning matrix:

X = K†
S ,

where KS is equal to K but the j-th column is zero for all j 6∈ S.

4. Subspace Information Criterion: Review

Subspace information criterion (SIC) proposed by Sugiyama and Ogawa (2001) is an unbi-
ased estimator of the generalization error JG defined by Eq.(1). In this section, we review
the original SIC that is applicable when {K(x, xi)}`

i=1 span the whole RKHS H.
When the functions {K(x, xi)}`

i=1 span the whole space H, the learning target function
f(x) is expressed as

f(x) =
∑̀
i=1

α∗i K(x, xi),

where the true parameters {α∗i }`
i=1 are unknown.1 Letting

α∗ = (α∗1, α
∗
2, . . . , α

∗
` )
>,

1. When {K(x, xi)}`
i=1 are linearly dependent, {α∗i }`

i=1 are not determined uniquely. In this case, we adopt
the minimum norm one given by α∗ = K†(f(x1), f(x2), . . . , f(x`))

> (see Corollary 2 and its proof given
in Appendix B for detail).
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we can express the generalization error JG as

JG = Eε‖f̂ − f‖2
H

= Eε‖
∑̀
i=1

(α̂i − α∗i )K(·, xi)‖2
H

= Eε

∑̀
i,j=1

(α̂i − α∗i )(α̂j − α∗j )〈K(·, xj), K(·, xi)〉H

= Eε

∑̀
i,j=1

(α̂i − α∗i )(α̂j − α∗j )K(xi, xj)

= Eε〈K(α̂−α∗), α̂−α∗〉,
where the inner product 〈·, ·〉 in the last equation is the ordinary Euclidean inner product
in R`, i.e., 〈αa, αb〉 = α>

b αa. For convenience, let us define the weighted norm in R`:

‖α‖2
K = 〈Kα, α〉.

Then JG is expressed as
JG = Eε‖α̂−α∗‖2

K.

It is known that JG can be decomposed into the bias and variance (see e.g., Geman et al.,
1992; Heskes, 1998):

JG = ‖Eεα̂−α∗‖2
K + Eε‖α̂− Eεα̂‖2

K. (9)

Let us define the noiseless sample value vector z and the noise vector ε by

z = (f(x1), f(x2), . . . , f(x`))>, (10)
ε = (ε1, ε2, . . . , ε`)>.

Then the (noisy) sample value vector y defined by Eq.(3) is expressed as

y = z + ε.

Recalling that the mean noise Eεε is zero and the noise covariance matrix is given by
Eεεε

> = σ2I, we can express the variance term Eε‖α̂− Eεα̂‖2
K in Eq.(9) as

Eε‖α̂− Eεα̂‖2
K = Eε‖Xy − EεXy‖2

K

= Eε‖X(z + ε)−Xz‖2
K

= Eε‖Xε‖2
K

= σ2tr
(
KXX>

)
, (11)

where tr (·) denotes the trace of a matrix, i.e., the sum of diagonal elements. Eq.(11) implies
that the variance term Eε‖α̂− Eεα̂‖2

K in Eq.(9) can be calculated if the noise variance σ2

is available. When σ2 is unknown, one of the practical methods for estimating σ2 is given
as follows (see e.g., Wahba, 1990):

σ̂2 =

∑`
i=1

(
f̂(xi)− yi

)2

`− tr (KX)
=
‖KXy − y‖2

`− tr (KX)
, (12)
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α∗

Eεα̂ α̂u

α̂

Figure 2: Basic idea of SIC. The bias term ‖Eεα̂ − α∗‖2
K (depicted by the solid line) can

be roughly estimated by ‖α̂− α̂u‖2
K (depicted by the dotted line).

where ‖ · ‖ is the ordinary Euclidean norm in R`.
On the other hand, the bias term ‖Eεα̂−α∗‖2

K in Eq.(9) is totally inaccessible since both
Eεα̂ and α∗ are unavailable. The key idea of SIC is to assume that a learning matrix Xu

that gives an unbiased estimate α̂u of the unknown true parameter vector α∗ is available:

Eεα̂u = α∗, (13)

where
α̂u = Xuy.

Using the unbiased estimate α̂u, we can roughly estimate the bias term ‖Eεα̂ − α∗‖2
K in

Eq.(9) by ‖α̂− α̂u‖2
K (see Figure 2). More specifically, we have

‖Eεα̂−α∗‖2
K = ‖α̂− α̂u‖2

K − ‖α̂− α̂u‖2
K + ‖Eεα̂−α∗‖2

K

= ‖α̂− α̂u‖2
K − ‖Eε(α̂− α̂u)− Eε(α̂− α̂u) + α̂− α̂u‖2

K

+‖Eε(α̂− α̂u)‖2
K

= ‖α̂− α̂u‖2
K − ‖Eε(α̂− α̂u)‖2

K

−2〈KEε(α̂− α̂u),−Eε(α̂− α̂u) + α̂− α̂u〉
−‖ − Eε(α̂− α̂u) + α̂− α̂u‖2

K + ‖Eε(α̂− α̂u)‖2
K

= ‖α̂− α̂u‖2
K + 2〈KEε(α̂− α̂u), Eε(α̂− α̂u)− (α̂− α̂u)〉

−‖Eε(α̂− α̂u)− (α̂− α̂u)‖2
K. (14)

However, the second and third terms in the last equation of Eq.(14) are still inaccessible
since Eε(α̂− α̂u) is unknown, so we will average them out over the noise. Then the second
term vanishes:

Eε〈KEε(α̂− α̂u), Eε(α̂− α̂u)− (α̂− α̂u)〉 = 0,

and the third term is reduced to

Eε

(‖Eε(α̂− α̂u)− (α̂− α̂u)‖2
K

)
= Eε

(‖Eε(X −Xu)y − (X −Xu)y‖2
K

)
= Eε

(‖(X −Xu)z − (X −Xu)(z + ε)‖2
K

)
= Eε

(‖(X −Xu)ε‖2
K

)
= σ2tr

(
K(X −Xu)(X −Xu)>

)
.
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Consequently we have the subspace information criterion (SIC) (Sugiyama and Ogawa,
2001):

SIC = ‖α̂− α̂u‖2
K − σ2tr

(
K(X −Xu)(X −Xu)>

)
+ σ2tr

(
KXX>

)
. (15)

The name subspace information criterion (SIC) came from the fact that it was first intro-
duced for selecting subspace models. The first two terms in SIC are estimates of the bias
term and the last term corresponds to the variance term. It was shown by Sugiyama and
Ogawa (2001) that Eq.(15) is an unbiased estimator of the generalization error JG, i.e.,
EεSIC = JG.

SIC requires a learning matrix Xu that gives an unbiased estimate α̂u of the true
parameter α∗. When {K(x, xi)}`

i=1 span the whole RKHS H, such Xu exists and is given
as follows (Sugiyama and Ogawa, 2001):

Xu = K†. (16)

However, obtaining Xu when {K(x, xi)}`
i=1 do not span the whole RKHS H is still an open

problem. In the following section, we will therefore aim to solve this problem.

5. Subspace Information Criterion for Infinite Dimensional RKHSs

In this section, we extend the range of application of SIC to the case when {K(x, xi)}`
i=1

do not span the whole RKHS H. This extension allows us to use even infinite dimensional
RKHSs.

5.1 Extending SIC to the Case When {K(x, xi)}`
i=1 Do Not Span H

In Section 3, we decided to use the kernel regression model without any further discussion.
Now, we first explain the reason why the kernel regression model is chosen. For this purpose,
let us consider an ordinary linear regression model:

f̂(x) =
p∑

i=1

αiϕi(x), (17)

where {ϕi(x)}p
i=1 are functions in the RKHS H and p denotes the number of basis functions

in the linear regression model.
Let S be a subspace spanned by {ϕi(x)}p

i=1. Since the learning target function f(x)
does not generally lie in the subspace S, f(x) can be decomposed into two elements:

f(x) = g(x) + h(x),

where g(x) is the orthogonal projection of f(x) onto the subspace S and h(x) is the or-
thogonal projection of f(x) onto the orthogonal complement of S. Then the generalization
error can be expressed as

Eε‖f̂ − f‖2
H = Eε‖f̂ − g‖2

H − 2Eε〈f̂ − g, h〉H + ‖h‖2
H

= Eε‖f̂ − g‖2
H + ‖h‖2

H.
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f

H

g

f̂

h

S

Figure 3: H is an RKHS that includes the learning target function f . f can be uniquely
decomposed into g and h, where g is included in the subspace S and h is orthog-
onal to S. Since the learning result function f̂ is searched in the subspace S, the
component h is essentially irrelevant. Therefore, we do not have to investigate
the generalization error Eε‖f̂ − f‖2

H itself, but it is sufficient to investigate only
Eε‖f̂ − g‖2

H.

Since the second term ‖h‖2
H is irrelevant to f̂ , we ignore it and focus only on the first term

Eε‖f̂ − g‖2
H (see Figure 3). Let us denote the first term by J ′G:

J ′G = Eε‖f̂ − g‖2
H. (18)

If we regard g(x) as the learning target function, then the setting seems exactly the
same as that of Section 4. Therefore, we may apply SIC and obtain an unbiased estimator
of J ′G. However, the problem is that we need a learning matrix Xu that gives an unbiased
estimate α̂u of the true parameter vector α∗. Here, ‘true parameter vector’ indicates the
parameter vector in g(x), not in f(x) because g(x) is now regarded as the learning target
function:2

g(x) =
p∑

i=1

α∗i ϕi(x). (19)

If the training examples {(xi, yi)}`
i=1 are sampled from g(x), then Eq.(16) can be straight-

forwardly used for obtaining an unbiased estimate of α∗. However, in reality, the training
examples are sampled from f(x). This is the difference from the previous section.

For resolving this problem, we give the following theorem.

Theorem 1 Let g(x) be the orthogonal projection of f(x) onto the subspace S, expressed
by Eq.(19). A learning matrix Xu that gives an unbiased estimate of the true parameter
vector α∗ exists if and only if the subspace S satisfies

S ⊂ SK , (20)

where SK denotes a subspace spanned by {K(x, xi)}`
i=1.

2. When {ϕi(x)}p
i=1 are linearly dependent, we again adopt the minimum norm parameter vector as the

true parameter vector α∗.
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A proof of Theorem 1 is provided in Appendix A. Theorem 1 means that even when
{K(x, xi)}`

i=1 do not span the whole RKHS H, SIC can be exactly applied if and only if
the subspace S is included in SK . This is the reason why we adopted the kernel regression
model given by Eq.(2), which yields S = SK . For the kernel regression model (2), we have
the following corollary.

Corollary 2 For an arbitrarily chosen RKHS H and the kernel regression model given by
Eq.(2), a learning matrix Xu that gives an unbiased estimate α̂u of the true parameter
vector α∗ (corresponding to g(x)) is given by

Xu = K†. (21)

A proof of Corollary 2 is provided in Appendix B. Eq.(21) is exactly equivalent to
Eq.(16). Therefore, the above corollary shows that, as long as we are concerned with kernel
regression, SIC is applicable irrespective of the choice of the RKHSH. If {K(x, xi)}`

i=1 span
the whole RKHS H, SIC is an unbiased estimator of the generalization error JG. Otherwise
SIC is an unbiased estimator of J ′G, which is an essential part of the generalization error
JG (see Figure 1 again):

EεSIC = J ′G.

On the other hand, for an ordinary linear regression model given by Eq.(17) such that
the condition (20) does not hold, an unbiased estimate of the true parameter vector α∗ can
not be generally obtained. In this case, a consistent estimate of α∗ can be obtained for
a particular generalization measure, and accordingly SIC is a consistent estimator of the
generalization error (Sugiyama and Ogawa, 2002a).

5.2 An Efficient Expression of SIC When Kernel Matrix K Is Invertible

Now we show that when the kernel matrix K defined by Eq.(5) is invertible, SIC can be
computed much simpler.

Substituting Eq.(21) into Eq.(15), SIC is expressed as

SIC = ‖α̂‖2
K − 2〈Kα̂, K†y〉+ ‖K†y‖2

K + 2σ2tr
(
KXK†

)
− σ2tr

(
K†

)
.

Since the third and fifth terms are irrelevant to X, they can be safely ignored. When K−1

exists, a practical expression of SIC (denoted by SICe, SIC essential) for kernel regression
is given by

SICe = ‖α̂‖2
K − 2〈Kα̂, K−1y〉+ 2σ2tr

(
KXK−1

)
= y>X>KXy − 2y>Xy + 2σ2tr (X) . (22)

Similarly, when K−1 exists, J ′G defined by Eq.(18) is expressed as

J ′G = Eε‖α̂−α∗‖2
K

= Eε‖α̂‖2
K − 2Eε〈Kα̂, α∗〉+ ‖α∗‖2

K

= Eε‖α̂‖2
K − 2Eε〈Kα̂, K−1z〉+ ‖α∗‖2

K

= Eε‖α̂‖2
K − 2Eε〈α̂, z〉+ ‖α∗‖2

K,
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where z is defined by Eq.(10). Since

EεSICe = Eε‖α̂‖2
K − 2Eε〈α̂, z〉,

we have
EεSICe + (constant) = J ′G.

This implies that SICe is essentially equivalent to SIC. However, Eq.(22) has the excellent
property that K−1 is no longer needed. This will highly contribute to the stability of
computation since the matrix inversion can become unstable if the matrix is ill-conditioned.
Note that when dimH < `, K is always singular and K† may not be erased as in Eq.(22).

Although we do not need to invert the matrix K, the inversion of an `-dimensional
matrix is still needed when we are concerned with, e.g., kernel ridge regression (6) or Gaus-
sian processes. Generally it requires O(`3) scalar multiplications, which may be infeasible
when the number ` of training examples is very large. In such cases, efficient calculation
methods of matrix inversion, e.g., conjugate gradient inversion (Gibbs, 1997; Gibbs and
MacKay, 1997) which iteratively approximates the matrix inversion with O(`2) scalar mul-
tiplications, would be extremely useful. Furthermore, it is practically efficient to keep the
number of kernel functions reasonable. For this purpose, methods such as clustering (Jain
and Dubes, 1988), self-organizing map (Kohonen, 1995), principal component analysis (Jol-
liffe, 1986), and sparse greedy matrix approximation method (Smola and Schölkopf, 2000)
may be useful.

5.3 Discussion of the Generalization Measure

We defined the generalization measure by Eq.(1). Here we discuss the relation between our
generalization measure and the conventional generalization measures, and the dependency
between the shape of the reproducing kernel and the generalization measure.

5.3.1 RKHS Based Generalization Measure and Conventional
Generalization Measure

Using the RKHS norm for error measure is fairly common in the field of function approxima-
tion (e.g., Daubechies, 1992; Donoho and Johnstone, 1994; Donoho, 1995). The advantage
of using Eq.(1) is that any RKHS norms can be employed as the generalization error, e.g.,
the Sobolev norm (Wahba, 1990) or weighted norms in the frequency space (Smola et al.,
1998; Girosi, 1998).

On the other hand, the following generalization measure is used in the VC learning
theory (Vapnik, 1998):3 ∫

D

(
f̂(x)− f(x)

)2
p(x)dx, (23)

where p(x) is the probability density function of unseen test input points. It may seem
that our generalization measure (1) can not take p(x) into account as was done in Eq.(23).
However, if p(x) is known or can be estimated, it is possible to incorporate p(x) by defining

3. Note that in the book by Vapnik (1998), the generalization measure is defined more generally, using an
arbitrary loss function. Here, we chose the square loss function for simplicity.
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the inner product in the RKHS H as follows.

〈f, g〉H =
∫
D

f(x)g(x)p(x)dx. (24)

Tsuda et al. (2002) proposed utilizing unlabeled samples (i.e., sample points without sample
values) for estimating p(x). However, further work is needed to apply this idea to the current
setting.

In asymptotic statistical learning theories, the following generalization measure (or con-
ceptually similar one) is often used (e.g., Akaike, 1974; Amari et al., 1992; Murata et al.,
1994; Watanabe, 2001):

E{xi}`
i=1

Eε

∫
D

(
f̂(x)− f(x)

)2
p(x)dx, (25)

where E{xi}`
i=1

denotes the expectation over training sample points {xi}`
i=1. The notable

difference is that expectation over training sample points {xi}`
i=1 is not taken in our gen-

eralization measure (1), while it is taken in Eq.(25). This difference may stem from the
difference in the purpose of model selection. If the purpose is to find the universally best
model that provides the optimal generalization capability for all possible training sets on
average, the average over training sets should be taken as in Eq.(25). This standpoint
emphasizes that the model is universal and should not be altered according to the train-
ing sets. However, the universal model does not necessarily provide better generalization
capability for the training set at hand. On the other hand, if it is allowed to change mod-
els adaptively depending on the training set, it is preferable not to take the average over
training sets because by not taking the average, we can find the model that provides the
optimal generalization capability for the training set at hand. In this article, we are taking
the latter standpoint of data-dependent model selection, and the expectation over training
sample points {xi}`

i=1 is not taken. However, as can be seen from Eq.(1), we are still taking
the expectation over the noise. In pursuit of the development of fully data-dependent model
selection methods, we would ultimately like to not even take an expectation over the noise.
This, however, is beyond the scope of this paper.

Finally in most of the statistical learning methods, the training sample points {xi}`
i=1

are assumed to be independently drawn from p(x), while we do not assume this condition in
the current paper. Therefore, we can even deal with training sample points {xi}`

i=1 sampled
deterministically or drawn from another probability density function. This is advantageous
especially in time-series analysis or in active learning scenarios (e.g., Fedorov, 1972; MacKay,
1992b; Cohn et al., 1996; Fukumizu, 2000; Sugiyama and Ogawa, 2000) because training
sample points {xi}`

i=1 are designed by users so they are no longer subject to p(x).

5.3.2 Shape of Reproducing Kernel and Generalization Measure

An RKHS H is specified by a set of functions that span the function space and the inner
product. This means that the shape of the reproducing kernel depends on the definition of
the inner product (and also the generalization measure). This does not cause any problems
when the reproducing kernels centered on training sample points span the whole RKHS (or
equivalently the learning target function is included in the span of {K(x, xi)}`

i=1) because
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the regression function is essentially determined by the set of functions that span the func-
tion space. Therefore, we can use any norm as the generalization measure without changing
the regression model (Sugiyama and Ogawa, 2002a). On the other hand, when the learning
target function is not included in the span of {K(x, xi)}`

i=1, we can not determine both the
shape of the reproducing kernel (so the regression function) and the generalization measure
at the same time. Therefore, we are urged to choose either the following two scenarios.

The first scenario is to design the shape of the reproducing kernel as desired. Then the
generalization measure is implicitly specified because the inner product is specified once
the shape of the reproducing kernel is determined. The characteristics of the generalization
measure can be interpreted by expanding the kernel function onto basis functions in the
RKHS. For example, in the case of a Gaussian kernel, the generalization measure penalizes
high frequency components (see e.g., Smola et al., 1998; Girosi, 1998, for details).

The second scenario is to specify the inner product (or the generalization measure) as
desired. Then the shape of the reproducing kernel is accordingly determined. For example,
if the function space is spanned by linearly independent functions {φi(x)}∞i=1 and the inner
product is determined so that {φi(x)}∞i=1 form an orthonormal basis, then the reproducing
kernel is given by

K(x, x′) =
∞∑
i=1

φi(x)φi(x′)

if it converges. However, we still require more general methods to explicitly express the
reproducing kernels from given inner product, e.g., Eq.(24). Further investigation is needed
to actually choose the second scenario.

For this reason, we will follow the first scenario and use, e.g., a Gaussian kernel in our
computer simulations of next section, bearing in mind that high frequency components are
penalized in the generalization measure.

6. Computer Simulations

In this section, the effectiveness of the proposed model selection method is investigated
through computer simulations. As stated in Section 1, we are interested in observing
whether the proposed SIC works well when the number of training examples is small. For
this reason, our simulations are mainly focused on relatively small sample cases.4

6.1 Illustrative Examples

First, we consider artificial examples for illustrating how SIC works.

6.1.1 Setting

For illustrating purpose, let the dimension n of input vector be 1. We use the Gaussian
RKHS with width c = 1, which may be one of the standard RKHSs (see e.g., Vapnik, 1998;

4. In this simulation, the matrix inversion is calculated in a straightforward fashion since we focus on
rather small sample cases. In large sample cases, the calculation of matrix inversion is time-consuming
so efficient calculation methods of matrix inversion would be extremely useful (e.g., Gibbs, 1997; Gibbs
and MacKay, 1997; Smola and Schölkopf, 2000)

337



Sugiyama and Müller

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: Target function and 50 training examples with noise variance σ2 = 0.09.

Schölkopf et al., 2000):

K(x, x′) = exp
(
−(x− x′)2

2c2

)
. (26)

The learning target function f(x) is created as follows. We sample the following sinc function
at 100 equally spaced template points {sm}100

m=1 in [−π, π]:

sinc x,

and obtain noiseless sample values {tm}100
m=1. We have chosen the sinc function because it

is simple and often used as an illustrative regression example (e.g., Vapnik, 1998; Schölkopf
et al., 2000). Using {(sm, tm)}100

m=1 as training examples, we create the learning target
function f(x) by kernel ridge regression (7) with T = I and λ = 0.1. The obtained f(x) is
illustrated in Figure 4.

The training set {(xi, yi)}`
i=1 is created using this target function as follows. The sample

points {xi}`
i=1 are independently drawn from the uniform distribution on (−π, π). The

sample values {yi}`
i=1 are created as yi = f(xi)+εi, where the noise {εi}`

i=1 is independently
drawn from the normal distribution with mean zero and variance σ2. We consider the
following four cases as the number ` of training examples and the noise variance σ2:

(`, σ2) = (100, 0.01), (50, 0.01), (100, 0.09), (50, 0.09), (27)

i.e., we investigate the cases with small/large samples and small/large noise levels. An
example of the training set is also illustrated in Figure 4. Kernel ridge regression (7) with
T = I is used for learning.

Note that the above setting is common in Sections 6.1.2 and 6.1.3.

6.1.2 Generalization Error Estimation

As proved in Section 5, the mean SIC is exactly unbiased if the noise variance is known. In
this simulation, we will experimentally investigate how robust the unbiasedness of SIC is
when the noise variance is estimated from training examples. The variance of SIC will also
be experimentally evaluated.

The generalization error estimation performance of SIC is investigated as a function of
the ridge parameter λ, using the following values:

λ ∈ {10−3, 10−2.5, 10−2, . . . , 103}. (28)
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SIC is calculated by Eq.(22), where the noise variance σ2 is estimated by Eq.(12). The
goodness of the learning result is measured by

Error = ‖α̂‖2
K − 2〈α̂, z〉, (29)

where α̂ denotes the parameter vector of the learned function at a given ridge parameter,
and z is defined by Eq.(10). Note that the above error measure is essentially equivalent to
the RKHS generalization measure ‖f̂ − f‖2

H since

‖f̂ − f‖2
H = ‖f̂ − g‖2

H + ‖g − f‖2
H

= ‖α̂−α∗‖2
K + ‖g − f‖2

H
= ‖α̂‖2

K − 2〈Kα̂, α∗〉+ ‖α∗‖2
K + ‖g − f‖2

H
= ‖α̂‖2

K − 2〈Kα̂, K−1z〉+ ‖α∗‖2
K + ‖g − f‖2

H
= ‖α̂‖2

K − 2〈α̂, z〉+ (constant).

The simulations are repeated 100 times for each (`, σ2) in Eq.(27), randomly drawing
the sample points {xi}`

i=1 and noise {εi}`
i=1 from scratch in each trial.

Figure 5 displays the values of the true error (29) and SIC as a function of the ridge
parameter λ for each (`, σ2) in Eq.(27). The horizontal axis denotes the values of λ in
log-scale. From the top, the four curves denote the mean error with error bar, the mean
SIC with error bar, the absolute difference between the mean error and the mean SIC, and
the absolute difference between the standard deviations of the error and SIC. The error bar
in the first and second rows of the figure denotes the standard deviation over 100 trials.

When (`, σ2) = (100, 0.01), the mean SIC seems to capture the mean error very well (see
the first and second rows of the figure). Indeed, the absolute difference between the mean
error and the mean SIC depicted in the third row shows that the difference is reasonably
small. Therefore, the mean SIC can be regarded as an good estimator of the mean error.
The second row of the figure also shows that the error bar of SIC is reasonably small for
middle/large λ. Indeed it is almost the same as that of the true error, as can be observed
from the absolute difference in the standard deviation depicted in the fourth row of the
figure. However, as λ gets small, the error bar of SIC tends to become slightly larger,
which may be caused by the fact that the uncertainty of the estimated parameter vector α̂
increases large as λ decreases.

When (`, σ2) = (50, 0.01), the simulation results bear a close resemblance to the case of
(`, σ2) = (100, 0.01). This means that even when the number of training examples decreases,
the error estimation performance of SIC is still maintained.

When (`, σ2) = (100, 0.09), the absolute mean difference (see the third row of the figure)
is still small so the mean SIC is a good estimator of the mean error even when the noise level
increases. However, the error bars of SIC become large (see the second row) compared with
the case of (`, σ2) = (100, 0.01). Finally when (`, σ2) = (50, 0.09), the simulation results
show the same trend as the case of (`, σ2) = (50, 0.01).

We also perform the same simulation for the sinc kernel with Ω = 2.5:

K(x, x′) =
Ω
π

sinc
(

Ω
π

(x− x′)
)

.
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Figure 5: Values of the true error (29) and SIC for Gaussian kernel. The horizontal axis
denotes the value of λ in log-scale. Shown from the top are the mean error
with error bar, the mean SIC with error bar, the absolute difference between the
mean error and the mean SIC, and the absolute difference between the standard
deviations of the error and SIC.
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The simulation results are depicted in Figure 6, showing a similar tendency to the case of the
Gaussian kernel. Furthermore, we performed the same simulation for several other kernels
including regularized trigonometric polynomial kernel, regularized polynomial kernel, and
Laplacian kernel (see e.g., Vapnik, 1998). The results are qualitatively the same as those of
the Gaussian and sinc kernel cases so they are omitted.

From the above simulation results, the unbiasedness of SIC is shown to be unchanged
irrespective of the number of training examples, the noise level, and the choice of RKHSs.
However, as λ gets small, the error bar of SIC tends to become larger, especially for high
noise level (σ2 = 0.09).

Therefore, it is extremely important to investigate how this large error bar of SIC affects
the ridge parameter selection, which is the primal interest of the following simulations.

6.1.3 Ridge Parameter Selection

Now we experimentally investigate how SIC works in ridge parameter selection.
The ridge parameter is selected from Eq.(28). The goodness of the selection is evaluated

by the test error at 1000 randomly created test points {(x′i, y′i)}1000
i=1 :

Test error =
1

1000

1000∑
i=1

(
f̂(x′i)− f(x′i)

)2
.

As ridge parameter selection criteria, the following three methods are compared.

SIC: SIC is calculated by Eq.(22), where the noise variance σ2 is estimated by Eq.(12).

Leave-one-out cross-validation (CV): The leave-one-out error is calculated efficiently
in closed-form (see e.g., Wahba, 1990; Orr, 1996):

1
`
‖(diag (I −KX))−1(I −KX)y‖2,

where diag (I −KX) is the same size and has the same diagonal as (I −KX) but
is zero on the off-diagonal elements.

Akaike’s Bayesian information criterion (ABIC) (Akaike, 1980): ABIC, which is
a so-called empirical Bayesian method (see also Schwarz, 1978; MacKay, 1992a;
Watanabe, 2001), determines the ridge parameter so that its likelihood is maximized.

The simulation is repeated 100 times, randomly drawing the sample points {xi}`
i=1,

noise {εi}`
i=1, and the test sample points {x′i}1000

i=1 from the scratch in each trial.
In Figure 7, the test error by each method is depicted. The left graphs depict the

distributions of the test error with standard box plot while the right graph shows the test
error for every trial as a scatter plot. The box plot notation specifies marks at 95, 75, 50,
25, and 5 percentiles from the top. ‘OPT’ indicates the test error obtained by the optimal
ridge parameter, i.e., we actually calculated the test error for each λ in Eq.(28) and selected
the one that minimizes the test error. In the scatter plot, a circle denotes the test errors
by SIC vs. CV while a cross denotes the test errors by SIC vs. ABIC. Plot symbols in the
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Figure 6: Values of true error and SIC for sinc kernel.
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Figure 7: Test error for Gaussian kernel. The box plot notation specifies marks at 95, 75,
50, 25, and 5 percentiles of values. ‘OPT’ in the left graphs indicates the test error
obtained by the optimal ridge parameter. In the right graphs, a circle denotes the
test errors by SIC vs. CV while a cross denotes the test errors by SIC vs. ABIC.
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Table 2: P-values for Gaussian kernel. ‘T’ and ‘Wilcoxon’ denote t-test and Wilcoxon
signed rank test, respectively. The difference between two methods is regarded as
significant if p < 0.05, and as very significant if p < 0.01.

Methods SIC vs. CV SIC vs. ABIC
Test T Wilcoxon T Wilcoxon

` = 100, σ2 = 0.01 7.45 × 10−1 2.74 × 10−1 8.87 × 10−1 5.78 × 10−1

` = 50, σ2 = 0.01 9.97 × 10−1 7.31 × 10−1 1.64 × 10−1 4.95 × 10−4

` = 100, σ2 = 0.09 8.04 × 10−1 1.66 × 10−1 2.01 × 10−9 6.96 × 10−12

` = 50, σ2 = 0.09 8.50 × 10−1 2.85 × 10−1 5.00 × 10−12 1.31 × 10−15

upper-left area mean that SIC outperforms CV or ABIC, while the plot symbols in the
lower-right area denote the opposite.

When (`, σ2) = (100, 0.01), the box plot shows that SIC works well in all percentiles,
and it is comparable to CV and ABIC. The right scatter plot shows that almost all circles
and crosses are plotted near the diagonal line, so in accordance with the box plots, the
performance of SIC is comparable to CV and ABIC. In order to investigate whether the
difference in the test error is significant or not, we perform two kinds of hypothesis tests (see
e.g., Henkel, 1979). One is the t-test, which compares the means of two samples under the
assumption that they are drawn from the normal distribution with the same (but unknown)
variance. The other is the Wilcoxon signed rank test, which is a non-parametric test so it
can be applied to any distribution. The p-values are described in Table 2. Let us regard the
difference in the test error as significant if p < 0.05, and as very significant if p < 0.01. The
p-values do not indicate that both the difference between SIC and CV and the difference
between SIC and ABIC are significant. Therefore, SIC works as well as CV and ABIC.

When (`, σ2) = (50, 0.01), SIC and CV maintain a comparably good performance even
when the number of training examples is decreased (cf. Table 2). On the other hand, the
performance of ABIC is degraded in the 75 and 95 percentiles. This can also be observed
from the scatter plot, i.e., some crosses are plotted in the upper-left area. Although the
t-test does not reveal this significant difference between SIC and ABIC, the Wilcoxon test
does so. In this case, the Wilcoxon test is considered to be more reliable than the t-test
since the distribution of the test error by ABIC deviates from the normal distribution, as
can be observed from the box plot (e.g., 95 percentile tail is much longer than 5 percentile
tail).

When (`, σ2) = (100, 0.09), the performance of SIC is slightly worse than that of CV
in 5 and 75 percentiles, while SIC and CV perform equally when (`, σ2) = (100, 0.01).
This implies that the large error bar of SIC shown in Figure 5 slightly degrades the ridge
parameter selection performance. However, the p-values described in Table 2 do not indicate
that the difference between SIC and CV is significant. Therefore, the large variance of SIC
when the noise level is high may be permissible. On the other hand, the performance of
ABIC is significantly degraded in all percentiles, and most of the crosses are plotted in the
upper-left area in the scatter plot (cf. p-values in Table 2).
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Finally, when (`, σ2) = (50, 0.09), SIC works excellently, although the performance of
SIC is slightly degraded when compared with the case of (`, σ2) = (50, 0.01). This may be
again caused by the large error bar of SIC shown in Figure 5. However, compared with CV,
SIC is shown to work reasonably well since SIC outperforms CV in 95 percentile and works
equally in other percentiles (although the p-values described in Table 2 do not reveal the
difference between SIC and CV as significant). On the other hand, ABIC again gives large
errors and the difference between SIC and ABIC is very significant (cf. Table 2).

The above simulation results show that, for the toy artificial data, SIC can be successfully
applied to ridge parameter selection. Especially, it is notable that the good performance
of SIC is maintained even when the number ` of training examples decreases. However, as
expected, the performance of SIC is degraded as the noise level increases (see the cases with
σ2 = 0.09). Nevertheless, the performance of SIC is still comparable to CV and is slightly
better than ABIC.

We also performed similar simulations for several other learning target functions and
several RKHSs, and observed that the simulation results bear a close resemblance to the
above findings (therefore they are omitted).

6.2 Real Data Sets

Now we apply SIC to real data sets, and evaluate its practical usefulness. We use 10 data
sets provided by DELVE (Rasmussen et al., 1996): Abalone, Boston, Bank-8fm, Bank-8nm,
Bank-8fh, Bank-8nh, Kin-8fm, Kin-8nm, Kin-8fh, and Kin-8nh.

Abalone data set includes 4177 samples, each of which consists of 9 physical measure-
ments. The task is to estimate the last attribute (the age of abalones) from the rest. The
first attribute is qualitative (male/female/infant) so it is ignored, i.e., 7-dimensional input
and 1-dimensional output data is used. For convenience, every attribute is normalized in
[0, 1]. 100 randomly selected samples {(xi, yi)}100

i=1 are used for training, and the other 4077
samples {(x′i, y′i)}4077

i=1 are used for testing. The reason why only 100 samples are used for
training is that we are interested in the performance in the small sample case, as stated in
Section 1. The test error is measured by

Test error =
1

4077

4077∑
i=1

(
f̂(x′i)− y′i

)2
, (30)

where {(x′i, y′i)}4077
i=1 denote the test samples. A Gaussian kernel (26) with width c = 1

is employed and kernel ridge regression (7) with T = I is used for learning. The ridge
parameter λ is selected from the following values.

λ ∈ {10−3, 10−2, 10−1, . . . , 103}.

Again we compare SIC with CV and ABIC (see Section 6.1.3 for detail). The simulation is
repeated 100 times, randomly selecting the training set {(xi, yi)}100

i=1 from scratch in each
trial (i.e., sampling without replacement). Note that the test set {(x′i, y′i)}4077

i=1 also varies
in each trial.

In Figure 8, the test error by each method is displayed. The left graph depicts the
distribution of the test error with standard box plot while the right graph shows the test
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Figure 8: Simulation results with Abalone data sets (Gaussian kernel). The box plot no-
tation specifies marks at 95, 75, 50, 25, and 5 percentiles of values. ‘OPT’ in
the left graph indicates the test error obtained by the optimal ridge parameter.
In the right graph, a circle denotes the test errors by SIC and CV while a cross
denotes the test errors by SIC and ABIC.

error in every trial using a scatter plot (cf. Section 6.1.3 for a detailed discussion of this
plot type).

The box plot in Figure 8 shows that SIC works fairly well up to the 75 percentile when
compared with OPT, and is slightly better than CV and ABIC for all percentiles. The
scatter plot also shows that SIC tends to work slightly better than CV and ABIC, although
CV outperforms SIC in 4 trials. Again we test whether the difference in the test error is
significant or not by t-test and Wilcoxon signed rank test (see Section 6.1.3 for detail). The
p-values are described in Table 3. The table shows that the p-values of the Wilcoxon test are
very small, so SIC is significantly different from both CV and ABIC. On the other hand, the
p-value of the t-test does not say the difference between SIC and CV is significant. However,
the distributions of errors by SIC, CV, and ABIC are not symmetric (i.e., 95 percentile tail
is longer than 5 percentile tail, see the box plot in Figure 8), Therefore, in this case, the
t-test may not be reliable.

A similar simulation is also performed for the Boston data set, which includes 506
samples, each consisting of 13-dimensional input and 1-dimensional output data. Every
attribute is again normalized in [0, 1]. 100 randomly chosen samples are used for training
and the other 406 samples are used for testing. The test error is measured by a similar
manner to Eq.(30). The simulation results for the Boston data set are depicted in Figure 9.
The box plot shows that SIC works excellently for all percentiles when compared with OPT,
and SIC outperforms CV and ABIC. The scatter plot shows that SIC always provides equal
or smaller test error than CV and ABIC. The p-values in Table 3 also confirm that SIC is
significantly different from CV and ABIC.

The Bank data family consists of four different data sets. They are labeled as ‘fm’, ‘nm’,
‘fh’, and ‘nh’, where ‘f’ or ‘n’ signifies ‘fairly linear’ or ‘non-linear’, respectively, and ‘m’ or
‘h’ signifies ‘medium unpredictability/noise’ or ‘high unpredictability/noise’, respectively.
Each of the 4 data sets includes 8192 samples, consisting of 8-dimensional input and 1-
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Table 3: P-values for real data sets (Gaussian kernel). ‘T’ and ‘Wilcoxon’ denote t-test and
Wilcoxon signed rank test, respectively. The difference between two methods is
regarded as significant if p < 0.05, and as very significant if p < 0.01.

Methods SIC vs. CV SIC vs. ABIC
Test T Wilcoxon T Wilcoxon

Abalone 1.97 × 10−1 9.48 × 10−6 2.14 × 10−4 2.62 × 10−16

Boston 3.49 × 10−11 2.52 × 10−8 2.33 × 10−39 4.01 × 10−18

Bank-8fm 1.00 × 10−15 1.15 × 10−11 2.13 × 10−23 2.53 × 10−14

Bank-8nm 9.81 × 10−2 6.20 × 10−7 7.68 × 10−6 4.26 × 10−9

Bank-8fh 4.34 × 10−1 1.07 × 10−1 2.29 × 10−1 2.98 × 10−1

Bank-8nh 1.15 × 10−1 6.07 × 10−3 9.02 × 10−11 1.10 × 10−7

Kin-8fm 7.94 × 10−3 6.10 × 10−5 4.75 × 10−58 1.25 × 10−17

Kin-8nm 8.84 × 10−5 1.61 × 10−8 2.30 × 10−25 5.97 × 10−17

Kin-8fh 4.26 × 10−4 4.87 × 10−6 5.53 × 10−32 2.63 × 10−17

Kin-8nh 7.66 × 10−2 5.48 × 10−3 3.60 × 10−1 6.60 × 10−4
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Figure 9: Simulation results with Boston data sets (Gaussian kernel).

dimensional output data. Every attribute is again normalized in [0, 1]. 100 randomly
selected samples are used for training and the other 8092 samples are used for testing. The
test error is measured in a similar manner to Eq.(30). The simulation results for the Bank
data sets are depicted in Figure 10.

For the Bank-8fm data set, SIC works excellently for all percentiles, and it outperforms
CV and ABIC. The p-values described in Table 3 confirm that SIC is significantly different
from CV and ABIC. The scatter plot shows that SIC always provides equal or smaller test
error than CV and ABIC.

For the Bank-8nm data set, SIC performs slightly better than CV in 25 and 50 per-
centiles. The Wilcoxon test described in Table 3 shows that the difference between SIC and
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Figure 10: Simulation results with real data sets (Gaussian kernel).
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CV is very significant, while the t-test does not say the difference is significant. However,
in this case, the distributions of the test error are not symmetric so the t-test may not
be reliable. On the other hand, SIC outperforms ABIC up to 75 percentile, while ABIC
outperforms SIC at 95 percentile. This can also be observed in the scatter plot, showing
that some crosses are plotted in the lower-right area.

For the Bank-8fh data set, all 3 methods do not seem to work well. SIC is better than
CV for 25 percentile while CV is better than SIC for 95 percentile. SIC is better than ABIC
for 5, 75, and 95 percentiles while ABIC is better than SIC for 25 and 50 percentiles. The
p-values described in Table 3 do not say both the difference between SIC and CV and the
difference between SIC and ABIC are significant. Note that ABIC once gave the error of
0.033, but this plot is omitted in the scatter plot since it heavily degrades the whole graph.

For the Bank-8nh data set, SIC is comparable with CV for 5, 50, and 75 percentiles,
although 25 and 95 percentiles are worse than those of CV. The Wilcoxon test described
in Table 3 says that SIC is significantly different from CV while t-test does not say the
difference is significant. On the other hand, ABIC sometimes gives very large errors as can
be seen from the scatter plot, although ABIC sometimes outperforms SIC.

The simulation results for the Bank data family show that when the unpredictabil-
ity/noise is medium (signified by ‘m’), SIC works very well. However, for the data sets with
high unpredictability/noise (signified by ‘h’), the performance of SIC tends to be degraded.
This may be caused by the large variance of SIC in the case of high noise level (see Sec-
tion 6.1.2). Although this drawback is to be improved in the future, it may be permissible
given the facts that all the 3 methods do not work well for the Bank-8fh data set and SIC
outperforms ABIC for the Bank-8nh data set.

The Kin data family also consists of four different data sets labeled as ‘fm’, ‘nm’, ‘fh’,
and ‘nh’. Each of the 4 data sets includes 8192 samples, consisting of 8-dimensional input
and 1-dimensional output data. We normalize every attribute in [0, 1]. 100 randomly
selected samples are used for training and the other 8092 samples are used for testing. The
test error is measured by a similar manner to Eq.(30). The simulation results for the Kin
data sets are depicted in Figure 11.

For the Kin-8fm data set, SIC shows an outstanding performance for all percentiles. 5,
25, and 50 percentiles of SIC are comparable with those of CV, and SIC outperforms CV for
75 and 95 percentiles. This can also be observed from the scatter plot, showing that almost
all circles are on the diagonal line but some are plotted in the upper-left area. The p-values
described in Table 3 say that SIC is significantly different from CV. On the other hand,
ABIC does not work properly and it provides large test errors. The p-values described in
Table 3 say that the difference between SIC and ABIC is very significant.

For the Kin-8nm data set, SIC works reasonably well, although 95 percentile is rather
large compared with OPT. For all percentiles, SIC outperforms CV and ABIC, and the
difference is shown to be very significant by the statistical tests (see Table 3). Even so, the
scatter plot shows that CV and ABIC can occasionally improve upon SIC.

The results for the Kin-8fh data set are similar to those of the Kin-8nm data set.
Finally, for the Kin-8nh data set, all the 3 methods do not seem to work well. CV

outperforms SIC for all percentiles and SIC outperforms ABIC up to 75 percentile, although
95 percentile of SIC is worse than that of ABIC. The Wilcoxon test says that CV and ABIC
are significantly different from SIC, while the t-test does not say the difference is significant.
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Figure 11: Simulation results with real data sets (Gaussian kernel).
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In this case, the Wilcoxon test may be reliable because of the asymmetry of the distributions
(see the box plot). Therefore, CV may outperform SIC. In contrast, SIC may be different
from ABIC but we can not judge which is better from the statistical test.

The simulation results for the Kin data family show that for the Kin-8fm, Kin-8nm,
and Kin-8fh data sets, SIC works fairly well and it tends to outperform CV and ABIC.
However, for the Kin-8nh data sets, SIC does not work properly. This may be again caused
by the large variance of SIC in the case of high noise level (see Section 6.1.2). However, it
should be noted that in this case, even CV and ABIC do not work well.

The above simulation results5 for real data sets imply that SIC should be considered as
an important practical model selection criterion for choosing the ridge parameter, although
the performance can be degraded when the noise level is very high.

7. Conclusions and Future Prospects

The paper studied model selection based on a generalization of SIC to the case that re-
producing kernels centered on training sample points do not span the whole reproducing
kernel Hilbert space (RKHS). This extension allows an efficient model selection even in
infinite dimensional RKHSs. The SIC based generalization error estimation is applicable
under the assumptions that (a) the learning target function belongs to a specified RKHS.
(b) the kernel regression model is employed, and (c) the generalization error is measured
by the expected squared norm in the RKHS. Extensive simulation studies showed that SIC
outperformed leave-one-out cross-validation and an empirical Bayesian method for most of
the data sets. Therefore, SIC may be considered as one of the practical model selection
criteria for choosing the ridge parameter.

On the other hand, there is still plenty of room for further investigation and improve-
ments. In the following, we describe possible future directions.

The unbiasedness of SIC is theoretically guaranteed if the noise variance is known.
Even when the noise variance is unknown, the unbiasedness of SIC is still theoretically
maintained if an unbiased estimator of the noise variance is available (Sugiyama and Ogawa,
2001). In this article, we used a biased estimator of the noise variance given by Eq.(12), and
experimentally confirmed that SIC still stays almost unbiased even if a biased noise variance
estimator is used. Future studies to theoretically investigate this finding are needed.

As discussed in Section 5.3.2, the generalization measure and the shape of the reproduc-
ing kernel generally relate to each other. If the shape of the reproducing kernel is designed
as desired, the generalization measure is implicitly fixed so it could be different from a
desired cost function. On the other hand, if the generalization measure is specified, it is
not straightforward to obtain an explicit expression of the reproducing kernel. In the simu-
lation studies carried out in Section 6, we took the former standpoint and mainly used the
Gaussian kernel. In theory, the generalization error is measured by the RKHS norm which
penalizes high frequency components in the Gaussian kernel case, while the experimental
performance is measured by the test error. Although this is inconsistent, clearly the RKHS
norm based generalization measure, which is well approximated by SIC, is highly correlated
to the true test error. Similar situations can also be found in, e.g., predictive training er-

5. We also performed similar simulations with several other RKHSs. The results were comparable with the
Gaussian kernel case, so they are omitted.
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ror based methods (Mallows, 1964, 1973) where the model is chosen so that the error at
training sample points is minimized, Kullback-Leibler divergence based methods (Akaike,
1974; Takeuchi, 1976; Sugiura, 1978; Konishi and Kitagawa, 1996, see also Murata et al.,
1994) where the model is selected so that the Kullback-Leibler divergence is minimized,
or empirical Bayesian methods (Schwarz, 1978; Akaike, 1980; MacKay, 1992a; Watanabe,
2001) where hyper-parameters are determined so that their likelihood is maximized. In
those cases, the criteria are different from the test error but they are correlated to the test
error. Furthermore, even the expected prediction error (23), which is one of the standard
error measures in statistical model selection, is slightly different from the test error, e.g.,
Eq.(30). An interesting direction of research is therefore to find further alternative error
measures that are well correlated to the test error and at the same time, that can be es-
timated robustly. For example, under transductive settings (i.e., the cases where the test
input points are known in advance), devising a method for obtaining an RKHS whose norm
directly evaluates the error at test input points may be promising.

Experimentally SIC is shown to work well in most of the cases. However, its performance
along with CV can be degraded for a too high noise level. For SIC, this may be caused
by the fact that SIC is derived as an exact unbiased estimator of (an essential part of) the
generalization error but the variance of SIC is not taken into account. A possible fix of this
instability is to add a small bias to SIC for stabilization, e.g., along the lines of Sugiyama
and Ogawa (2001) or Tsuda et al. (2002). However, it remains to be investigated whether
these or some alternative strategy will also be successful for infinite dimensional RKHSs.

We focused on the case that the parameters in the kernel regression model are estimated
linearly. On the other hand, practically useful estimation methods such as robust regres-
sion (Huber, 1981), support vector regression (e.g., Vapnik, 1995; Schölkopf et al., 1998;
Burges, 1998; Cristianini and Shawe-Taylor, 2000; Schölkopf et al., 2000; Müller et al.,
2001; Schölkopf and Smola, 2002), and sparse regression (Williams, 1995; Tibshirani, 1996;
Chen et al., 1998) are non-linear. Tsuda et al. (2002) showed that the idea of SIC still
plays an important role even for non-linear estimation methods. The extension carried out
in that paper allowed us to approximately apply SIC to sparse regression. However, the
unbiasedness of SIC is no longer maintained. Therefore, further research is needed to extend
SIC such that non-linear estimation methods can be dealt with in a theoretically rigorous
fashion.

Finally, throughout this paper, we assumed that the target function belongs to a specified
RKHS. In experiments with real data sets, we observed that SIC works properly even when
the target function does not exactly lie in the specified RKHS (i.e., unrealizable case).
Although this is surely a useful property in practice, it still remains open how to devise a
method for optimally determining the appropriate RKHS, e.g., the kernel type and width.
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Appendix A. Proof of Theorem 1

First, let us introduce the notion of the Neumann-Schatten product (Schatten, 1970). For
any fixed g in a Hilbert space H1 and any fixed f in a Hilbert space H2, the Neumann-
Schatten product of f and g, denoted by (f ⊗ g), is an operator from H1 to H2 that satisfies
for any h in H1

(f ⊗ g)h = 〈h, g〉f.

When H1 and H2 are both the Euclidean spaces, (f ⊗ g) is expressed as

(f ⊗ g) = fg>.

Using the above Neumann-Schatten product, let us define an operator A from the RKHS
H to R` as follows.

A =
∑̀
i=1

(
e

(`)
i ⊗K(·, xi)

)
,

where e
(`)
i is the i-th standard basis in R`, i.e., it is the `-dimensional vector with the i-th

element 1 and others 0. Note that the property of the reproducing kernel implies

Af = (f(x1), f(x2), . . . , f(x`))>.

Let A∗ be the adjoint operator of A. Notice that A∗ is expressed as

A∗ =
∑̀
i=1

(
K(·, xi)⊗ e

(`)
i

)
.

Let us assume that there exists a learning matrix Xu that gives an unbiased estimate α̂u

of the unknown α∗. Then, recalling Eq.(13), we have

α∗ = Eεα̂u = EεXuy = EεXu(Af + ε) = XuAf. (31)

On the other hand, using the operator B defined by

B =
p∑

i=1

(
e

(p)
i ⊗ ϕi(·)

)
,
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it holds that

B∗α∗ =
p∑

i=1

〈α∗, e(p)
i 〉ϕi(·) =

p∑
i=1

α∗i ϕi(·) = g(·) = PSf, (32)

where PS denotes the orthogonal projection operator onto the subspace S. From Eqs.(31)
and (32), we have

B∗XuAf = PSf.

Since f is not specified, Xu must satisfy the above equation for all f in H, i.e., it yields

B∗XuA = PS . (33)

It is known that Eq.(33) has a solution if and only if the following condition holds (see e.g.,
Albert, 1972; Hunter, 2000):

B∗(B∗)−PSA−A = PS , (34)

where B− is the so-called equation solving generalized inverse that satisfies BB−B = B.
Using PS = B∗(B∗)†, Eq.(34) is expressed as

PS = B∗(B∗)−B∗(B∗)†A−A

= B∗(B∗)†A−A

= PSA−A. (35)

Since PS = P ∗
S , Eq.(35) is equivalent to

PS = A∗(A−)∗PS . (36)

Now we show Eq.(36) holds if and only if S ⊂ SK . When Eq.(36) holds, S ⊂ SK is satisfied
since the range of A∗ is equivalent to SK . Conversely, if S ⊂ SK , it holds that

PS = PSK
PS = A∗(A∗)†PS .

Then we have

A∗(A−)∗PS = A∗(A−)∗A∗(A∗)†PS
= (AA−A)∗(A∗)†PS
= A∗(A∗)†PS
= PS ,

which concludes the proof.

Appendix B. Proof of Corollary 2

If Eq.(34) holds, a solution of Eq.(33) is given as follows (see e.g., Albert, 1972; Hunter,
2000):

Xu = (B∗)†PSA†.
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If we take p = ` and ϕi(x) = K(x, xi) for i = 1, 2, . . . , `, it holds that B = A and
PS = PSK

= A†A. Then we have

Xu = (A∗)†A†AA† = (A∗)†A† = (AA∗)† = K†, (37)

where the last equation follows from

AA∗ =
∑̀
i=1

(
e

(`)
i ⊗K(·, xi)

) ∑̀
j=1

(
K(·, xj)⊗ e

(`)
j

)

=
∑̀
i,j=1

〈K(·, xj), K(·, xi)〉H
(

e
(`)
i ⊗ e

(`)
j

)

=
∑̀
i,j=1

K(xi, xj)e
(`)
i e

(`)
j

>

= K.

Eq.(37) proves Corollary 2.
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