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Abstract

In this paper e-MDP-models are introduced and convergence theorems are proven using
the generalized MDP framework of Szepesvéri and Littman. Using this model family, we
show that Q-learning is capable of finding near-optimal policies in varying environments.
The potential of this new family of MDP models is illustrated via a reinforcement learning
algorithm called event-learning which separates the optimization of decision making from
the controller. We show that event-learning augmented by a particular controller, which
gives rise to an e-MDP, enables near optimal performance even if considerable and sudden
changes may occur in the environment. Illustrations are provided on the two-segment
pendulum problem.

Keywords: reinforcement learning, convergence, event-learning, SARSA, MDP, general-
ized MDP, e-MDP, SDS controller

1. Introduction

In a common formulation of the reinforcement learning (RL) problem an agent improves
its behavior by observing the outcomes of its own interactions with the environment. In
the 1980’s, Markovian decision problems (MDPs) were proposed as a model for the analysis
of RL (for an overview, see Sutton and Barto, 1998, and references therein), and since
then a mathematically well-founded theory has been constructed for a large class of RL
algorithms (Watkins, 1989, Watkins and Dayan, 1992, Tsitsiklis, 1994, Gullapalli and Barto,
1994, Jaakkola et al., 1994). RL algorithms typically consider stationary environments.
Quasi-stationary environments are approached by continually adapting the agent. However,
changes in the environment may be very fast and could prohibit optimizations for methods
that assume a stationary environment.

To provide a principled framework for RL in fast changing environments, we introduce
a model called e-MDP, a generalization of e-stationary MDP (Kalmar et al., 1998). In
this novel MDP concept the environment is allowed to change over time, provided that the
accumulated changes remain bounded. In particular, transition probabilities may vary as a
function of time. The only requirement is that the change is finite but small (it is bounded
by a small number €). We cannot expect to find an optimal policy; it may not even exist
for this case. Nevertheless, we prove the following important result using the generalized
MDP framework of Szepesvari and Littman (1996): if a reinforcement learning algorithm
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that approximates the optimal value function converges to the optimal value function in
the MDP model, then in the corresponding e-MDP the asymptotic distance of the optimal
value function and its approximation is bounded, and the bound is proportional to € under
the same conditions. The main result of our paper is as follows: If an RL algorithm can
learn an optimal policy in an MDP, then it is capable of learning a near-optimal policy in
an e-MDP as well.

We shall illustrate e-MDP in conjunction with a novel reinforcement learning algorithm
called event-learning (LOrincz et al., 2002). In typical RL formulations, the agent learns an
optimal policy that prescribes the optimal action for any given state. This kind of policy
has much the same advantages and drawbacks as conditioned reflexes: it can solve difficult
tasks, but it may be sensitive to minor changes in the environment. Furthermore, new
parameter settings for the same problem may involve having to restart learning from the
beginning. In event-learning, the policy selects desired successor states instead of selecting
actions. Consequently, not state-action values but the values of state-state pairs (events) are
learned. The task of bringing the agent to the desired successor state is passed to a lower-
level controller. It has been shown elsewhere (Szita et al., 2002) that event-learning with
a particular non-Markovian controller, the SDS controller (Szepesvari and Lérincz, 1997),
belongs to the e-MDP problem family under certain conditions. Convergence of learning
of e-MDPs is studied via computer simulations on the two-link pendulum problem. These
simulations intend to demonstrate that e-MDPs can be applied, e.g., to various models with
uncertain and/or noisy state description.

We will argue that e-MDPs can be related to RL methods making use of control ideas
(Doya, 1996, 2000, ten Hagen, 2001) and to module-based RL (Maes, 1992, Mahadevan and
Connell, 1992, Mataric, 1997, Kalmar et al., 1998).

The article is organized as follows. Section 2 provides an overview of MDPs and gener-
alized MDPs. We introduce the concept of generalized e-MDPs and the appropriate gen-
eralized Q-learning in Section 3 and prove the main ‘convergence’ theorem for generalized
e-MDPs. In Section 4 an overview of event-learning is provided. Section 5 contains illustra-
tions of the e-MDP model within the event-learning framework using the two-link pendulum
problem. Conclusions are drawn in Section 6. The paper concludes with an appendix pro-
viding mathematical details on e-MDPs, including the proof that event-learning algorithm
augmented with an adapting non-Markovian controller can form an e-MDP problem.

2. Preliminaries

To begin with, we recall the definition of a Markov Decision Process (MDP) (Puterman,
1994). A (finite) MDP is defined by the tuple (X, A, R, P), where X and A denotes the
finite set of states and actions, respectively. P: X x A x X — [0,1] is called the transition
function, since P(x,a,y) gives the probability of arriving at state y after executing action
a in state z. Finally, R : X x A x X — R is the reward function, R(z,a,y) gives the
immediate reward for the transition (z,a,y).

2.1 Markov Decision Processes with the Expected Reward Criterion

The ultimate goal of decision making is to find an optimal behavior subject to some op-
timality criterion. Optimizing for the infinite-horizon expected discounted total reward is
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one of the most studied such criteria. Under this criterion, we are trying to find a policy
that maximizes the expected value of » ;% ~try, where 7 is the immediate reward in time
step t and 0 <~ < 1 is the discount factor.

A standard way to find an optimal policy is to compute the optimal value function
V* : X — R, which gives the value of each state (the expected cumulated discounted
reward with the given starting state). From this, the optimal policy can be easily obtained:
the ‘greedy’ policy with respect to the optimal value function is an optimal policy (see e.g.,
Sutton and Barto, 1998). This is the well-known value-function approach (Bellman, 1957).

Formally, the optimal value function satisfies the following recursive system of equations
known as Bellman equations (Bellman, 1957):

V*(z) = mgxz P(z,a,y) (R(z,a,y) +yV*(y)), forall z e X. (1)

Besides the state-value function, some other types of value functions can be defined as
well. One example is the state-action-value function Q* : X x A — R, which satisfies

@ 0.0) = 3 Plavag) (Rloa.9) + ymax@ () ) . forall v € X
Yy

in the optimal case. @Q*(z,a) has the meaning “the expected value of taking action a
in state x while following the optimal policy”. Here the values of state-action pairs are
learned instead of state values, which enables model-free learning (Watkins, 1989). The
corresponding learning algorithm is called Q-learning.

It is well known that for v < 1, Equation 1 has a unique solution. The Bellman equations
can be rewritten using operators: V* is the (unique) fixed point of operator 7' (called the
dynamic programming operator), where

[TV](x) = max )  P(x,a,y) (R(z,a,y) +7V(y)) -

Since T' is a contraction in max-norm, V* can be approximated by iteratively applying T’
to an arbitrary initial value function.

2.2 Generalized Markov Decision Processes

Szepesvari and Littman (1996) have introduced a more general model. Their basic concept
is that in the Bellman equations, the operation Zy P(x,a,y)... (i.e., taking expected value
w.r.t. the transition probabilities) describes the effect of the environment, while the opera-
tion max, ... describes the effect of an optimal agent (i.e., selecting an action with maximum
expected value). Changing these operators, other well-known models can be recovered.

A generalized MDP is defined by the tuple (X, A, R, €D, ), where X, A, R are defined
as above; P : (X x Ax X - R) - (X x A — R) is an “expected value-type” operator
and @ : (X x A - R) - (X — R) is a “maximization-type” operator. For example,
by setting (BS)(z,a) = >°, P(z,a,y)S(z,a,y) and (QQ)(z) = max, Q(z,a) (where S :
(X xAxX)—Rand Q: (X x A) — R), the expected-reward MDP model appears.

The task is to find a value function V* satisfying the abstract Bellman equations:

Vi) = QP (R(x,a,y) +vV*(y)), forall z e X.
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or in short form:
V' =QPB(R+~V").

The optimal value function can be interpreted as the total reward received by an agent
behaving optimally in a non-deterministic environment. The operator € describes the
effect of the environment, i.e., how the value of taking action a in state x depends on the
(non-deterministic) successor state y. The operator @) describes the action-selection of an
optimal agent. When 0 < v < 1, and both @ and () are non-expansions, the optimal
solution V* of the abstract Bellman equations exists and it is unique.

The great advantage of the generalized MDP model is that a wide range of models,
e.g., Markov games (Littman, 1994), alternating Markov games (Boyan, 1992), discounted
expected-reward MDPs (Watkins and Dayan, 1992), risk-sensitive MDPs (Heger, 1994),
exploration-sensitive MDPs (John, 1994) can be discussed in this unified framework. For
details, see the work of Szepesvari and Littman (1996).

2.2.1 Q-LEARNING IN GENERALIZED MDPs

As shown by Szepesvari and Littman, the analogue of the Q-learning algorithm (Section 2.1)
can be defined in generalized MDPs as well (Szepesvari and Littman, 1996). Furthermore,
convergence results for this general algorithm can also be established.

In this subsection we review the generalized algorithm. We restrict ourselves to models
where operator (P is the expected value operator, i.e., (Dg)(z,a) = >, P(z,a,y)9(z,a,y).
This simplifies the definition considerably, and for the purposes of this article this special
case is sufficient. The general definition can be found in the work of Szepesvari and Littman
(1996).

In Q-learning, for the optimal state-action value function Q*, Q* = @ (R + V™) holds.
Note that Q* is the fixed point of operator K, which is defined by

KQ= @R +1Q0Q). (2)

The generalized Q-learning algorithm starts with an arbitrary initial value function Q,
and then uses the following update rule:

Qtt1(xt, a) = (1 — (e, ar)) Qe (@, ar) + a (e, ar) (re + v(QQ) (yt)), (3)

where z; is the current state, a; is the selected action, ¥ is the resulting state, 7, is the
gained reward, and «ay(z,a) is the learning rate at time t. y; is selected according to the
probability distribution P(x¢,at,.) and @ is the actual estimate of Q*.

It has been proven that under appropriate conditions on the order of updates and the
learning parameters ay(z,a), the above Q-learning algorithm converges to the optimal Q-
value function. The proof is based on a theorem that states the convergence of a specific
asynchronous stochastic approximation. Both theorems are cited in Appendix A.

3. MDPs in Varying Environments

In this section we propose an extension of the MDP concept, where transition probabilities
are allowed to vary by time. However, without restrictions, such a model would be too
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general to establish useful theorems. Therefore we restrict ourselves to cases when the
variation over time remains small.

We say that the distance of two transition functions P and P’ is e-small (¢ > 0), if
|P(z,a,.) — P'(z,a,.)||r, < ¢ forall (z,a), ie, > [P(x,a,y) — P'(z,a,y)| < e for all
(z,a) and subscript L; denotes the L1 norm. (Note that for a given state z and action a,
P(z,a,y) is a probability distribution over y € X.)

A tuple (X, A, {P}, R) is an e-stationary MDP (Kalmaér et al., 1998) with € > 0, if there
exists an MDP (X, A, P, R) (called the base MDP) such that the difference of the transition
functions P and P; is e-small for all t =1,2,3,....

The simplest example of an e-MDP is possibly an ordinary MDP, superimposed by
additive noise in its transition function as P'(z,a,y) = P(x,a,y) + J in each step, where &
is a small amount of noise. A more general case will be discussed within the event-learning
framework.

In the ordinary MDP model, the dynamic programming operator 7" is used to find the
optimal value function V*. T at time step t is given by

[TtV](Z‘) = m[?‘xzpt(xaavy) (R(z,a,y) +7V(y)) : (4)
Y

Of course, the iteration V;11 = T3V, does not necessarily have a fixed point. The most
that we can expect to find is a close approximation of the optimal value function of the
base MDP, i.e., a V such that |V — V*|| < & with some & > 0.

In Section 3.2 we show that such an approximation with ¢ o & can be found (Theo-
rem 3.3).

3.1 Generalized s-MDPs

As with regular MDPs, e-stationary MDPs can also be generalized with general environment
and agent operators. The resulting model inherits the advantages of both approaches of
generalization: a broad scale of decision problems can be discussed simultaneously, while
the underlying environment is allowed to change over time as well. This family of MDPs
will be called generalized e-stationary MDPs or e-MDPs for short.

Given a prescribed € > 0, a generalized e-MDP is defined by the tuple (X, A, R, {P,}, {&),}),
with @, : (X xAxX - R) - (X xA - R)and Q;, : (X x4 —- R) —
(X = R), t = 1,2,3,..., if there exists a generalized MDP (X, A, R,, Q) such that
limsup;_, [|@,D; — XP|| < e. Note that the last assumption requires that the asymp-
totic distance of the corresponding dynamic-programming operator sequence 7; and T is
small.

Note also, that the given definition is indeed a generalization of both concepts: setting
e=0,, =P and Q, =  for all ¢ yields a generalized MDP, while setting (P,5)(z,a) =
>y Pz, a,y)S(z,a,y) and (Q),Q)(x) = max, Q(z,a) for all ¢ simplifies to an e-stationary
MDP.

1. Unless otherwise noted, ||.|| denotes the max-norm.
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3.2 Asymptotic Boundedness of Value Iteration

In this section we prove a generalized form of the convergence theorem of Szepesvari and
Littman’s (for the original theorem, see Appendix A). We do not require probability one
uniform convergence of the approximating operators, but only a sufficiently close approxima-
tion. Therefore the theorem can be applied to prove results about algorithms in generalized
e-MDPs. Our definition of closeness both for value functions and dynamic-programming
operators is given below.

Let X be an arbitrary state space and denote by B(X) the set of value functions. Let
T : B(X) — B(X) be an arbitrary contraction mapping with unique fixed point V*, and
let 73 : B(X) x B(X) — B(X) be a sequence of random operators.

Definition 3.1 A series of wvalue functions V; k-approrimates V with x > 0, if
limsup; ., [|Vi = V|| < & with probability one.

Definition 3.2 We say that T; k-approximates T at V over X, if for any Vi and for
Vigr = Ti(Vi, V), Vi k-approxzimates TV over X with probability one.

Note that 7; may depend on the approximated value function V', unlike the previous
example in Equation 4. k-approximation of value functions is, indeed, weaker (more general)
than probability one uniform convergence: the latter means that for all €,§ > 0 there exists
a tp such that

Pr(sup([Vi = V) < 6) > 1 -,
t>tr
whereas an equivalent form of k-approximation is that for all € > 0 there exists a T such
that
Pr(sup([Vi = V) < #) > 1—c,

t>tr

and & is fixed.

Theorem 3.3 Let T be an arbitrary mapping with fized point V*, and let T; k-approzimate
T at V* over X. Let Vy be an arbitrary value function, and define Vi1 = Ty (Vy, Vi), If
there exist functions 0 < Fi(x) <1 and 0 < Gy(x) < 1 satisfying the conditions below with
probability one

1. for allUy,Us €V and all x € X,

| T:(Ur, V*)(2) = Ty(Ua, V*)(2)| < Ge()|Ur(2) — Ua(2)]

2. for all U,V €V and all x € X,

|Tt(U, V*)(z) — Ty(U, V)(:L’)‘ < Fi(x) srlp

V(') = V()]

3. for all k > 0, [[}_; Ge(x) converges to zero uniformly in x asn increases;? and,

2. Note that the convergence of an infinite product implies that the terms converge to one.
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4. there exists 0 <y < 1 such that for all x € X and sufficiently large t,
Fy(z) <y(1 = Gi(x)) w.p.1.

2

then V; k'-approximates V* over X, where k' = = K-

Proof The proof is similar to that of the original theorem. First we define the sequence of
auxiliary functions U by the recursion Uy = Vpy, U1 = T (U, V*). Since T} k-approximates
T at V*, limsup,_, . ||Us — V*|| < &, i.e., for sufficiently large ty and ¢t > to, ||[U; — V*|| < k.
Let

0t(x) = [Up(z) — Vi(z)]-

For t > tg we have

or1(z) = |Upra1(x) = Vigr(z)]
T (Ur, V) (2) —

T (Vi, Vi) ()]
Te(Us, V) () = To(Vi, V) (@) + [Te(Ve, V) () = Ti(Ve, Vi) ()]
Gi(@)|Ui(x) = Vi(2)| + Fi () [[V* = Vi
Gi(@)|Ui(x) = Vi(2)| + F () (IV* = Ul + U = Vall)
Gi(2)0r(2) + Fy()(k + [|6¢]])

t

IA AN IA

Then, by Lemma C.1 (found in the appendix), we get that limsup,_, . ||| < i—z/{. From

this, lim sup,_, . ||V; — V*|| < }J_r_”;,i + K= %H' m

3.3 Q-learning in Generalized ¢-MDPs

Consider a generalized e-MDP. We assume again that @, is an expected value operator for
all ¢, ie., (B,9)(z,a) = Zy Pi(z,a,y)g(x,a,y). By applying Theorem 3.3, we show that
the generalized Q-learning algorithm described by iteration

Qir1(ze,ar) = (1 — ay(e, ap)) Qe (g, ap) + (e, ar) (e + v(QQ4)) (Te),

where ¢ is selected according to the probability distribution P;(xy, at, .), still finds an asymp-
totically near-optimal value function. To this end, we prove a lemma first:
Let us define T3(Q', Q)(x, a) in the following fashion:

(1 —a(z,0)Q (z,a) + ay(z,a)(rs + v(QRQ))(4:), if x =z and a = ay,
Q'(r,a) otherwise,

T,(Q,Q)(z,a) = {
(5)

where g; is sampled from distribution P (z¢,ay,.), and 411 = J¢.
We make the following assumption on the generalized e-MDP:
Assumption A.

. i -ex i
1 is a non-expansion,

2. ) does not depend on R or P,
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3. 1 has a finite variance and E(r¢|xy, a;) = R(xy, ay).

These conditions are of technical nature, and are not too restrictive: they may hold for a
broad variety of environments.

Lemma 3.4 Let M = max, , Q" (z,a) — ming . Q*(z,a). If Assumption A holds, then the
random operator sequence Ty k-approximates K at Q*, with Kk = yMe.

Proof Define the auxiliary operator sequence

, _ {(1 —ay(z,0)Q (z,a) + au(z,a)(re + v(QQ))(ye), if =24 and a = ay,
T(Q,Q)(x,a) =9 .
Q' (z,a) otherwise,

(6)
where 1, is sampled from distribution P(zy,a¢,.), and x441 = @. Note that the only
difference between T; and Tt is that the successor states (y; and 7;) are sampled from
different distributions (P and P;). By Lemma B.1, we can assume that Pr(y; = 4;) > 1 —¢,
and at the same time y; is sampled from P(zy,a,.) and g; from Py(x, ay,.) (y; and g, are
not independent from each other).

Note also that the definition in Equation 6 differs from that of Equation 5, because 41
is not necessarily the successor state of z;. Fortunately, conditions of the Robbins-Monro
theorem (Szepesvari, 1998) do not require this fact, so it remains true that 7; approximates
K at Q* uniformly w.p.1.

Let Qo = Qg be an arbitrary value function, and let

Qi+1 =T (Q:, Q)

and
Qrr1 = Ty(Qr, Q")

Recall that r-approximation means that lim sup,_, 1Q:—Q*|| < k w.p.1. Since ||C~2t—Q*~|| <
1Qr — Q]| + |Qr — Q*|| and ||Q: — Q*|| — 0 w.p.1, it suffices to show that limsup;_, . [|Q: —

Q|| < k w.p.1l.
Clearly, for any (z,a),

1Qt+1(2,a) — Qus1(z,a)] < maX<(x Jnax )!Qt(af, a) — Qi(z,a)|,

(1- at)‘@t(xta ar) — Qi(xe, ar)| +vou | QQ* () — ®Q*(yt)‘>

IN

max<||6~2t - Qt||7

(1= a1 Gr — Qull + 7l Qi) — @ (o .>u),

where we used the shorthand ay for at(xt,atN). Since this holds for every |@t+1(1‘,a) -
Qt+1(x,a)l, it also does for their maximum, ||Q¢+1 — Q¢+1]|- As mentioned before, Pr(g; =
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yr) > 1—e. g =y, |Q*(Gt, ) — Q" (31, .)|| = 0. Otherwise the only applicable upper bound
is M. Therefore the following random sequence bounds ||Q; — Q|| from above: ag := 0,

Aty = (1 — Oét)(lt + aihy, (7)

where

b vM  with probability ¢,
"o with probability 1 — €.

It is easy to see that Equation 7 is a Robbins-Monro-like iterated averaging (Robbins and
Monro, 1951, Jaakkola et al., 19~94). Therefore a; converges to E(h;) = yMe w.p.1.
Consequently, limsup,_, ., ||Q¢ — Q|| < yMe, which completes the proof. [ |

Theorem 3.5 Let Q* be the optimal value function of the base MDP of the generalized
e-MDP, and let M = max,,Q*(z,a) — ming , Q*(z,a). If Assumption A holds, then
limsup,_, . [|Q: — Q| < %’}/ME w.p.1, i.e., the sequence Q; K'-approximates the opti-
mal value function with k' = %’yM&.

Proof By Lemma 3.4, the operator sequence k-approximates K (defined in Equation 2)
at Q* with k = yMe. The proof can be finished analogously to the proof of Corollary A.3:
with the substitution X « X x A, and defining G; and F} as in Equations 11 and 12, the
conditions of Theorem 3.3 hold, thus proving our statement. |

4. Illustration: the Event-learning Algorithm

Event-learning is a novel learning algorithm, where optimality can be proved by the gen-
eralized e-MDP theory. Those readers who are familiar with event-learning can skip the
following introductory material and go directly to Section 4.2.

Most reinforcement learning algorithms learn policies that are mappings from states to
actions, that is, they are telling which action to take in a given state. The idea behind
event-learning (E-learning,® for short) is that the agent should learn a policy that (in a
given state) indicates a new target state. The target is then approached by a lower-level
controller. This setting is natural in real physical environments, but also applicable in non-
physical problems by defining a simple controller. For example, in a labyrinth, the controller
may know that it can get from cell (2,3) to (2,4) by the action ‘south’. (The controller can
be a ‘dummy’; it does not need to know the path between two distant states.)

Using a lower-level controller means that the agent learns ‘subgoals’ it should select
instead of learning ‘actions’. In event-learning, desired subgoals can be seen as ‘actions’.
Naturally, a subgoal is useful only if (1) it leads toward the overall goal and (2) the controller
can accomplish this subgoal with high probability. A major advantage of this approach
is that it can be made robust against changes in the environment: actions may change
considerably to accommodate changes of the environment, while learned subgoal sequences
may remain valid. The concept of E-learning is depicted in Figure 1.

3. Capital letter E is used to distinguish E-learning from internet based concepts using prefix lower case
letter ‘e’.
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Figure 1: The diagram of E-learning, compared to policy iteration

In this section we briefly overview the event-learning scheme. First, we formalize the
problem, then we introduce the E-learning algorithm and a robust controller. After this, we
apply the theory of generalized e-MDPs to obtain theoretical performance guarantees for
our algorithm. Finally, we provide some computer simulations to show the practical utility
of our approach.

4.1 Formal Description of Event-learning

Similarly to most other RL algorithms, the E-learning algorithm (Lérincz et al., 2002) also
uses a value function, the event-value function E : X x X — R. Pairs of states (z,y) and
(:L‘,yd) are called events and desired events, respectively. For a given initial state z, let us
denote the desired next state by y%. The eq = (, y?) state sequence is the desired event, or
subtask, E(zx, yd) is the value of trying to get from actual state x to next state y. State y
reached by the subtask could be different from the desired state y®. One of the advantages
of this formulation is that one may—but does not have to—specify the transition time:
Realizing the subtask may take more than one step for the controller, which is working in
the background.

This value may be different from the expected discounted total reward of eventually
getting from z to y?. We use the former definition, since we want to use the event-value
function for finding an optimal successor state. To this end, the event-selection policy
7F X x X — [0,1] is introduced. 7 (z,y?) gives the probability of selecting desired state
y? in state z. However, the system usually cannot be controlled by “wishes” (desired new
states); decisions have to be expressed in actions. This is done by the action-selection policy
(or controller policy) 74 : X x X x A — [0,1], where 74 (x, 3%, u) gives the probability that

the agent selects action u to realize the transition z — 1.

4. Note that E(z,y?) depends on both 7% and 7##. When no ambiguity may arise we will not explicitly
show these dependencies.
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An important property of event learning is the following: only the event-selection policy
is learned (through the event-value function) and the learning problem of the controller’s
policy is separated from E-learning. From the viewpoint of E-learning, the controller policy
is part of the environment, just like the transition probabilities.

The event-value function corresponding to a given action selection policy can be ex-
pressed by the state value function:

Bys pal@1f) = o mt (e pruy( (2.) + Ve 24 (1) )

and conversely:
E d d
Voo pa(z) =Y 7% (2,4 Ere pal2,y?).
yd
From the last two equations the recursive formula

E.e a(z,y?) Zw (z,y4, uZPmuy( :cy—i—’wa (y,z EE Ay, z )>
(8)

can be derived. Denote by p(y|z,y?) the probability that given the initial state 2 and goal
state 3¢, the controller and the environment drive the system to state y in one step. Clearly,

plyla,y?) Zﬂ (2,9, u)P(,u,y). 9)

Note that in an on-line process 31,3‘11,7'1, . ,st,sf,rt, ... (where sy, sgl and r; denote the
actual state, the desired (planned) state and the immediate reward at time step ¢), the state
s¢41 is sampled from distribution p(.|s¢, st) Using Equation 9, Equation 8 can be rewritten
in the following form:

Epe (@, y?) Zp (yla,y” ( (:r,y)+'YZ7TE(y,zd)EﬂEmA(y,zd)>-
2d

Definition 4.1 For a fized controller policy ™, an event-value function E” 4 is optimal if
it satisfies
E::—A (ZL‘, yd) Z ET('E,ﬂ'A (1:7 yd)

for all z,y* and ©F.

It can be shown that E*, satisfies the following Bellman-type equations:
Bra(wy’) = Y '@y’ w) Y Pla,uy)(Rl,y) +9V/a(y), where
u y

Vi (@)

max E* 4 (y, 2%

Remark 4.2 It is easy to see that max,a V*y(z) = V*(z). A controller policy Tl s
optimal, if it maximizes the l.h.s. of the expression.

An optimal event-value function with respect to an optimal controller policy will be
denoted by E*.
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4.2 Formalizing Event-Learning in the Generalized e-MDP Framework

In most applications we cannot assume that a time-independent optimal controller policy
exists. To the contrary, we may have to allow the controller policy to adapt over time. In this
case, we may try to require asymptotic near-optimality. This is a more realistic requirement:
in many cases it can be fulfilled, e.g., by learning an approximate inverse dynamics (Fomin
et al., 1997) in parallel with E-learning. Or alternatively, the controller policy itself may
be subject to reinforcement learning (with a finer state space resolution), thus defining a
modular hierarchy. Another attractive solution is the application of a robust controller like
the SDS controller (Szepesvéri and Lérincz, 1997), which is proven to be asymptotically
near-optimal. Furthermore, the SDS controller has short adaptation time, and is robust
against perturbations of the environment.

As a consequence of the varying environment (recall that from the viewpoint of E-
learning, the controller policy is the part of the environment), we cannot prove convergence
any more. But we may apply Theorem 3.3 to show that there exists an iteration which still
finds a near-optimal event-value function. To this end, we have to re-formulate E-learning
in the generalized e-MDP framework.

One can define a generalized e-MDP such that its generalized Q-learning algorithm is
identical to our E-learning algorithm: Let the state set and the transition probabilities of
the E-learning algorithm be defined by X and P, respectively. In the new generalized e-
MDP the set of states will also be X, and since an action of the learning agent is selecting
a new desired state, the set of actions A is also equal to X. (Note that because of this
assignment, the generalized Q-value function of this model will be exactly our event-value
function E.) The definition of the reward function R is evident: R(x,y?,y) gives the reward
for arriving at y from z, when the desired state was y?. Let (®,FE)(z) = max,q E(z,y?),
independently of ¢, and let (@tS)(fn,yd) = Zypt(y|x,yd)5’(fn,yd,y), where pt(y|1:,yd) =
S iz, yd u) P(x,u,y) (see Equation 9).

Finally, we assign the operators § and @ as (QFE)(r) = max, F(z, y?) and
(@BS)(z,y") = X, X, 7 (@, y% )Pz, u,9)S(z, 5%, y).

The generalized Q-learning algorithm of this model uses the iteration

Eypa (s, stiq) = (1= ay(se, s81)) Er(se, i) + cu(se, 5841 (Tt +ymax Ey(s41, 8d)> :
S

This is identical to the iteration defined by Lérincz et al. (2002). Here s; is the sequence
containing the realized states at time instant t and sf,; is the sequence containing the
desired state for time instant ¢ + 1.

4.3 Event-Learning with the SDS Controller

In this subsection we review a particular controller for continuous dynamical systems, the
static and dynamic state (SDS) feedback controller proposed by Lérincz and colleagues
(Szepesvéri et al., 1997, Szepesvéri and Lérincz, 1997, for more details, see Appendix). It
is shown that it can be easily inserted into the E-learning scheme.

The SDS control scheme gives a solution to the control problem called speed field track-
ing® (SFT) in continuous dynamical systems (Hwang and Ahuja, 1992, Fomin et al., 1997,

5. The term, ‘velocity field tracking’, may represent the underlying objective of speed field tracking better.
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Szepesvari and Lorincz, 1998). The problem is the following. Assume that a state space X
and a velocity field v% : X — X are given. At time ¢, the system is in state z; with velocity
v;. We are looking for a control action that modifies the actual velocity to ¢#(x;). The
obvious solution is to apply an inverse dynamics, i.e., to apply the control signal in state
x(t) which drives the system into v?(z(t)) with maximum probability:

Ut(fl)t, ,Uztfi) = (I)(xb Uf)

Of course, the inverse dynamics ®(z,v{) has to be determined some way, for example
by exploring the state space first.

The SDS controller provides an approximate solution such that the tracking error, i.e.,
|v¢(2¢) —v¢|| is bounded, and this bound can be made arbitrarily small. This represents con-
siderable advantage over approximations of the inverse dynamics, which can be unbounded
and therefore may lead to instabilities when used in E-learning.

Studies on SDS showed that it is robust, i.e., capable of solving the SF'T problem with
a bounded, prescribed tracking error (Fomin et al., 1997, Szepesvéri et al., 1997, Szepesvéari
and Lérincz, 1997, Szepesvari, 1998). Moreover, it has been shown to be robust also against
perturbation of the dynamics of the system and discretization of the state space (Lérincz
et al., 2002). The SDS controller fits real physical problems well, where the variance of the
velocity field v is moderate.

The SDS controller applies an approximate inverse dynamics <i>, which is then corrected
by a feedback term (for the sake of convenience, we use the shorthand v = v%(2;)). The
output of the SDS controller is

t

ut(:ﬁt,vf) = @(xt,vf) + A/ w,dT,
7=0

where

wy = O(zy,0%) — d(2r,v;)
is the correction term, and A > 0 is the gain of the feedback. It was shown that under
appropriate conditions, the eventual tracking error of the controller is bounded by O(1/A).
The assumptions on the approximate inverse dynamics are quite mild: only sign-properness
is required (Szepesvari et al., 1997, Szepesvari and Lérincz, 1997)° Generally, such an
approximate inverse dynamics is easy to construct either by explicit formulae or by observing
the dynamics of system during learning.

The above described controller cannot be applied directly to E-learning, because contin-
uous time and state descriptions are used. Therefore we have to discretize the state space,
and this discretization should satisfy the condition of ‘sign-properness’. Furthermore, we
assume that the dynamics of the system is such that for sufficiently small time steps all
conditions of the SDS controller are satisfied.” Note that if time is discrete, then prescribing
desired velocity v? is equivalent to prescribing a desired successor state y® (Lérinez et al.,

6. Sign-properness imposes conditions on the sign but not on the magnitude of the components of the
output of the approximate inverse dynamics.

7. Justification of this assumption requires techniques of ordinary differential equations and is omitted here.
See also (Barto, 1978).
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2002). Therefore the controller takes the form

¢
(e, yf') = (e, yf) + AZWT - At,

T7=0

where
Wr = (I)(xnyﬁ) - q>(xT7yT)7

and At denotes the size of the time steps. Note that x; and y, (therefore w;) change at
discretization boundaries only, i.e., when an event is observed. Therefore, event-learning
with the SDS controller has more relaxed conditions on update rate than other reinforcement
learning methods (Lérincz et al., 2002).

The above defined controller can be directly inserted into event-learning by setting

1 if a = (2, yd),

iz, yfsa) = { (10)

0 otherwise.

Note that the action space is still infinite.

Corollary 4.3 Assume that the environment is such that 3 |P(z,u1,y) — P(z,uz,y)| <
Klluy — usl|| for all x,y,uy,us.® Let € be a prescribed number. For sufficiently large A and
sufficiently small time steps, the SDS controller described in Equation 10 and the environ-
ment form an e-MDP. (The proof can be found in Appendiz D.)

Consequently, Theorem 3.5 is applicable.

5. Computational Demonstrations: The Two-link Pendulum

For the computer simulations, the two-segment pendulum problem (e.g., Yamakita et al.,
1995, Aamodt, 1997) was used. The pendulum is shown in Figure 2. It has two links, a
horizontal one (horizontal angle is «y), a coupled vertical one (vertical angle is ag) and a
motor that is able to rotate the horizontal link in both directions. Parameters of computer
illustrations are provided for the sake of reproducibility (Tables 1-3). The state of the
pendulum is given by aq, aso, &g and dso. For the equations of the dynamics see, e.g., the
related technical report (Lorincz et al., 2002).

The task of the learning agent was to bring up the second link into its unstable equilib-
rium state and balance it there. To this end, the agent could exert torque on the first link
by using the motor. The agent could finish one episode by (1) reaching the goal state and
stay in it for a given time interval (see Table 2) (2) reaching a time limit without success (3)
violating predefined speed limits. After an episode the agent was restarted from a random
state chosen from a smaller but frequently accessed domain of the state space.

The theoretically unbounded state space was limited to a finite volume by a supervising
mechanism: if the agent violated a predefined angular speed limit, a penalty was applied
and the agent was restarted. When the agent was in the goal state, reward zero was applied,

8. Note that the condition on P(z,.,y) is a kind of Lipschitz-continuity.
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Figure 2: The Two-link Pendulum
Upper subfigure: the pendulum; lower subfigures: a successful episode shown in
three consecutive series.

—0

Name of parameter Value Notation
Mass of horizontal link 0.82kg my

Mass of vertical link 0.43kg mo
Length of horizontal link 0.35m I
Length of vertical link 0.3m la
Friction 0.005 KTrict
Time step 0.00l ms | 7
Interaction time (time between discretizations) | 0.005 ms

Table 1: Parameters of the Physical Model

otherwise it suffered penalty —1. An optimistic evaluation was used: value zero was given
for every new state-state transition.

State variables were discretized by an uneven ‘ad hoc’ partitioning of the state space.
A finer discretization was used around the bottom and the top positions of the vertical
link. The controller ‘sensed’ only the code of the discretized state space. We tried different
discretizations; the results shown here make use partitioning detailed in Table 3.

Name of parameter Value
Reward in goal state 0
Penalty in non-goal state | -1/interactions
Penalty if &1 > 1000 -10 and restart
Penalty if & > 1500 -10 and restart
Prescribed Standing Time | 10 s
Goal state if g < £+ 12°

Gg < £ 60°/sec

Table 2: Reward System
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Name of parameter Value Notation
Learning rate 0.02 o
Discount factor 0.95 ¥
SDS feedback gain 0.0-10.0 A
SDS weighting factor 0.9 asps
Eligibility decay 0.8 A
Eligibility depth 70 steps

Number of partitions in «aq, as, &1 and do 1, 16, 6, 14

Base control actions 4+ 1.5 Nm
Average frequency of random control action | 2 Hz

Maximal episode length 60 sec

Table 3: Learning Parameters

In the experiments, the E-learning algorithm with the SDS controller was used. The
inverse dynamics had two base actions, which were corrected by the SDS controller. First
the agent learned the inverse dynamics by experience: a random base action was selected
then the system was periodically restarted in 10 second intervals from random positions.
In every time step, the 4-dimensional state vector of the underlying continuous state space
was transformed into a 4-dimensional discrete state vector according to the predefined
partitioning of the state space dimensions. In this reduced state space, a transition (event)
happens if the system’s trajectory crosses any boundary of the predefined partitioning.
When no boundaries were crossed, the agent experienced an (xy,x;) transition or event
(the agent remained in the same state). The system recorded how many times an event
happened for the different base actions. The inverse dynamics for an event are given by
the most likely action when the event occurs. After some time, the number of the newly
experienced transitions was not increased significantly. Then we stopped the tuning of the
inverse dynamics and started learning in the RL framework (see Table 3 for the learning
parameters). To accelerate learning, eligibility traces were used. The agent could select
only the experienced events from a given position. Computations simulated real time.

5.1 Event-learning in Changing (Perturbed) Environments

Event-learning can integrate the benefits of controllers into reinforcement learning. This is
illustrated in the experiment below (see also Loérincz et al., 2002).

From the viewpoint of the event-value function, we may expect in perturbed environ-
ments that possibly large changes in the environment are reduced by the robust controller.
This means that a fixed event-value function could be close to optimal for considerable
changes in the environment.

To examine this behavior, event-learning and the well-known SARSA method was op-
timized for the default mass of the small arm.” After switching learning off, the mass
parameter was perturbed, which modified the dynamics of the system. Figure 3 depicts the
results of the computer simulations. The figure shows the average task completion time for

9. The parameters for SARSA were taken from the work of Aamodt (1997) and can be considered near-
optimal for the SARSA implementation, which was also taken from the same source.
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Figure 3: Task Completion Time as a Function of Change of Mass.
Thick solid line: state-action controller pre-trained by SARSA. Thin dotted line:
E-learning with SDS (A =1).

the two methods as a function of the mass change. The horizontal axis of the figure shows
the change of the mass of the second link (in kilograms). With lighter (heavier) mass, the
state-action policy finishes the task sooner (later). Beyond about 0.1 kg (approx. a 25%)
mass increase sharp deterioration takes place and performance of the state-action policy
drops suddenly.

In contrast, E-learning with SDS starts to deteriorate only at around doubled mass.
Small changes of the mass do not influence the task completion time significantly.

5.2 Convergence to the Neighborhood of the Optimal Value Function

Convergence properties of the event-value function for the two-link pendulum are shown in
Figure 4. The experiment concerns crude discretization of the state space. No change of
the parameters of the pendulum are made. However, crude discretization of the environ-
ment and a robust controller, which is part of the environment, exhibits itself as a varying
environment.

The theorems of Section 3 concern supremum norm. Two curves about the supremum
norm are shown in Figure 4A, one with the SDS controller turned off (A = 0) and another
one with the SDS controller on A = 1.5. Convergence occurs for learning with the SDS
controller ‘on’.!” Interestingly, convergence is faster with the SDS controller than without
it. This is a consequence of the larger variety of actions available when the robust controller
is applied.

10. Note that the optimal value function is not available and the norm was computed versus the last state
of the experiment.
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A: Convergence of event value functions in supremum norm. Supremum norm
was computed against event values belonging to the last time step. Supremum
norm, in turn, is zero for the last point (not shown).

B: Convergence of event value functions in square norm. Square norm was com-
puted by summing about 10* terms. Square norm was computed against event
values belonging to the last time step. Square norm values beyond time 9 x 10°
are underestimated.

C: Average time of performing task and standard deviation of the duration of
these trials during course of learning. Note the different scales of the left hand
side and the right hand side sub-figures.

The square norm against the last event-value function of this series of experiments
(Figure 4B) may provide insight into the performance of the two-link pendulum. The
performance of the pendulum can be characterized by the average task duration and the

standard

deviation of task duration during the course of learning (Figure 4C). There is a

clear advantage for the A = 1.5 case against learning without the robust controller.
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Figure 5: Choosing an Optimal Feedback Gain.
The figure demonstrates that an optimal feedback gain exists for SDS. Because of
the stochastic nature of the process, results depend on random factors. Therefore
we calculated every result for lower A values 3 times with different random seeds.
In experiments with coarser discretizations, RL was able to learn the task only
for non-zero A values.

5.3 Optimal Feedback Value for the SDS Controller

By Corollary 4.3, we can expect that the time needed for convergence decreases by in-
creasing the gain factor A. Indeed, Figure 5 shows that an optimal A exists. At higher
gain factors, the discretization introduces instabilities: The SDS “overshoots” within dis-
cretization domains. Therefore performance quickly deteriorates for large A values. Finer
discretization and/or more frequent observations are needed to improve performance: for
larger A values the update rate needs to be increased.

6. Conclusions

We have introduced a new model called an e-MDP, in which the transition probabilities
may change over time as long as the change remains small (e-small). The following result—
using the generalized MDP framework of Szepesvari and Littman (1996)—was proven: if
an algorithm converges to the optimal value function in an MDP, then in the corresponding
e-MDP the asymptotic distance of the optimal value function and its approximation is
bounded, and the bound is proportional to € under the same conditions. In other words, an
RL algorithm that works well for fixed environments also works well for slightly perturbed
environments.
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Although in the e-MDP model the environment has been allowed to change, it still has
to remain within a small neighborhood of some fixed model. This could be extended so that
the environment may change (drift) arbitrarily, provided that the drift remains sufficiently
slow. It is expected that the algorithm, which is suitable for a fixed environment, may
still be able to track a near optimal policy. However, the rigorous proof of this claim is
not entirely straightforward; the convergence rate of the algorithm needs to be taken into
account.

The theoretical framework of the e-MDP model was used to treat a novel RL algorithm,
event-learning (Lérincz et al., 2002). We have shown that under mild assumptions, event-
learning finds a near-optimal value function: if the uncertainty of the underlying controller
policy is asymptotically bounded by e, then the uncertainty of the resulting value function
is at most C - g, where C' is a constant depending on the learning problem and the learning
parameters. As a consequence of this result, we showed that event-learning augmented with
an adapting controller converges to a near-optimal solution. If the policy of the controller
is optimal, then the result of event-learning is also optimal. The concepts and theorems
of e-MDPs, which were designed for event-learning, provide a mathematically attractive
framework for RL in perturbed environments as well.

Givan et al. (2000) developed a model similar to e-MDPs. In their Bounded Parameter
MDP (BMDP) model the transition probabilities and the rewards are uncertain in an in-
terval. The value of a state is also an interval between the minimal and maximal possible
values. However, they do not give bounds on the size of these value intervals, which can be
very large if some transitions are very uncertain. Furthermore, a BMDP is a fixed MDP
(but it is uncertain which one), while an e-MDP describes an environment that can change
over time, even in a slightly non-Markovian way.

Event-learning can be seen as one solution for setting (learning) subgoals, which was
originally addressed in modular reinforcement learning (Mahadevan and Connell, 1992,
Singh, 1992, Dayan and Hinton, 1993, Kaelbling, 1993, Mataric, 1997, Kalmar et al., 1998,
Dietterich, 2000) and by the formulation of options within a semi-Markov Decision Pro-
cess framework (Precup and Sutton, 1998, Sutton et al., 1998). Our formulation has the
advantage that a non-Markovian controller can be included. This possibility goes beyond
noisy transition probabilities; the robust controller can compensate large changes of some
of the parameters. Such large changes may correspond to large changes of the transition
probabilities of the original problem and may represent trends of changes. For example, in
our pendulum experiment a sudden change of mass was assumed at the very beginning of
task execution. This formulation, beyond other features,

e keeps the e-MDP property with a particular non-Markovian controller, the SDS con-
troller,

e can deal with uncertain state descriptions, and
e warrants near-optimal performance if the conditions of the theorems are satisfied.

The computer simulations, which were used to illustrate the theory, did not satisfy the
time discretization requirements of the theorems. It thus seems that further generalizations
could be possible. Additionally, learning the values of state-state transitions is more than
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optimization of conditioned reflexes or habits, because it concerns desired next states and
thus enables direct planning. This issue is under investigation at present.
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Appendix A. Convergence Theorems in Generalized MDPs

In this appendix we cite an important convergence theorem of Szepesvéri and Littman
(1996). The main contribution of this theorem is that it traces back the convergence of
the asynchronous value iteration process to the convergence of the approximation of a
synchronous dynamic-programming operator, which is in general much easier to prove.

A.1 The Convergence of a General Value Iteration Process

Let X be an arbitrary state-space and denote by B(X) the set of value functions over X
(i.e., the set of bounded X — R functions), and let 7" : B(X) — B(X) be an arbitrary
contraction mapping with (unique) fixed point V*.

Let T; : B(X) x B(X) — B(X) be a sequence of stochastic operators. The second
argument of 7} is intended to modify the first one, in order to get a better approximation
of T. Formally, let Uy be an arbitrary value function and let U1 = T3(Ug, V). T is said to
approximate T at V with probability one over X, if lim;_..o,Us = TV uniformly over X.

Theorem A.1 (Szepesvari and Littman) Let the sequence of random operators T; ap-
prozimate T at V* with probability one uniformly over X. Let Vi be an arbitrary value func-
tion, and define Viy1 = Ty (Ve, V). If there exist functions 0 < Fy(x) <1 and 0 < Gy(x) <1
satisfying the conditions below with probability one, then V; converges to V* with probability
one uniformly over X :

1. for allU;,Us € B(X) and all z € X,
| T:(U1, V*)(2) = Ty(Ua, V*)(2)| < Ge()|Ur(2) — Us(2)]

2. for all U,V € B(X) and all z € X,
ITUU, V) (&) = U, V) ()| < Fu(a) sup |[V* (') = V()|
3. for all k >0, [, Gi(x) converges to zero uniformly in x as n increases; and,
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4. there exists 0 < v < 1 such that for all x € X and large enough t,
F(x) <71 - Gi(a)).

The proof can be found in (Szepesvéri and Littman, 1996). We cite here the lemma,
which is the base of the proof, since our generalization concerns this lemma.

Lemma A.2 Let X be an arbitrary set, 0 <~ < 1 and consider the sequence
wit1(x) = Ge(z)wy(x) + Fy (@) ([[we]| + ha),

where x € X, ||Jwi|| < C < oo with probability one for some C > 0, 0 < Gy(z) < 1
and 0 < Gy(x) < 1 for all t, and limsup,_,. hy — 0 w.p.1. Assume that for all k,
limy, o0 [[1of Ge(z) = 0 uniformly in  w.p.1 and F, < v(1 — Gi(z)) w.p.1. Then |jw|
converges to 0 w.p.1 as well.

A.2 The Convergence of the Generalized Q-learning Algorithm

It is an easy consequence of Theorem A.1 that under appropriate conditions, the Q-learning
algorithm is convergent.

Theorem A.3 If Assumption A holds, and the learning rates satisfy Y ;oo X (2t =x,a; =
a)ar(z,a) = oo and > o0, x(zt = x,ar = a)ay(w,a)? < oo uniformly w.p.1, then the gen-
eralized Q-learning algorithm described by iteration (Equation 3) converges to Q@ w.p.1
uniformly over X x A.

Proof The theorem is an easy consequence of Theorem A.l with the appropriate substi-
tutions and assignments:

Consider the substitution X « X x A, V* «— Q* and V; + Q;. Furthermore, let the
randomized approximate dynamic programming operator sequence defined by

(1 -z, 0)Q (z,0) + ar(z,a)(re +7(QQ)) (W), if v =2 and a = ay,
Q'(z,a) otherwise,

T(Q,Q)(w,a) = {

which approximates K at Q* w.p.1 over X x A under the assumptions (2)-(4) by the well-
known Robbins-Monro theorem (Robbins and Monro, 1951).
Finally, let

Gy(,a) 1 —oy(x,a), ifx:x.t and a = ay, (11)
1, otherwise
and
Fy(.a) = yor(z,a), ifx= :1.7t and a = ay, (12)
0, otherwise.

Condition (4) of Theorem A.1 trivially holds, while conditions (1) and (2) are implied
by the definition of 7; and the non-expansion property of ). Finally, condition (3) is a
consequence of assumption (3) and the definition of Gj.

Applying Theorem A.1 proves the statement. |
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Appendix B. Sampling from Near-identical Distributions
In this section we prove a technical lemma that is needed for the proof of Lemma 3.4.
Lemma B.1 Let P and Q be two different distributions over the finite set X such that

|P—QllL, <€, and p € X is sampled from distribution P. Then q € X can be selected so
that its distribution is @Q, but Pr(p # q) < e.

Naturally, ¢ will not be independent from p.
Proof Let us define the sets

Xt = {zeX|Px)>Q(zx)} and
X~ = {zeX|Px)<Q)}

Furthermore, define the distributions!!

Q(z)—P(z) : -
R(z) o -px HreXT g
0 otherwise
0 if z € X, with probability Q(p)/P(X™),
S(x) = <1 ifpe X, with probability (P(p) — Q(p))/P(X™"),

0 ifze X .

The denominator in the definition of R is positive, because for all x € X~, Q(z) — P(x)
is non-negative, therefore Q(X~) — P(X ™) is zero only if Q(z) = P(x) over X~. In this
case Q(r) = P(x) over XT by the same reasoning, which means P = @Q, but P and Q are
different.

It is easy to check that R is indeed a distribution over X (with support set X ™).

Let 7 and s be independent random variables from distributions R and S, respectively.
Now define g as follows:

p ifpe X,
g:=qp ifpe X and s =0, (13)
r ifpe XT and s =1,

We claim that the such defined ¢ is suitable. Indeed, by Equation 13

Pr(p#q) = Pr(peXT,s=1)= Z Pr(p=x,s=1)

zeXt
= Z Pr(p=z)Pr(s=1lp=x)
zeX+t
- % P P <P Qi <
zeX+t

11. P(X™) abbreviates P(x € X7 ) =3 .- P(2).
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Furthermore,

Pr(¢g=z) = Pr(q=zlpe X )Pr(pe X)
+Pr(g=zlpe XT,5s=0)Pr(pe XT,5=0
+Prig=xpe X ,s=1)Pr(pe Xt,s=1)

= Pr(p=zlpe X" )Pr(pe X7)
+Prip=zlpe XT,s=0)Pr(pe Xt,5=0
+Pr(r=zlpe Xt,s=1)Pr(pe XT,s=1)

By applying Bayes’ Theorem on each term, we get

Pr(¢g=2) = Pr(pe X |p=2x)Pr(p=12) (14)
+Pr(pe X, s =0p=x)Pr(p =)
+Pr(pe X, s =1r = x) Pr(r = z).

We calculate each term of Equation 14 separately, both for x € X* and x € X . First
assume that x € X~. Then

Prpe X |[p=x)Pr(p=2) = 1-P(z),
Prpe X, s=0p=2)Pr(p=2) = Pr(pe XT|lp=2)Pr(s=0|pe X*,p=1x)P(z)
= 0-Pr(s=0pe XT,p=1x)P(x) =0, and
Prpe XT,s=1r=2)Pr(r=2) = Pr(s=1pe X ,r=2)Pr(pe€ XT|r =z)Pr(r = )
= Pr(s=1pe XT)Pr(pe X1)Pr(r = x)

CPXH-QXY) Lot Q) - P)
20 B o e
— Q) Pla).

Before the last equation we used the definition of S(x), and in the last equation we have used
the equality Q(X~)— P(X~) = P(X1)—Q(X™), which is true because P(X )+ P(X™) =
QXT)+Q(X7) =1

Now let us consider the case x € XT.
Prpe X |p=x)Pr(p=2) = 0-P(x)=0,
Pripe XT,s=0p=2)Pr(p=2) = Pr(pe XT|p=2)Pr(s=0/pe X ,p=1z)P(z)

% xTr) = €T an
L i P@) = Q). and

Prpe Xt,s=1r=2)Pr(r=2) = Pr(pe Xt,s=1r=2)-0=0.

In both cases we get Pr(¢ = x) = Q(x), which was to be proven. [ |

Appendix C. Stochastic Processes with Non-diminishing Perturbations

In this appendix we prove the lemma required by the proof of Theorem 3.3:
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Lemma C.1 Let X be an arbitrary set, 0 <~ <1, h > 0 and consider the sequence
wi1(2) = Gi(z)w(z) + Fy(2)([Jwe]| + h),

where x € X, there exists a 0 < C' < oo bound such that ||wr|| < C with probability one,
0<Gi(z) <1and 0 < Fy(x) <1 for all t. Assume that for all k, limy, oo [[}f Gt(z) =0
uniformly in x w.p.1 and Fy(x) < v(1 — Ge(z)) w.p.1. Then limsup,_, . |[wi]] < Hy = }J_r—:;h

w.p. 1.
Proof We will prove that for each ¢, § there exists an index T' < oo such that
Pr(sup ||w|| < Hy+ ) > 1 —e. (15)
t>T
Fix €, > 0 arbitrarily. Furthermore fix a sequence of 0 < p, < 1 numbers (n =1,2,...) to

be chosen later.
Let Hy := 2-h and C = max(||lw|, H1). Then

wipr(x) < Gi(a) [Jwe]l + Fe () ([lwell + 7)
< Gi(x)C + Fi(z)(C + h)
< Gi(@)C+ (1= Gi(2))(C + h)
= C(Gu(z) +7+ Gi(z) = 1) + C +vh —1Gi(x)h
h
< Sy (= Gi@) A= 7) + C 9k = 1Giw)h
= C —7yh+~vhG(z) +vh —vGe(z)h = C.
Thus, we have that [[wyy1| < max(||w|l,H1). Now define 5 = HT” Since 7 > 7,

well. From now on, we will assume that ||w;] > Hp.
Let ||wy]| = C1 > Hp. Since ||w|| < C4, the process

Yer1 = Ge(2)y:(z) + (1 = Gi(2))(C1 + )

with 1 = wy estimates the process w; from above: 0 < wy <y holds for all t. The process
y¢ converges to v(Ci + h) w.p.1 uniformly over X, so

Hy = 1Zﬁh > %h = H;. Consequently, if ||w;|| < Hop, then |Jw|| < Hy holds for all ¢, as

lim sup ||w|| < limsup ||ye]| < ~v(Cy + h)
t—o0 t—o0

w.p.1. Since 4 > ~, there exists an index My, for which if ¢ > M; then |Jw| < 7(Cy + h)
with probability p;. The proof goes on by induction: assume that up to some index ¢ > 1
we have found indices My, ..., M; such that when ¢ > M; then

[wil| <5'C1+h (Z 7k> =Cit1 (16)

k=1

holds with probability pips...p;. Now let us restrict ourselves to those events for which
inequality (16) holds. Then we see that the process

yMz(x) = wMz‘(x)7
yer1(z) = Ge(@)ye(z) +v(1 — Ge(2))(Ciyr + h), t>M;
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bounds w; from above from the index M;. The process y; converges to v(Cit1 + h) =
¥HLCL + h (2?;11 '_yk) = Cjy2 w.p.1 uniformly over X, so the above argument can be
repeated to obtain an index M; 1 such that (16) holds for i+ 1 with probability pi1ps .. . pi+1.

Since ¥ < 1, 4'C; — 0 and h <Z§€:1 ”yk) — %h = Hy. So there exists an index k
for which Cy < Hyg + 6. Then inequality (15) can be satisfied by setting pi, ..., px so that
pip2...pr > 1 — € holds and letting T' = M;.. |

Appendix D. Event-learning with a Background Controller can be
Formulated as an e-MDP

Lemma D.1 (Corollary 4.3) Assume that the environment is such thaty_, |P(x,u1,y)—
P(x,uz,y)| < K||luy — usg|| for all x,y,ui,us. Let e be a prescribed number. For sufficiently
large A and sufficiently small time steps, the SDS controller described in Equation 10 and
the environment form an e-MDP.

Proof From (Szepesvari et al., 1997) it is known that for sufficiently fine time steps, the
eventual tracking error is bounded by const/A, i.e., for sufficiently large ¢,

const

A

For sufficiently large A, const/A < e. Therefore for arbitrary value function S we may write

||Ut($’, yd) - U(ZL‘, yd)H <

1®:D,5 - QDS = |QD,S - @DSI| < |DS — DSl

< D0 w yt w) — 7 @yt ) Pla, u,y) S(a, vt )
Yy u
= |2 (P@. Uila,y™).p) = Pla. Uz y),y) Sy )
y
< Z |P($7Ut(xayd)ay) - P(va('xayd)’y)’ ' HSH
y
< K[|Ui(a,y®) = U,y - [1S] < e |1S].
This means that the system is indeed an e-MDP. |

Naturally, if 74 = 74 then the approximated value function will be E*.
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