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Abstract

A regularized boosting method is introduced, for which regularization is obtained through a pe-
nalization function. It is shown through oracle inequalities that this method is model adaptive. The
rate of convergence of the probability of misclassification is investigated. It is shown that for quite

a large class of distributions, the probability of error converges to the Bayes risk at a rate faster than
n-(V+2)/(4V+1) whereV is thevc dimension of the “base” class whose elements are combined by
boosting methods to obtain an aggregated classifier. The dimension-independent nature of the rates
may partially explain the good behavior of these methods in practical problems. Under Tsybakov’s
noise condition the rate of convergence is even faster. We investigate the conditions necessary to
obtain such rates for different base classes. The special case of boosting using decision stumps is
studied in detail. We characterize the class of classifiers realizable by aggregating decision stumps.
It is shown that some versions of boosting work especially well in high-dimensional logistic addi-
tive models. It appears that adding a limited labelling noise to the training data may in certain cases
improve the convergence, as has been also suggested by other authors.

Keywords:classification, boosting, consistency, rates of convergence, decision stumps

1. Introduction

The statistical and learning-theoretical literature has witnessed a recent explosion of theoretical
work attempting to explain the often surprisingly good behavior of classification methods related to
boosting and other algorithms based on weighted voting schemes. Boosting algorithms, originally
introduced by Freund and Schapire (see Freund 1995, Freund and Schapire 1997, and Schapire
1990), are based on an adaptive aggregation of simple classifiers contained in a small “base class”.
Originally, theoretical analysis was based on the observation thaB®osTand related methods

tend to produce large-margin classifiers in a certain sense (see Schapire, Freund, Bartlett, and Lee
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1998; Koltchinskii and Panchenko 2002). This view was complemented by Breiman’s observation
(Breiman, 1998) that boosting performs gradient descent optimization of an empirical cost function
different from the number of misclassified samples, see also Mason, Baxter, Bartlett, and Frean
(1999), Collins, Schapire, and Singer (2000), Friedman, Hastie, and Tibshirani (2000). Based on
this new view, various versions of boosting algorithms have been shown to be consistent in different
settings, see Breiman (2000)uBlimann and Yu (2003), Jiang (2003), Lugosi and Vayatis (2003),
Mannor and Meir (2001), Mannor, Meir, and Zhang (2002), Zhang (2003).

The purpose of this paper is a deeper investigation of the convergence of the probability of error
of regularized boosting classifiers by deriving bounds for the rate of convergence. The main point is
the introduction of a boosting procedure with regularization by a penalty function depending on the
/1 norm of the boosting coefficients. The main result of the paper is an oracle inequality showing
that this procedure is model adaptive, and stating in particular that the rate of convergence for the
probability of error of the associated classification rule converges to that of the Bayes classifier at a
dimension-independent rate faster tmat/ +2)/(4V+1)_whereV is thevc dimension of the base
classifiers—for a large class of distributions. The class of distributions for which this rate holds is
defined in terms of properties of the functiéh minimizing the expected cost function. If the base
classifier set is sufficiently rich, the class turns out to be quite large. The analysis also points out a
curious behavior of boosting methods: in some cases the rate of convergence can be speeded up by
adding (limited) random noise to the data!

We also note that under some additional natural assumption on the distribution, considered by
Tsybakov (2003), Nedelec and Massart (2003), and Bartlett, Jordan, and McAuliffe (2003), the rate
of convergence may be even faster.

One of the main objectives of this paper is to better understand the behavior of boosting methods
using decision stumps. This special case is studied in detail first in a simple one-dimensional setting
and then in general. We characterize the class of classifiers realizable by aggregating decision
stumps. Itis shown that some versions of boosting work especially well in high-dimensional logistic
additive models in that they do not suffer from the “curse of dimensionality”.

The paper is organized as follows. In Section 2 our mathematical model of boosting classifi-
cation is described. The main results are stated in Section 3. In particular, rates of convergence
of a regularized boosting classifier are established under certain assumptions on the distribution.
The main result, Corollary 7, is then discussed in subsequent sections in which various concrete ex-
amples are considered. Our introductory example is a one-dimensional problem in which “decision
stumps” are used as a base class. This example, detailed in Section 4, sheds some light on the nature
of the assumption guaranteeing a fast rate of convergence. Also, this example reveals some inter-
esting and surprising phenomena inherent in boosting classifiers. In particular, it is pointed out that
adding random noise to the labels in the data may improve the performance of regularized boosting.
In Section 5 we investigate, in detail, the example of boosting using decision stumps in higher-
dimensional problems. We point out that a sufficient condition for fast rates of convergence is that
the conditional probability function belongs to a logistic additive model, verifying the observation
of Friedman, Hastie, and Tibshirani (2000) that boosting using decision stumps works especially
well in logistic additive models. We point out (see Corollary 12) that regularized boosting using
the logistic cost function and decision stumps has a remarkably good behavior under the additive
logistic model in high dimensional problems. We also characterize the class of classifiers that can
be realized by a convex combination of decision stumps. In Section 6 several important special
cases of base classes are studied briefly. These classes are rich enough so that they allow universally
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consistent classification and have a fast rate of convergence for a large classes of distributions. We
also emphasize the scale and rotation invariance of boosting methods based on several of these base
classes. The proof of Theorem 1 is given in Section 7.

2. Setup

The binary classification problem we consider is described as followgXL¥t) be a pair of random
variables taking values ik x {—1,1} whereX is a measurable feature space. Given a training data
of nindependent, identically distributed observation/label pBits= (X1,Y1),...,(Xn, Yn), having

the same distribution g%,Y), the problem is to design a classifgr: X — {—1,1} which assigns

a label to each possible value of the observation. The logs isfmeasured by

L(gn) = P[gn(X) # Y|Dn] .
The minimal possible probability of error is the Bayes risk, denoted by

L* ~infL(g) = Emin(n(X).1-n (X))

where the infimum is taken over all measurable classifierX — {—1,1} andn(x) = P[Y =
1|X = x] denotes the posterior probability function. The infimum is achieved by the Bayes classifier
g (%) = Ilnx>1/2 — I;w<1/2 (Wherel denotes the indicator function).

The voting classifiers studied in this paper combine their decisions based on a weighted majority
vote of classifiers from a base class of classifierashose elementg: X — {—1,1} of C are called
the base classifiersWe denote the’c dimension ofC by V and assume it is finite. For simplicity
we assume tha is symmetric in the sense that for agye C we also have-g € C. (This is
equivalent to allowing negative weights in the voting schemes.)

We define byF, the class of real-valued functiorfs: X — R obtained as nonnegative linear
combinations of the classifiers Giwith the sum of the coefficients equalXa> 0:

N N
Fa=9f()=>wigj(x) :NeEN;VI<J<N,gjeC,wj=>0;% wj=A,.
=1 =1

Note that the symmetry df implies thatF,, C F,, wheneverA; < A,. Eachf € F, defines a
classifiergs by

1 iff(x)>0

—1 otherwise.

0% = {
To simplify notation, we writd(f) = L(g¢) = P[g¢(X) # Y] and

—~ 1 n
L) =3 2 Toov] -

As mentioned in the introduction, boosting methods may be viewed as iterative methods for op-
timizing a convex empirical cost function. The approach taken in this paper is similar to that of
Lugosi and Vayatis (2003) in that we ignore the dynamics of the optimization procedure and simply
consider minimizers of an empirical cost function.
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To this end, letp: R — R be a twice differentiable, strictly increasing and strictly convex func-
tion such thatp(0) = 1 and lim_._., ¢(x) = 0 which we call thecost function The corresponding
risk functional and empirical risk functional are defined by

AWzE%#ﬂm>aman=%iwwum»

We recall from Lugosi and Vayatis (2003) the simple fact that there exists an extended-real-valued
function f* minimizing A(f) over all measurable function, given by

f*(x) = arg ?Qin{n(X)(P(—G) +(1-nx)@(a)} .
ac
We write A" = A(f*) = inf; A(f).
The estimates we consider take the form

ﬂ‘ =argminAy(f) .
fGF)\

(Note that the minimum may not be achievedrin However, to simplify the arguments we implic-

itly assume that the minimum in fact exists. All proofs may be adjusted, in a straightforward way, to
handle appropriate approximate minimizers of the empirical cost functional.) As argued in Lugosi
and Vayatis (2003), the paramefemay be regarded as a smoothing parameter. Large values of
improve the approximation properties of the clégsat the price of making the estimation problem
more difficult.

The estimators considered in this paper use a valdeafosen empirically, by minimizing a
penalized value of the empirical cosﬁ(ﬂ). To this end, consider a sequence of real numbers
(Ak)ken increasing to+-o and let{ : R™ — R™ be a so-called penalty (or regularization) function.
Define the penalized estimator by

fr = argmin{An(f2) + (A} (1)

k>1

The role of the penalty is to compensate for overfitting which helps find an adequate value of
For larger values ol the classk), is larger, and thereforé(Ax) should be larger as well. By a
careful choice of the penalty, specified in Theorem 1 below, one may find a close-to-optimal balance
between estimation and approximation errors.

The main purpose of this paper is to investigate the probability of dzj(rf}r) of the classifier
5, induced by the penalized estimator. The decision funcgiggmnay be regarded as a regularized
boosting classifier where the regularization paramgteontrols the sum of the weights of the
aggregated classifiers and is chosen by minimizing a penalized value of the empirical cost function.

Remark 1. ChoosingA in a countable set is done here to simplify the proof of the oracle inequality
in Theorem 1; the minimum over € R™ could also be considered with similar results up to minor
additional terms in the penalty.

Remark 2. For simplicity we assume that the base classntains binary-valued functions and that
the class has a finitec dimension. However, the results may be generalized in a straightforward
way to the case whe@ contains real-valued functions taking valueg-l,1]. The assumption
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of finite vc dimension may be replaced by the more general assumption that the covering num-
bersN (g,C,L»(Q)) are bounded bgeV for some positive constantsandV for any probability
distributionQ.

Remark 3. (COMPUTATIONAL ISSUES) To compute the penalized estimatirin practice, one

may proceed by computing, for eakf the minimizerfﬁ‘k of the empirical cost function. This may

be done using iterative boosting algorithms which limit the sum of the weights of the base classifiers,
such as MRGINBOOST.L1 proposed by Mason, Baxter, Bartlett, and Frean (1999). Furthermore,
many other algorithms have also been proposed to solve directly the regularized boosting problems
of the type (1) when the minimization is performed overaalt 0. We refer the reader to the recent
comprehensive review of Meir andaich (2003). For additional discussion on the algorithmic
issues we refer to Bennett, Demiriz, andt&h (2002), Lugosi and Vayatis (2003).

2.1 Relation to Earlier Work

Margin bounds. The first theoretical bounds about boosting-type methods are so-called “margin
bounds”. Although the motivation for deriving these bounds was initially to study the AdaBoost
algorithm, these bounds are “agnostic” in the sense that they do not depend on the precise algo-
rithm used, and can be applied for any algorithm which returns an estimator belongiRg¢b, .

These bounds rely on the complexity of the base dlassd on an empirical quantity, called mar-

gin. Schapire, Freund, Bartlett, and Lee (1998) proved the first bound of this type for boosting
algorithms, and improved rates were obtained by Koltchinskii and Panchenko (2002). Duffy and
Helmbold (2000) used the former result to study boosting-type algorithms with more general poten-
tial functions (such as the functiamconsidered in this paper). Margin bounds provide an explicit
confidence interval for the generalization error, although it is recognized that the bounds obtained
are generally too loose to be of practical interest.

Oracle inequalities. As opposed to margin bounds, oracle-type inequalities refer to a precise al-
gorithm, usually some adaptive empirical loss minimization procedure over a family of models.
Oracle inequalities ensure that the adaptive estimator does “almost” as well (up to additional terms
that should be as small as possible) as the best possible function inside each model. Oracle inequal-
ities do not provide an explicit confidence interval, but a guarantee about the performance and good
behavior of the estimator with respect to a given collection of models. They allow, in particular, to
derive bounds about convergence rates of the procedures considered. This type of bound will be our
main focus in this paper.

Convergence rates and model adaptivity.An oracle inequality for the estimator defined by (1)

was derived by Lugosi and Vayatis (2003) (see also Zhang 2003 for oracle inequalities in a related
but different framework), when the penalty functi@ris of ordern~%/2. However, it was proved

by Bartlett, Jordan, and McAuliffe (2003) that, wharis fixed, the rate of convergence Af f})
towards infcr, A(f) is of ordern~(V+2/(2V+1)__nence strictly smaller tha@(n~/2). This result

can be compared to the the improved rates—which were of the same order—obtained by Koltchin-
skii and Panchenko (2002) for margins bounds. One goal of the present paper is to provide an im-
proved oracle inequality that shows the adaptivity (and consistency) of the penalized estimator with
respect to these faster rates for a corresponding lighter penalty function (of order strictly smaller
than O(n*l/ 2)). Note that—up to our knowledge—it isot straightforward to build an adaptive
estimator over the different moddls, directly from the single-model analysis of Bartlett, Jordan,

and McAuliffe (2003). In the present paper, although we use similar techniques, we require to use
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additional machinery and slightly different hypotheses for the model adaptive estimator. Additional
discussion can be found in Section 7.

3. Main Results

To study the probability of error of the classif@ﬁ, we first investigate the magnituderAn) —A*

which is well-known to be related to the differenlc(afAn) —L*. All subsequent results are based on
the following theorem.

Theorem 1 Assume that the cost functignis twice differentiable, strictly increasing and strictly
convex withp(0) = 1 andlimy_, _, ¢(x) = 0 such that the constant

(%dW%HM—@)
Tx+%(-x)

is finite. (Here a/ b denotes the maximum of a and b.) Define

Ly =0V max
xeR

—(@(x) + <P(—X))> (2)

\' V+2

ROL) = (V +2)7 (Lo + 2)000) 71 (A () a2

b(A) = (Le+2)0(A) ,
and let(Ax)ken be an increasing sequence(ih +) such thaty .y A, ® < 1 for somea > 0. Then
there exist positive constants, ¢, such that if¢ : R™ — R ™ satisfies

. C2b()(alog(A) +& +log(2))
n

VA>0, Z(\)>CGR(N)

for some positive numbéy, then, with probability at least — exp(—¢), the penalized estimatdr
defined by(1) satisfies

A(f])—A(f*)gsz{ inf (A(f)—A(f*))+ZZ()\k)} .

k>1 fEF)\k

The proof of this theorem is given in Section 7. A few remarks are in order.

Remark 1. (CONSTANTS.) Concrete values of the constagisandc, may be obtained from the
proof. However, these values are not optimal and for clarity, and because our main focus here is on
the rate of convergence as a function of the sample size, we preferred not to specify their values.

Remark 2. (CONFIDENCE) The definition of the penalty given in the theorem depends on the
confidence parameté&r However, note that its role is minor since it only appears in the smaller
order second term. Indeed, for concreteness, one may take, for exgmidogn without altering

the obtained rate of convergence. This choice also allows one to deduce “almost sure” convergence
results by an application of the Borel-Cantelli lemma. The theorem presented here is derived as a
consequence of Theorem 7 in Blanchard, Bousquet, and Massart (2003). (The statement of the cited
result is given in Appendix A below.) It is also possible, with a penalty function of the same order
up to logarithmic terms, to derive similar nonasymptotic upper bounds for the expected difference
EA(fAn) —A(f*) using Theorem 8 of Blanchard, Bousquet, and Massart (2003). The corresponding
result is omitted for brevity.
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Remark 3. (COST FUNCTIONS) The properties required by Theorem 1 of the cost function are
not claimed to be necessary to derive the result. Especially the condition involving the constant
Ly, may seem unnatural, although it is not overly restrictive. In particular, the most widely used
strictly convex cost functions, the exponential and the “logit” functions satisfy the property. Indeed,
it is straightforward to check that fap(x) = €*, L, = 0 while for the logit costp = log,(1+ €"),

Lo =2—2log2. We give the corresponding explicit corollary for these two cost functions (using
some straightforward upper bounds and the factihatl):

Corollary 2 For the exponential cost functiap(x) = exp(x), the penalty function

Z(N) = ¢ (V +2) exp(AM)ATN 2V 4 ¢y eXp(A)(ariogA +8)

9

and for the logit costp(x) = log(1+ €*) the penalty function

L) = ca(V + 2an- ¥t 4 o MAI0gA+E) '0?17‘ +&)

(where g, cp, C3,C4 are appropriate constants) satisfy the requirements of Theorem 1.

In particular, for the logit cost, it is interesting to note that a penalization which behaves linearly (up
to a logarithmic factor) ir\ is sufficient. This corresponds to a regularization function proportional

to ||w||1, wherew is the collection of coefficients defining a positive linear combination of base
class functions. This type of regularization has been proposed by various authors (see, e.g., Meir
and Ritsch 2003 for an overview).

How restrictive is condition (2) in the case of more general cost functions? Since we assumed
that @ is twice differentiable, strictly increasing and convéy, is finite if and only if the limsup
of the expression inside the maximum in (2), wher> +o, is not+c. A simple sufficient con-
dition for this to hold is that there exists sorhe> 0 such that liminf_._.(¢’/¢)(x) > L and
limsup_,,(¢/9)(x) < L/2. Furthermore, if we assume thatX) takes values ife, 1 — €| almost
surely, then by a straightforward modification of the proof of Theorem 1 (or, to be more precise,
of Lemma 19 in Section 7) one sees that in the definitiohgfthe maximum can be restricted to
x € [— 15, 7], wheref; is the value off* at a pointx such that(x) = 1—¢. In this case. is
necessarily finite. Note that this assumptionrpoan be enforced by adding a small flipping noise
on the data labels (see the related discussion below).

We note that Bartlett, Jordan, and McAuliffe (2003) study the role of the cost function in depth
and derive convergence results on a fixed mégedbr much more general cost functions. The more
restrictive conditions needed here come from the fact that we considefegutiveestimator over
the set of models.

In the case when the distribution of tfé,Y) happens to be such that the “approximation error”
inffeF)\k A(f)— A* vanishes for some value af the above theorem implies the following immediate

corollary for the rate of convergence A(fAn) to A*.

Corollary 3 Assume that the distribution @¢K,Y) is such that there exists & > 0 such that
infrer, A(f) = A(f*). Under the conditions of Theorem 1, if the penalty is chosen to be

cob(A)(alog(A) +2logn+log2)

Z(\) = R N) + -
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then for every n, with probability at leagt— 1/r?,

1/vV+2

A(fy) —A(F) <cn2(vid)
where the constant C depends on the distribution, on the Elassd on the cost functioq.

Note that the penalty function doastdepend orhg above, so that the procedure is truly adaptive.

Of course, our main concern is not the behavior of the expected\(:ﬁ@tbut the probability of
errorL(f,) of the corresponding classifier. However for most cost functions the diffeteffge—
L* may directly be related tA(fAn) — A*. Next we recall a simple but very useful inequality due to
Zhang (2003). This result has been generalized to a great extent by Bartlett, Jordan, and McAuliffe
(2003) for very general cost functions but we do not use the full power of their result.

Lemma 4 (ZHANG) Let @ be a nonnegative convex nondecreasing cost function such that there
exist constants ¢ and’s 1 satisfying, for any) € [0,1],

S

30 <ca-Hm)

where Hn) = infger (NQ(—0a) + (1 —n)@(a)). Then for any real-valued measurable function f,

L(f) - L(f")

IN

2c (E [(1— H (n(X)))H[gf<x>¢g*<X>ﬂ ) -
< 2c(A(f) — A(F)YS.

We note here that for both the exponential and the logit cost functions the condition of the lemma
is satisfied withc = /2 ands = 2.

Lemma 4 implies that the rate of convergence of) — L(f*) to zero is at least as fast as tike
root of the rate ofA(f) — A(f*) to zero. The next lemma shows that, in fact, the excess probability
of errorL(f)—L(f*) always goes to zero strictly faster thek( f) — A(f*))Y/S whenevesis strictly
greater than one. (Recall that this is the case for the exponential and logit cost functions that are our
main concern in this paper.)

Lemma 5 Let@be a nonnegative convex nondecreasing cost function such that there exist constants
c and s> 1 satisfying, for anyy € [0, 1],

S

< c(L-H(n)).

1
2 rl

Let{f,} be a sequence of real-valued measurable functions mith.. A(f,) = A(f*). Then, as
n— oo,
L(fn) —L(f")

(A(fy) AT O

PROOF The proof is based on Lemma 4 and ideas from Devroyerizyind Lugosi (1996, Theo-
rem 6.5). Let € (0,1/2) be an arbitrary number. Then

L(fa) = L(f7)
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= B[12000 - g, x)0:00]
(see, e.g., Devroye, @yfi, and Lugosi 1996, Theorem 2.2)

= E|[2n(X)~ 1|]I[gfn(x)7ég*(x)]HHW(X)*]-/ZES]}
+E[120(0) = Llfg 400 inx)- 1726

r s 1/s
E|[2n(X) -1 H[gfnoo#g*(xﬂ]

IN

1 (s-1)/s
- (P 96,00 #9700 N0 - 1/2/ < £n(X) £ 5

+Pg, (X) # g*(X),In(X) - 1/2| > 5](51)/s>
(by Hélder's inequality applied for both terms)

Using the assumption ap

E (12000 = W, oo sg00)] < @9E L= HOOO)D g, 00000
< (20°(A(fn) A1)

by Lemma 4. Thus, it suffices to prove that the sum of the two probabilities above may be made
arbitrarily small for largen, by an appropriate choice ef To this end, first note that for any fixed

lim P[gy,(X) # 9" (X),[n(X) =1/2[ > ¢ =0

because otherwisk(f,) —L(f*) would not converge to zero, contradicting the assumption that
A(fn) —A(f*) converges to zero (by Lemma 4). On the other hand,

P (91,00 7 '(X)In(X) - 1/2 <8000 # 5| <P N0~ 172/ <en(x) £ 5

which converges to zero as— 0, and the proof is complete. i

Thus, whers > 1, L(f,) — L(f*) converges to zero faster théA(f,) — A(f*))Ys for all distri-
butions. However, to obtain nontrivial bounds for the ratio of these two quantities, one has to impose
some assumptions on the underlying distribution. This may be done by following Tsybakov (2003)
who pointed out that under certain low-noise assumptions on the distribution much faster rates of
convergence may be achieved. Tsybakov's condition requires that there exist coastajitdl]
andf > 0 such that for any real-valued measurable funcfipn

P(gr(X) #g"(X)] < B(L(f)—L")*. 3)

Notice that all distributions satisfy this condition with= 0 and3 = 1, while larger values of

place more restriction on the distribution. Intuitively, a large value ofieans that the probability
thatn(X) is close to ¥2 is small. In the extreme case of=1 it is easy to see thaj(X) stays
bounded away from /2 with probability one. For more discussion on the meaning of this condition
we refer to Tsybakov (2003) and Batrtlett, Jordan, and McAuliffe (2003). In Bartlett, Jordan, and
McAuliffe (2003) it is shown that under Tsybakov’s noise condition, the rate in Lemma 4 may be
improved as follows.
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Lemma 6 (BARTLETT, JORDAN, AND MCAULIFFE) Let@be a cost function satisfying the condi-
tions of Lemma 4 and assume that condition (3) holds for som¢0, 1] and3 > 0. Then

S 1/(s—sa+a)
Bii(A(f)—A(f*))) |

For the cost functions that are most important for the present pape, and in that case, as
moves from zero to one, the exponerifd— sa + a) changes from A2 to 1. Thus, large values of
a significantly improve the rates of convergenced_¢6f ) to L*.

Combining Corollary 3 with Lemmas 4, 5, and 6 we obtain the following result. Even though it
may be generalized trivially for other cost functions, for concreteness and simplicity we only state it
for the two cost functions that have been most important in various versions of boosting classifiers.
Recall that for both of these cost functions the condition of Lemma 4 is satisfieds with

Luy¢uwg<

Corollary 7 Let @ be either the exponential or the logit cost function and consider the penalized
estimatef,, of Corollary 3. Assume that the distribution of,Y) is such that there existsxa> 0

such thatnfscr, A(f) = A(f*). Then for every n, with probability at least- 1/n?, the probability

of error L(fAn) of the associated classifier satisfies

-~ V42

L(f,) - L* <cna(vi)

where the constant C depends on the distribution, on the élagnd on the cost functiog. Also,
with probability one,

. =~ ) (V2
lim <|_(fn) L ) ni(vi) — o,
If, in addition, condition (3) holds for some € [0,1] and 3 > O, then with probability at least
1-1/r?,

oy * 7;(V_+2)
L(fy) —L* <Cn 2za{Vil/

Corollary 7 is the main result of this paper on which the rest of the discussion is based. The
remarkable fact about this corollary is that the obtained rate of convergence is independent of the
dimension of the space in which the observations take their values. The rates depend/on the
dimension of the base class which may be related to the dimension of the input space. However,
this dependence is mild and eveViiis very large, the rates are always faster thah(22-) _ |n
the rest of the paper we consider concrete examples of base classes and argue that the class of dis-
tributions for which such surprisingly fast rates can be achieved can be quite large. The dependence
on the dimension is mostly reflected in the value of the con§laiRecall from Theorem 1 that the
value ofC is determined by the smallest valueofor which infscg, A(f) = A(f*) and its depen-
dence orh is determined by the cost functian For complex distributions, high-dimensional input
spaces, and simple base classes, this constant will be very large. The main message of Corollary 7 is
that, as a function of the sample sizghe probability of error converges at a fast rate, independently
of the dimension. To understand the meaning of this result, we need to study the main condition on
the distribution, that is, that the minimizét of the expected cost falls in the closureFgf (in the
sense that intr, A(f) = A(f*)) for some finite value ok. In the next sections we consider several
concrete important examples which help understand the real meaning of Corollary 7.
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Remark. (APPROXIMATION ERROR. In Corollary 7 we only consider the case where
infrer, A(T) = A(f*) for some finite value ok. In this paper we focus on this simplest situation and
try to understand the nature of the distributions satisfying such conditions. On the other hand, under
general conditions it can be guaranteed that the approximation eryge, i f) — A(f*) converges
to zero as\ — oo, see, for example, Lugosi and Vayatis (2003), and Section 6 of the present paper.
In this case Theorem 1 implies thatf,) — A(f*) with probability one, so that the procedure is
always consistent (thus improving the results of Lugosi and Vayatis (2003) since the penalty we
consider in the present paper is of strictly smaller orden)in Furthermore, Theorem 1 tells us
more: the penalized procedure effectively finds a tradeoff between the approximation properties of
the setd~, and the estimation error. A precise study of these approximation properties and of the
corresponding rates of convergence is a complex, important, and largely unexplored problem.

4. Decision Stumps on the Real Line

In this section we consider the simple one-dimensional case ¥/kerf0, 1] and when the base class
contains all classifierg of the formg(x) = 5" (x) = [x>t) — I;x<t) @and of the formg(x) = 5 (X) =

Iix<t) — Ity Wheret € [0,1] can take any value. (We note here that all results of this section may be
extended, in a straightforward way, to the case wKea R by the scale invariance of the estimates

we consider.) Clearly, thec dimension ofC isV = 2. In order to apply Corollary 7 it remains to
describe the class of distributions satisfying its conditions. The next lemma states a simple sufficient
condition.

Lemma 8 Assume that the cost function and the distributio(afY) are such that the function*f
is of bounded variation. If-|gy denotes the total variation, definé|svo1 = 3(f*(0) + f*(1) +
|t*|gv). Theninftcp, A(f) = A(f*) whenevel > |*|gy 1.

PROOF Assume thaf* has a bounded variation. Théh may be written as a sum of a nondecreas-
ing and a nonincreasing function. A nondecreasing fundtion [0, 1] may be approximated by a
finite mixture of stumps as follows. Deno@= h(1) —h(0). LetN be a positive integer and let
t1,...,tn be /N, ... ,N/N-quantiles of, that is,ti = sup{x: h(x) < h(1)i/N}, i=1,...,N. Then

the function
+ ZiNH[X>t| + ZZNS(

is at mostC/N away fromh in the supremum norm. Note also tHat Fihgvo,- Similarly, a
nonincreasing functiog may be approximated by a functigre Fg,,,, such that supq 1 [9(x) —

d(x)| < (9(0) —g(1))/N. Thus, the functiorf = h+gis such that
h(1) —h(©)+9(0) —g(1) _ [f*lsv

sup |f*(x) — f(x)| < —
XG[O’1]| (x) = ()] N N

and moreoverf € Fitlavos SiNCe|hlgy +|glev = [f*|gv. Thus, sinceN is arbitrary, f* is in the
closure ofF¢.|,,,, With respect to the supremum norm. The statement now follows by the continuity
of @and the boundedness of the functions in the closufe ©f,,, with respect to the supremum
norm. |1
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Thus, the fast rates of convergence stated in Corollary 7 can be guaranteed whenever
everywhere finite and has a bounded variation. Recall that for the exponential cost fuiiction
(1/2)log(n/(1—n)) and for the logit cost functiori* = log(n/(1—n)). In both cases, it is easy
to see thatf* has a bounded variation if and onlyrfis bounded away from zero and one and has
a bounded variation. In particular, we obtain the following corollary matching the minimax rate of
convergence for the probability of error obtained with a different method by Yang (1999a).

Corollary 9 Let X € [0,1]. Letgbe either the exponential or the logit cost function and consider
the penalized estimath, of Corollary 3 based on decision stumps on the real line. If there exists
a constant b> 0 such that b< n(X) < 1—b with probability one and) has a bounded variation,
then for every n, with probability at leadt— 1/n?, the probability of error I(f,,) of the associated
classifier satisfies

L(f,)—L* <Cn 3

where the constant C depends on b anfgy. Also, with probability one,

U S N
lim n? (L(fn)—L ) ~0.
If, in addition, condition (3) holds for sontwe < [0,1] and > O, then for every n, with probability
at leastl — 1/n?,

L(f)—L*<Cn %@

The dependence of the value of the cons@oin b and|n|gy may be determined in a straight-
forward way from Theorem 1. Ik is the smallest value for which irgf.:Ak A(f) = A*, then the

constanC in the first inequality is proportional tf(Ly+ 2)(p()\k))% ()\k(p(()\k))%. Clearly,Ax can be
bounded as a function dfand|n|gy as shown in Lemma 8. Concrete values are given in Corollary
12 below in the more general multivariate case.

The condition that)(x) is bounded away from zero and one may seem to be quite unnatural at
first sight. Indeed, values of(x) close to zero and one mean that the distribution has little noise and
should make the classification problem easier. However, regularized boosting methods suffer when
faced with a low-noise distribution since very large values\ @fre required to drive the approx-
imation error infcr, A(f) — A* close to zero. (Note, however, that even winedoes not satisfy
the conditions of Corollary 9, lim. e L(fAn) = L* almost surely, under a denseness assumption, by
Corollary 7.) The next simple example illustrates in part that phenomenon: ind@ed,nbt suffi-
ciently large to maké-, containf*, then the classifier minimizing(f) overF, may indeed have a
very large probability of error because the function minimizingAhesk puts all its mass on points
for whichn is close to 0 or 1, while “neglecting” other points.

Example 1.(MINIMIZING A COST FUNCTION FOR A FIXEDA MAY BE BAD.) This example shows
a situation in which ifA is not large enough, even though the clkgscontains a functiorf such
that the corresponding classifigy equals the Bayes classifigt, the functionf, minimizing the
expected cosd\(f) overF, induces a classifier with a significantly larger probability of error.
Consider a simple problem where the distributiornXois atomic, distributed uniformly on the
four pointsxy,...,Xs. The base clas€ contains five classifiers: for eadh=1,...,4 there is a
0i(x) = 2lx_y) — 1 and alscC contains the trivial classifiego(x) = 1. Obviously, for anyA > 0,
the functions inF, induce all possible 16 classifiers on the four-point)et {xs,...,X4}. Now
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consider the distribution defined loyx;) = 1/2+ 98, n(x2) =1/2—-9, n(x3) =1, andn(xs) = 0.
Then it is easy to show that ¢ is a convex strictly increasing differentiable cost function agd

is such thaty (—Ao) = 23, then for anyA < Ao, the optimizer of the cost functiofy, puts positive
weight onxz andx,4 and zero weight om; andx, and thus has a probability of errb(gLfA) =1/4
while the Bayes error it* = 1/4— /2. The details of the proof are given in Appendix B. Note
that the fact that) is 1 and 0 orxz andxy is only to make the example simpler; we could assume
n(xs) =1/24+A,n(xa) = 1/2— A with A > & and observe a comparable behavior.

If n can be arbitrarily close to 0 and 1, théhtakes arbitrarily large positive or negative values
and thus cannot be in arfy, (since functions in this set take values[inA,A]). However, one
may easily force the condition of Corollary 9 to hold by adding some random noise to the data.
Indeed, if, for example, we define the random variablesuch that it equal¥ with probability
3/4 and—Y with probability 1/4, then the functiom’(x) = P[Y' = 1|X = X] = 1/4+4n(x)/2 takes
its values in the intervall/4,3/4] (a similar transformation was also proposed by Yang 1999a,
Yang 1999b). More importantly, the Bayes classifiefor the distribution(X,Y’) coincides with
the Bayes classifieg” of the original problem. Also, recalling from Devroye, @G¥i, and Lugosi
(1996) that for any classifieg,

L(9) — L = Eljgx)£g x)12n(X) — 1

and denoting the probability of error gfunder the distribution ofX,Y’) by L’(g) and the corre-
sponding Bayes error dy”, we see that for any classifigr

L(g)—L"=2(L'(g)-L"). (4)

This means that if one can design a classifier which performs well for the “noisy” prat{evii),

then the same classifier will also work well for the original problefnY). Thus, in order to enlarge

the class of distributions for which the fast rates of convergence guaranteed by Corollary 9 holds,
one may artificially corrupt the data by a random noise, replacing each¥abgla noisy version

Y/ as described above. Then the distribution of the noisy data is such’{latis bounded away

from zero. If we also observe thay' |sy = (1/2)|n|sv and that ifn(x) satisfies condition (3) for
somea € [0,1] andp > 0 thenn’(x) also satisfies condition (3) with the same= [0, 1] but with

B’ = 29B, we obtain the following corollary.

Corollary 10 Let X € [0,1]. Letgbe either the exponential or the logit cost function and consider
the penalized estimatk, based on decision stumps, calculated based on the noise-corrupted data
set described above. If(x) has a bounded variation, then for every n, with probability at least
1— 1/n2, the probability of error I( f,) of the associated classifier satisfies

L(f,)—L*<Cn 3

where the constant C depends only|gisy. If, in addition, condition (3) holds for sonmec [0, 1]
andp3 > 0, then

L(f) —L*<Cn %@ .

Of course, by corrupting the data deliberately with noise one loses information, but it is a curious
property of the regularized boosting methods studied here that the rate of convergence may be
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sped up considerably for some distributions. (Indeed, this fact was already pointed out by Yang
in establishing general minimax rates of convergence in various settings (see Yang 1999a, Yang
1999b).) Besides, recall that, in the case we consider a cost furgsooh that the constant, is
infinite in Equation (2), Theorem 1 cannot be applied in general; however since the noise-degraded
n’ is bounded away from 0 and 1, can be replaced by some finite constant (see the remark
about cost functions following Theorem 1), and hence Theorem 1 can be applied for the noisy
distribution. For many distributions, the performance deteriorates by adding noise, but at least the
rate of convergence is guaranteed to stay the same, and only the value of the consiiaie
affected. Unfortunately, it is impossible to test whethes bounded away from zero or not, and
it may be safe to add a little noise. Of course, the level of the added noise (i.e., the probability of
flipping the labels in the training set) does not need to be fedescribed above. Any strictly
positive value may be used and Corollary 10 remains true. While a more precise study is out of the
scope of this paper, let us just remark that a sensible choice of the noise level based on the present
bounds should be able to find a tradeoff between the improvement of the biasAnitkeand the
performance degradation as appearing in Equation (4).

Finally, a natural question is whether the improved convergence rate that could be obtained
by adding a small labelling noise to the training data really is a practical consequence of using a
“surrogate” convex loss (the functiap) instead of the 6- 1 loss, or if it is just an artefact of the
analysis. Namely, consider a case where the data is completely separable with somedmalgin
by some functionf € F;. In this situation the margin bounds of Koltchinskii and Panchenko (2002)
ensure that the convergence rates are as fast as in our analysis, and no labelling noise is needed.
However, in a generic situation the problem with using the surrogaisk is the disequilibrium
between regions where the target functionis very large or even infinite, and other regions where
it is relatively small (of course in such a situation the data is not separable). In this situation, it may
very well happen that the estimator will tend to concentrate all of its efforts on the former regions
while neglecting the latter, as was shown prototypically in Example 1. Then, adding a small amount
of noise could effectively bring the estimator to improve on the latter regions, which would have a
definite effect on generalization error. Whether adding noise artificially is helpful in practice should
be investigated by an adequate experimental study.

5. Decision Stumps in Higher Dimensions

5.1 Stumps and Generalized Additive Models

In this section we investigate the case whee- [0,1]¢ and the base clags contains all “decision
stumps”, that is, all classifiers of the forx;ﬁ (x) = ]I[szt] — ]I[X<i><t] ands;;(x) = H[X<i><t] - H[szt],

t€[0,1),i=1,...,d, wherex() denotes théth coordinate ok.

An important property of boosting using decision stumps is that of scale invariance. Indeed,
if each component of the observation vectérss transformed by a (possibly different) strictly
monotone transformation then the resulting classifier does not change. This remark also implies that
the assumption that the observations take their values from the boundédliets not essential,
we use it for convenience.

A straightforward extension of the proof of Lemma 8 in the previous section shows that the
closure off, with respect to the supremum norm contains all functibms the form

f(X) = f (XO) 4o Fg(xD)
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where the functiond; : [0,1] — R are such thaltf1|gv01+ -+ |fa|gv,01 < A. Therefore, iff* has
the above form, we have ipdr, A(f) = A(f*).
Recalling that the functiori* optimizing the cosA(f) has the form

sy 1 n(x
F=3"9"0

in the case of the exponential cost function and

n(x)
1-n(x)

in the case of the logit cost function, we see that boosting using decision stumps is especially well
fitted to the so-called additive logistic model in whighs assumed to be such that [og(1—n))

is an additive function (i.e., it can be written as a sum of univariate functions of the components of
X), see Hastie and Tibshirani (1990). The fact that boosting is intimately connected with additive
logistic models of classification has already been pointed out by Friedman, Hastie, and Tibshirani
(2000). The next result shows that indeed, whamermits an additive logistic representation then

the rate of convergence of the regularized boosting classifier is fast and has a very mild dependence
on the distribution.

f*(x) =log

Corollary 11 Let X € [0,1]9 with d > 2. Let@ be either the exponential or the logit cost function
and consider the penalized estimdteof Corollary 3 based on decision stumps. LetV3, V3 =
4V, =5, and for d> 5, iy = | 2log,(2d) |. If there exist functionsf.. ., f,: [0,1] — R of bounded
variation such thatog lﬂf]x()x) =59, fi(xD) then for every n, with probability at leagt- 1/n?, the

probability of error L(fAn) of the associated classifier satisfies
~ ,;(M)
L(fn) —L* <Cn #\Va#l

where the constant C dependsz)ﬁf_ll | filevo,1. If, in addition, condition (3) holds for sontec [0, 1]
andp > 0, then

Vyq+2
L(f,)—L* SCn*az;—a)@g_il) )

PROOF The statements follow from Corollary 7. The only detail that remains to be checked is the
vc dimensionVy of the classC of decision stumps. This may be bounded by observing that the
shatter coefficient (i.e., the maximum number of different wapsints in[0,1]9 can be classified
using decision stumps) is at most rf@d(n+1),2"). Thus, ford > 5, 2d(n+ 1) < 2" if and only if

n > log,(2d) +log,(n+ 1) which is implied byn > 2log,(2d). Ford < 4, just notice that decisions
stumps are linear splits and tkie dimension of the class of all linear splitsikf equalsd+1. |

Remark. (DEPENDENCE ON THE DIMENSION) Under the assumption of the additive logistic
model, the rate of convergence is of the orden@f2-®) " Va+2/Va+1) whereVy depends oml in a
logarithmic fashion. Even for large valuesafthe rate is always faster than®/22-%_ |t is also
useful to examine the dependence of the consaon the dimension. A quick look at Theorem 1
reveals tha€ in the first inequality of Corollary 11 may be bounded by a universal constant times
VVa@N)YVar@ (A) where] is the smallest number such thatdnf, A(f) = A*. Thus, we may
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take A = 39, [filgvo1. SinceVy = [2logy(2d)], the dependence on the dimension is primarily
determined by the growth of the cost functipnHere there is a significant difference between the
behavior of the exponential and the logistic cost functions in high dimensions. For the purpose
of comparison, it is reasonable to consider distributions such)\thatzszlyfi\gvm is bounded

by a linear function ofl. In that case the consta@tdepends o asO(/delogd) in the case

of the exponential cost function, but only @$./dlogd) in the case of the logistic cost function
(using directly Theorem 1 instead of the upper bound mentioned above). In summary, regularized
boosting using the logistic cost function and decision stumps has a remarkably good behavior under
the additive logistic model in high dimensional problems, as stated in the next corollary.

Corollary 12 Let X e [0,1]9 with d > 2. Let@be the logit cost function and consider the penalized
estimatef, of Corollary 3 based on decision stumps. Let B be a positive constant. If there exist

functions f{,..., f,:[0,1] — R with A = S, |filevo1 < Bd such thatog lﬂf]x()x) =54, fi(x)

then for every n, with probability at leagt— 1/n?, the probability of error I(f,,) of the associated
classifier satisfies

1 Vd+2)

L(f) —L* < C\/dlogd n + (%4

where C is a universal constant ang ¢ as in Corollary 11. If, in addition, condition (3) holds for
somea € [0,1] and > 0, then

N Vg2
L(f) —L* < C(dlogd)z's n~ 7w (%)

Remark 1. (ADDING NOISE.) Just like in the one-dimensional case, the conditions of Corollary
11 require that) be bounded away from zero and one. To relax this assumption, one may try to add
random noise to the data, just like in the one-dimensional case. However, this may not work in the
higher-dimensional problem because evefiiis an additive function, it may not have this property
any longer after the noise is added.

Remark 2. (CONSISTENCY) The results obtained in this paper (for instance, Corollary 7) imply

the consistency of the classifiés under the only assumption that may be written as a sum of
functions of the components, that is, tfhath) — L* almost surely. The additional assumption on

the bounded variation of the components guarantees the fast rates of convergence. HoWeger, if

not an additive function, consistency cannot be guaranteed, and the example of the previous section
shows that boosting is not robust in the sense that it is not even guaranteed to perform nearly as well
as the best classifier contained in the class. Still, it is important to understand the structure of the
classifiers that can be realized by aggregating decision stumps. The rest of this section is dedicated

to this problem.

5.2 Set Approximation Properties of Mixtures of Stumps

In what follows we investigate what kind of sesc [0,1]9 can be well approximated by sets of the
form A; = {x|f(x) > 0}, wheref € F, is a linear combination of decision stumps.

It helps understand the main properties of these sets if we first consider the discrete case, that
is, whenX is a grid of the formX = {0,1/k,...,k/k}9. If d = 1, obviously any function can be
written as a mixture of stumps since it is always of finite variation in this discrete setting.
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Figure 1: Points or regions belonging to the getre in black. Left: four points ixoRr position. Right: a
counterexample to Theorem 14 wh¥nis not a cube: if the center square is not parKofthe
non-XOR requirement is satisfied, but any way to “exteiXdandA to the center square will lead
to a creation of alxoR position.

Next consider the cagk= 2. Itis then easy to see that if a geis obtained as the support of the
positive part of an additive function of the forfi(x) = f1(x(1)) + fo(xY)) then there cannot exist
four pointsx,y,z,w, such that these points are the corners of a rectangle aligned with the axes, the
two corners on one diagonal are element8,aind the two points of the other diagonal are noin
We call this the XOR” position. It turns out that this simple property, which we call for brevity the
“non-xoR requirement”, is actually a necessary and sufficient condition for a set to be of the form
A¢ for f € Fy, for anyA > 0.

Next we generalize this idea tbdimensions and characterize completely the sets one can obtain
with the additive models in the discrete setting. For this we need a more general definition of the
XOR position (see also Figure 1).

Definition 13 LetX ={0,1/k,... ,k/k}d and Ac X. We say that four points x z, w are inXOR
position with respect to A if there exists &r< ig < d such that

(5)

X(iO) — y(iO)7 Z(iO) — W(io);
X(i) — Z(i), y(i) — W(i)7 fori 7& iO;

and xwe Abutyz¢A.

For a discrete grid we have the following characterization of sets realizable as the positive part
of the mixture of stumps. Recall that a &is called a monotone layer iR if it has one of the
following properties: either (1) for any € Sall pointsy < x are also inS, or (2) for anyx € Sall
pointsy > x are also irS. (We say thay < x if the inequality holds componentwise.)

Theorem 14 LetX = {0,1/k,...,k/k}9 and AC X. The following properties are equivalent:

(i) There exists f such thatA {x|f(x) > 0} where f(x) = fy(xX®1)) + ... + fq(x@);

(i) There does not exist anyykz,w € X in XOR position with respect to A;

(i) A can be transformed into a monotone layer by a permutation of the order along each axis,
that is, there exist permutatiors, ...,0q4 of {0,...,k} such that the image of A by the function
s:x=(i1/K,...,ig/K) — s(X) = (01(i1)/K,...,04(iq)/K) is @ monotone layer.
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PROOF (i) = (ii): consider four points,y,z w satisfying (5). Suppose thatw € A andy € A,
which meansf (x), f(w) > 0, f(y) < 0. Note that condition (i) and (5) imply thdt(x) + f(w) =
f(y)+ f(2). Hence we must havé(z) > 0 and the points cannot be ¥oR position.

(i) = (iii): consider “slices” of X perpendicular to the first coordinate axis, that$§,=
{xe X|xP =i/k}. Define an order on the slices by saying tEht< S} if and only if for any
x=(i/kXz,...,xs) € §, if we denotey = (j /K, Xz,...,Xa) € S}, thenlja g < Tjay)- Now, note that
(i) implies that this order is total, that is, for anyj either§t < SJ-1 or SJ-1 =< S As a consequence,
we can rearrange the order along the first coordinate using a permutatien that the slices are
sorted in increasing order. By doing this we do not alter the xoR-property, hence we can repeat
the corresponding procedure along all the other coordinates. It is then easy to see that the image of
A by these successive reorderings is now a monotone layer.

(iif) = (i): first note that any monotone layer can be represented as a set of the form described
in (i). Therefore, any set obtained from a monotone layer by permutations of the order along each of
the axes can also be represented under this form, since it is just a matter of accordingly rearranging,
separately, the values &, ..., fq. |

Note that it is essential in the last theorem tKais an hypercubg0, 1]%. In Figure 1 we show
a contrived counterexample wheXeis not a cube and satisfies condition (ii) of the above theorem;
yet it is not possible in this case to find a functiénsatisfying (i), because there is no way to
“complete” the middle square so that the nooR requirement is still satisfied.

In the general case whéh= [0, 1], we can derive, based on the discrete case, an approximation
result for sets whose boundary is of measure zero. The approximation is understood in the sense
of L! distance between indicators of sets with respect to the probability measdr@wiX (or,
equivalently, the measure of the symmetric difference of the sets). Note that this distance is always
at least as large as the excess classification error.

Theorem 15 Let AC X be a set whose boundada is of measure zero. Suppose there do not exist
four points xy,zw € X in XOR position with respect to A. Then there exists a sequémgeof
linear combinations of decision stumps such that

lim P[[Ti¢,x)>0) — Iixenl] = O

PROOF We approximate& by discrete grids. Fix somec N and forl = (i1,...,iq) €{0,...,n— 1}d
denotex; = (i1/n,...,ig/n) and letB(1) be the closed box; + [0,1]9. Let A, be the set of indicek
such thaB(l) contains at least a point of the boundaryfofindB,, = Ujca,B(1).

Now consider the discrete s¥t = {x|,l €{0,...,n— 1}d} and the projectiorA, = AN X,.
Now in Xp,, A satisfies the hypothesis (ii) of Theorem 14, and hence (i) is satisfied as well and there
exists a functiorf,(x) = fr1(xXV) +... 4 foa(x(@) defined forx € X, with Ay = {x € X, f(x) > 0}.
Extend the functiong,, ; on [0, 1] by defining (with some abuse of notatiofy); (i/n+¢€) = fnj(i/n)
for € € (0,1/n). Obviously, the extended functiorfs ; are still mixtures of stumps.

Let now gn(X) = Ijr,x>0,X € X. We havegn(X) = Ijax) for x € By, by construction, and
therefore

PlITf,x)>0 — Iixeayl] <PX € By,

which converges to zero @s— oo, sincelg ; — Ij55 pointwise. |
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Remark. (DISREGARDING THE BOUNDARY) Since we concentrate on sé&swith boundary of
measure 0, it is equivalent in the sense ofltheistance between sets to consideits closureA or

its interior int(A). One could therefore change the above theorem by stating that it is sufficient that
the “nonxoR requirement” be satisfied by some €ssuch that infA) C C C A. It would be even
nicer, if only of side interest, only to take into account quadruples of points not on the boundary
of A to satisfy the noncoR requirement, so that any problem arising with the boundary may be
disregarded. In Appendix C we show that this is actually the case wheRéd&y = 0 for some
measurd® having full support, e.g., the Lebesgue measure).

The theorems above help understand the structure of classifiers that can be realized by a linear
combination of decision stumps. However, for boosting to be successful it is not enough that the
Bayes classifieg* can be written in such a form. It may happen that even thggighin the class of
classifiers induced by functions k,, the classifier corresponding fq minimizing the cos#(f)
in F, is very different. This is the message of Example 1 above. The next example shows a similar
situation in whichfor anyA > 0 there exists aifi € F), such thags = g*.

Example 2. (BAYES CLASSIFIER MAY BE DIFFERENT FROM THE ONE CHOSEN BY BOOSTING
Consider a two-dimensional problem with only two non-trivial classifier§ igiven by two linear
separators, one vertical and one horizontal, and the trivial classifier assighitageverything. We
have four regions (denote(cgg Bj)) and only three parameters (only one parameter per classifier
including the trivial one). By considering only symmetric situations whgiethe same oD; and

D4, we see thaf, the function minimizingA(f) over . oF», must also be symmetric and hence
we reduce (after re-parameterization) to two parametgdys The minimizerf is then of the form

f= ((Mt?)/z (a+%)/2)-

First consider a situation in whicK falls in D; or D4 with probability zero. Then in this case
f = f* on D, andDs. Furthermore, by choosing suitably in these regions, one may assume that
a> 0> bbuta+b> 0. Now suppose that we put a tiny positive weigldn regionsD; andDy,
with the Bayes classifier on these regions being claksBut by continuity, the associatefg will
stay positive on these regionsifs small enough. TheggE # g" on these regions, while obviously

for anyA > 0 we can find an appropriate functidne M,, such thags = g* = (j }1) in this case.

6. Examples of Consistent Base Classes

The results of the previous section show that using decision stumps as base classifiers may work
very well under certain distributions such as additive logistic models but may fail if the distribution

is not of the desired form. Thus, it may be desirable to use larger classes of base classifiers in order
to widen the class of distributions for which good performance is guaranteed. Recent results on
the consistency of boosting methods (see, e.g., Breiman 2@0Myinn and Yu 2003, Jiang 2003,
Lugosi and Vayatis 2003, Mannor and Meir 2001, Mannor, Meir, and Zhang 2002, Zhang 2003)
show that universal consistency of regularized boosting methods may be guaranteed whenever the
base class is so that the class of linear combinations of base classifiers is rich enough so that every
measurable function can be approximated. In this section we consider a few simple choices of base
classes satisfying this richness property. In particular, we recall here the following result (Lugosi
and Vayatis, 2003, Lemma 1):

Lemma 16 (LUGOSI AND VAYATIS) Let the clas<C be such that its convex huUfi; contains all
the indicators of elements &, a subalgebra of the Borad-algebraB (RY) of RY, such thatBg
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generateB (RY). Then
lim inf A(f)=A".
A—o feN-Fy
More generally, a straightforward modification of this Lemma shows that whefevet J,- o F)
is dense irL1 (W), then itis true that infcp A(f) = A(*).
We consider the following examples; in all cases we assumeXthaiR?.

(1) Ciin contains all linear classifiers, that is, functions of the f@w) = jax<y — 1,0 € RY,
beR.

(2) Crect contains classifiers of the forgix) = 2lxer — 1 whereRis either a closed rectangle or
its complement irR¢.

(3) Cpan contains classifiers of the forg(x) = 2lxep) — 1 whereB is either a closed ball or its
complement irR¢.

(4) Ce contains classifiers of the forg(x) = 2l,.g) — 1 where eitheE a closed ellipsoid or its
complement irR¢.

(5) Cyeecontains decision tree classifiers using axis parallel cutsavitii terminal nodes.

Clearly, the list of possibilities is endless, and these five examples are just some of the most
natural choices. All five examples are such thit.oF, is dense inLi(p) for any probability
distribution p (In the cases 0€ect, Chan, andCe this statement is obvious. F&yj, this follows
from denseness results of neural networks, see Cybenko 1989, Hornik, Stinchcombe, and White
1989. ForCyee, See Breiman 2000.) (We also refer to the general statement given as a universal
approximation theorem by Zhang 2003 and which shows that, for the classical choices of the cost
function @, we have, for any distribution, inf;,  r, A(f) = A* as soon akJ,oF, is dense in the
space of continuous functions under the supremum norm.) In particular, the results in the present
paper imply that in all cases, the penalized estinfataf Corollary 3 is universally consistent, that
is, L(f,) — L* almost surely ag — c.

Recall that the rates of convergence established in Corollary 7 depend primarily ec the
dimension of the base class. The dimension equal¥ = d + 1 in the case o€j,, V =2d+1
for Crecty V = d+ 2 for Cpqy, and is bounded by = d(d+ 1)/2+ 2 for Cg and byV = dlog,(2d)
for Cyee (See, e.g., Devroye, @yfi, and Lugosi, 1996). Clearly, the lower the VC dimension is,
the faster the rate (estimation is easier). The following question arises naturally: find a class with
VC dimension as small as possible whose convex hull is sufficiently rith(ip). A recent result
by Lugosi and Mendelson (2003) establishes the existence of such a class with VC dimension at
most 2. This fact reveals that the combinatorial complexity of a class is not always a reliable
measure of the approximation capacity of its convex hull. However, the construction by Lugosi
and Mendelson is theoretical and there is probably more to say if one is concerned with practical
implementations of boosting methods (see also Remark 1 below). In all cases, for even moderately
large values ofl, the rate of convergence stated in Corollary 7 is just slightly fasterth&tf(2-%)),
and the most interesting problem is to determine the class of distributions for whijgh,iAf f) =
A* for some finite value oh. In all the above-mentioned special cases this class is quite large,
giving rise to a remarkably rich class of distributions for which the dimension-independent rates of
convergence holds. The characterization of these classes of distributions similar to the one given
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in the one-dimensional case is far from being well understood. In the caSg dhe problem

is closely related to the approximation properties of neural networks. We merely refer to Barron
(1992, 1993), Darken, Donahue, Gurvits, and Sontag (1997), Girosi and Anzelloti (1993), Maiorov,
Meir, and Ratsaby (1999), Meir and Maiorov (2000), Pinkus (1999), Sontag (1992) for related
results. Most of these references provide quantitative results relating the approximation error to
the smoothness of the target function. However, there are very few attempts to characterize the
functions that can actually be reconstructed with given dictionaries. In one dimension, the problem
is well-understood: the closure under the uniform norm of the class of piecewise constant functions
is the class of regulated functions (for which both left and right limits exist at each point). Hence,
by limiting the bounded variation, we lose the ability to approximate these regulated functions
with linear combinations of decision stumps. 4, there is no straightforward generalization of
regulated functions. Another interesting question is to investigate the approximation rates in terms
of the smoothing parametarfor universal base classes when the approximating function is taken
in F,, and the work by Meir and Maiorov (2000), Mannor, Meir, and Zhang (2002), may provide
some hints for a systematic approach.

Remark 1. (COMPUTATIONAL PROBLEMS.) Using the above-mentioned classes as base classifiers
may cause computational problems in high-dimensional problems. Typical boosting algorithms
perform an iterative gradient descent optimization to minimize the empirical’G9$) and each
iteration step involves optimization over the cldss This may be efficiently computed whéh

is the class of decision stumps but in any of the cases considered in this section, optimization
may be problematic. There seems to exist a tradeoff between the richness of the base class and
computational feasibility of the optimization. In practice one may try to find classes “in between”,
that is, base classes larger than decision stumps which may not give rise to universally consistent
classifiers but still allow efficient optimization. Here we do not pursue this issue further.

Remark 2. (INVARIANCE.) In the previous section we already emphasized that the claskifier
invariant under monotone transformations of the coordinate axes, Whethe class of decision
stumps. This invariance property is important in situations when the different components of the
feature vectoX belong to incomparable physical quantities. Scale invariance shared by the method
based on the class€sct andCyee but not with the rest. On the other hand, the rest of the examples
have different important invariance properties. For example, boosting badgg ,&yay, andCey

are rotation invariant, an@;, andCg are invariant under arbitrary invertible linear transformations

of the feature space. The choice of the base class should be influenced by the desirable invariance
property in practice.

7. Proof of Theorem 1 and Related Results

In this section we apply general abstract single-model and model selection theorems appearing in
Blanchard, Bousquet, and Massart (2003) (recalled in Appendix A for completeness) in the regular-
ized boosting setting to derive Theorem 1. We state here single-model convergence rate theorems
as well since the hypotheses to satisfy are essentially the same. This way we can recover a theorem
that is similar to results appearing in Bartlett, Jordan, and McAuliffe (2003) (see a short discussion
below). The theorems cited in Appendix are extensions of model selection methods by penalization
originating in works by Birg"and Massart (1998), Massart (2000). We also use the technique of lo-
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calized Rademacher averages for fine-scale estimates of the capacity of function classes, a principle
that has been put forward in
Bartlett and Mendelson (2002), Bartlett, Bousquet, and Mendelson (2002), and Bousquet (2003).

7.1 Rates of convergence in a fixed model

In this section we first restrict our attention to the empirical risk minimization estimator on a fixed
modelF,. Definef} = argmingc, An(f). We then have the following theorems.

Theorem 17 Assume that the base cldSshas VC dimension V. Then, for any>C1, with proba-
bility at least1 — exp(—9), we have:

AR~ A) = 57 (ot (A - AP +CR(A ) + SRR,
where . 1 o
Ri(A, ) = c1(V +2)71 ((Lo+2)0(A)) F AG(N))van~ v
and

bi(A) = co(Lo+2)@(A),

where g, c, are numerical constants, andlis defined by2).

Theorem 18 (EXACT BIAS; BARTLETT, JORDAN, AND MCAULIFFE.) Assume that the base class
C has VC dimension V. Then, with probability at least exp(—d), we have:

AT —A(T) < int (ACF) = A(F)) + Ro(A,n) + bz(:){)’
where 1
Ro(\,1) = c1(V +2) ¥ max(M(A) g ()2, @h) ™ (Ag (1)) vian 494
and

b2(A) = c2(@(N)* M)+ @A),
where g, c; are numerical constants, and () = infyc;_» x5 @' (X).

Remark. These two theorems are also consequences of a general theorem recalled in Appendix
A—the difference comes from a slight difference in the application of the latter. We mention these
two statements here to draw a short comparison. Theorem 18 is almost identical to Theorem 17
of Bartlett, Jordan, and McAuliffe (2003) (more precisely it is a special case of the latter, since, as
already pointed out earlier, our general assumptions apawt stronger in this paper). Note also
that the proofs use very similar tools, although in the present paper a good part of them is wrapped
up into the general theorem quoted in Appendix A. Theorem 17 on the other hand, is really the
single-model counterpart of the penalized procedure of Theorem 1.

An advantage of Theorem 18 is the exact bias term, that is, the absence of the fd@er of
1)/(C—1) in front of the approximation error. Note, however, that this exact bias is lost anyway
when one turns to the true classification risk using Lemma 6. Also, since in our corollaries we
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assume the bias to be zero, this improvement becomes irrelevant. On the other hand, the dependence
inV of the multiplicative constant is slightly better in Theorem 17 (note that a factor of (p(lslkﬁ
is replaced b)(qf()\)zM()\)*l)\%H in Theorem 18: for instance takingas the exponential loss, the
latter expression is the third power of the former; for the logit cost, this even more noticeable: the
latter expression is of order e/ (V + 1)) while the former is only of orde)(\%l).

Finally, note that neither of these theorems can be used directly (at least up to our knowledge)
to derive an oracle bound for a penalized procedure. For the proof of Theorem 1 we need additional
model selection machinery which in particular only works under the hypotheses of Theorem 17.

7.2 Proofs

PROOF OFTHEOREM 1. Theorem 1 will be derived as a consequence of Theorem 22 in Appendix
A. According to the notations used in the Appendix, we define the loss funétion) = @(—xy)
and write/( f) as a shorthand notation for the functiogy) — ¢(f(x),y), so thatA(f) = E[¢(f)].

We define the reference spabeas the set of function$ from X into RU {—o0, +} such that
¢(f) € L?(P) whereP denotes the probability measure induced ¥yY). Note thatf* € & (even if
f* is infinite at some points, because for any fixed priatX , the average losB[/( f*(X),Y)|X =X
is always bounded by 1). We consider the countable family of maéfg|g, k € N.

Next we verify assumption§) — (iv) of Theorem 22. In the sequed,will denote a numerical
constant whose value is not necessarily the same in different lines. We first need to choose a pseudo-
distanced on &. We use

d2(f, ) = E[((f) — ().

This makes assumptiofi) trivially satisfied. Hypothesigiii) (model-wise boundedness assump-
tion) is also straightforward: for anfy € F,,

()Y = o=y T(x)] < @A),

so that hypothesi§ii ) is satisfied with, = @(Ax).
The verification of hypothesi§i) is summarized in the following Lemma.

Lemma 19 Assumep: R — R, is a twice differentiable, strictly increasing and strictly convex
function. Denote

Ly =0V max
xeR

T0+9(—x)

If Ly < oo, then for any function £ F,, we have
E[(0(F) = £(f))%] < (@A) + @(=A) + Lo E[¢(F) — £()] .

Thus, hypothesisii) holds withCy = (Lo + 2)@(Ak).
Finally, we turn to hypothesi§v) which contains the most information about the models. The
goal is first to bound, for anyp € F;,

R((r)=E Sup |(P—Pn)(£(f) = £(fo))l|
dz(ffoA)gr

883



BLANCHARD, LUGOSI, AND VAYATIS

whereP f andP, f denote the expectation éfunderP and under the empirical probability distribu-
tion P, respectively. If we define the set of functions

Gyt = {£(F) = £(fo)[f € R},

then

R(r)=E | sup |[(P—Pn)g|
9eGy 1,
PP<r

leig(xi,Yi)

2
< “EpE; sup ,
n 9€Gy 1,

P<r

where theg; are i.i.d. Rademacher variables, by a standard symmetrization argument.
We use the following lemma (which is essentially the same as Lemma 2.5 in Mendelson (2002),
except that we need to make some multiplicative factors explicit).

Lemma 20 (MENDELSON). LetF be a class of functions such thigt|, < T forall f € F. Set
12 = sup ¢ Epf2 and assume that for sonye> 0 and p< 2, for any empirical measure,P

logN (&,F ,L2(Py)) < vye™P.

(whereN (g,F ,L»(P,)) denotes the-covering number oF with respect to the distance(Py)).
Then, putting B= y%(Z— p)~L, we have
n

Bt 0

To apply the lemma we need to estimate the entropy numbers of(&lassFirst, sinceC is of
finite dimensiorV/, we have that for any empirical measig

2-p 4 _2p
gcmax(Br 2 ,BZpTZFrn

Nl=
i

1
—EpE¢ sup
\/ﬁ ‘ feF

logN (g,conv(C),L%(P,)) < ce P,

wherep = \% as a consequence of Theorem 2.6.9 of van der Vaart and Wellner (1996, p. 142).
Now note that for a class of real functiofs over X, if we defineG as the set of functions over
X x {—1;1} that can be written a&,y) — yf(x) for somef € F, then the covering numbers Bf
for L2(P,) are the same as the covering numbers ofGséor L?(Q,) provided the marginal o®,
onXisP,.

Furthermore, functions ifr, take values if—A,A], andg has Lipschitz constang (A) on this
interval. Therefore, by standard arguments (translation by a fixed function, dilation, application of
a Lipschitz function, see, e.g., Pollard 1984 for the necessary tools), we have

€

logN (€,G to, L2(Pn)) < logN <W(7\)

F ,L2<Pn>) < cG(N)Pe P,
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We can now apply Lemma 20 to the cld3s;,, with

= sup P <r,
9€Gy 1,
PE<r

Th = @(\), andy, = c(A@ (A))P, so that we obtain, putting, = (A@(A))P2(2—p)~1,

§—B> . 6)

n

zisig(Xth)

<cmax( Byr+ ,B,""T,”"n

Nl

1
—FE sup
\/ﬁ gGG)\,fO

P<r

To study the behavior of the last upper bound, we determine when then first term is dominant in the
above max. This is the case when y ,
r> (TyBy)2Pn™ 2 . )

Thus, if the above condition ovelis satisfied, we have
F(r) < W (1) = %Bﬁp

for some numerical constaAtthat we can assume to be greater than 1,ygnd a sub-root function
as requested.
Finally, the solutiorr; of the equationp, (r) =r/C, is given by

[} = (AB,Cy)Zon 255,

For A = Ay, we takeC,, = Cx = (2+ Ly)@(Ak) so that, sincéd > 1 andCy > T,,, condition (7) is
ensured whenever>r; =rj . This concludes the check for hypothegis).
To wrap up, hypothesd$) — (iv) of Theorem 22 are satisfied with the following choices

° bk:(p()\k);
o C= (L(p—I-Z)(p()\k);

4 \Y V42

o 1 =C(B\C)ZN 2P = o((V +2) Ly + 2)9(\) VT (AG(N)) Fran~ 3%
Eventually, sek, = alogAx which concludes the proof. I

PROOF OFLEMMA 19. It suffices to look at a fixed pointand to take the expectation as a final
step. We therefore first omit the dependencex tm simplify the notation. Recall that if we denote
n=P(Y =1), then

f*(n) = argmin{ne(—a) + (1 —n)e(a)}

acR
is defined implicitly as the solution of

ng(—f") =1 -n)g(f"). (8)

Sinceq@ s strictly convex and increasingf (x) /¢ (—x) is increasing fronR onto R,. It is then
easy to deduce thdt' is an increasing function of and thatf*([0,1]) = R, so thatf* is invertible.
Furthermore, by the implicit function theorefti is a differentiable function of.
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Consider some functiofi € F, and puta = f(x) at the pointx considered. Note thad| < A.
Define

N(n,a) = Ey[(e(f) —£(f*))?]
=N (@(—a) —o(—F*(n)))*+ (1—n) (@) — (f*(n)))?
and
D(n,a) = Ey[¢(f) —£(f7)]
=n(e(—a) —(—f7(n)))+ (L —n) (e(a) —(f*(n))).

The goal is to show thad < C(a)D. To this end, first note that((f*)~1(a),a) = D((f*)"1(a),a) =
0. We then compare the derivativeshfindD with respect tay. We have

D . . L df
%Z@(—G)—q’(—f ) — (@) — (")) + (ng (— -n)@(f)) an
= (p(—a) —(— ")) — (e(a) — (")),

using (8). Note thabD/an is therefore positive fof* > a (or, equivalently, fom > (f*)~1(a))
and negative otherwise. We now turn to the derivativl of

= (o) o= ) (gfa) —(1)?
+2(n0(- 1) (00~ o~ 1) — (L= P (1) (@) - 0(1) G
(0-) — 0~ )+ o(00) ~ (1)) (@) — 9~ ) — (9(a) —0(F"))

FG(- 1)+ (L (1 >><cm—a>—cm—f*>—<<p<cx>—w*>>>‘i,:
df* * *
=ﬁ<qxa>+<p< W)+ M) G - (@) el 1) ).

where the second equality follows from (8) again. If we now denote

df*

Lo— 0V max ((ncd(—f*)+(1—n)d( NG

max () o~ >>)

we have, for alh > (f*)~%(a),

0_N<((p(a)+(p( >+L¢>Z—E,

and the opposite inequality foy < (f*)~(a). By integrating oven to the left or to the right of
(f*)~1(a), we deduce that for any € [0, 1],

N < (@(0) + @(—0) + Lg)D < (@A) + @(—A) +Lo)D,

where the second inequality follows from the convexitypofntegration ovex leads to the desired
inequality.
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For a slightly more explicit expression bf, note that by differentiating (8) we obtain

af* ¢ +g(f)
dn  n@'(=f*)+ @ -ne'(f*)

Then we can rewrite the ratio

ng(—f)+1-ng(f) ¥ +e(f)

Ng'(—f)+@A-n)e'(f)  ZR@ (=) +@' ()

where we have used (8) again at the last line. This yields the expressiopdimen in the statement
of the Lemma.

SKETCH OF THE PROOF OHLEMMA 20. Putting

1 n
Rnp = —=EpE; su &f(X)],
g \/ﬁ : 8feri;LI ( )'
we have, following the proof of Lemma 2.5 in Mendelson (2002), and after applying standard

chaining techniques (see Dudley, 1978) and contraction inequalities (see Ledoux and Talagrand,
1991),

1
Rnp < C;—ZF)(Tz—I-Tn%Rn,P)%(lg)-
(Note the slight difference as corlnpared to Mendelson 2002 here as in this reference the author
assumed = 1). Now puttingB = yz(2 — p)~, we have

Rop < cBmax(t3, Tn 2R,p)z(1-2).
Now solving separately for the two terms of the above maximum, we obtain the concluskbn.

PROOF OFTHEOREM 17. The theorem is a consequence of Theorem 21 quoted in Appendix A.
The hypotheses to satisfy are exactly the same as for Theorem 1 (but for one singld-R)pdel
one can just recycle the previous proofll

PROOF OFTHEOREM 18. This theorem is again a consequence of Theorem 21 but this time we pick
a different reference spage We choose$ = F, and denotef,, = arg mincg, E[£(f)]. (Again, we
suppose here that the above minimum is attained to simplify the argument; the proof may easily be
adjusted accordingly if this is not the case.)

In this case hypothesi@ii ) is changed as compared to the previous theorem. This, in turn,
changes the definition of the factGy and hence of;. To check hypothesi§ii ) we may apply
directly Lemmas 15 and 16 from Bartlett, Jordan, and McAuliffe (2003). These imply ttpaitas
Lipschitz constant. on [—A,A] and satisfies the uniform convexity assumption

VX,y € [=A,A] w—(p(%l) >8(x—y)?,
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then for anyf € F,,
_ L? _
Imwu>—euof1s§§man—%umy
In our setting we can take = @/(A) andd = cM(A) (by second-order Taylor expansion). Thus we
can takeC, = c.¢/(A\)°M(A) L. To satisfy hypothesiiii ) we use Equation (6) again so that we can
use the sub-root function

2-p

~ 1 __2
Pa(r) = cmax(B)\rTn?,B;*pT)\ Pn 2+p> ,

with the same notation as in the proof of Theorem 1. Solving the equdsitn = r/(f)\, we then
apply Theorem 21. The constabt> 1 appearing in that theorem can be taken arbitrarily close to
1, so that with probability + exp(—9d) the following bound holds:

AT~ AT < Re(hm)+ 202

(whereR, andb, are defined in the statement of the theorem). Addiag, ) — A(f*) on each side
finishes the proof. 1

Appendix A: General Theorems for Single-Model and Model Selection Estimator
Convergence

This section is devoted to recalling, in a compact version, the statements of abstract theorems ap-
pearing in Blanchard, Bousquet, and Massart (2003) (respectively: Proposition 1 and Theorem 7 in
the latter reference).

Setup

We recall thatX denotes a measurable feature space. /lety) : R x {—1,1} — R be a loss
function. Given a functiorg : X — R, the notation/(g) is used for the functior{x,y) € X x
{=1,1} — £(g(x),y). LetP be a probability distribution oKX x {—1,1} and® a set of extended-
real functions orX such tha?(&) C Ly(P). The target functio* is defined as

g" = argminP/(Qg)
ged®
and for anyg € & we denote
L(9,9") = E[£(9)] — E[£(g")] -
Let ((Xi,Yi))i=1,...n be an i.i.dn-sample drawn from the probability distributiéhand letR, denote

the associated empirical measure. For areal fundtionX x {—1,1}, Pf is an alternative notation
for Ep[f] (so thatalsd,f = 2 57, f(X;,Y;)). We say that a functior : [0,) — [0, ) is sub-root
if it is non-negative, non-decreasing, and i~ y(r)/+/r is non-increasing for > 0.

Rate of Convergence in a Single Model

Let G be a subset af. The empirical risk minimization estimator over the mo@eis defined by

g = argminP,/(g).
0eG
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Theorem 21 Assume that there exists
e a pseudo-distance d ah
e a sub-root functionp
e constants band C

such that

(i) Vg9 €6,  P({(g)—{(d))? <d*(g,9);
(ii)) vgeG, d?(g,9") <CL(9,9");
(i) Y(xy), vge G, [(g(x),y)] <b;

and, if r denotes the solution df(r) =r/C,

(iv) VgoeG,Vr>r* E

sup I(P—Pn)(f(g)—ﬁ(go))ll < Y(r).

9eG:d?(g,go)<r
Then for all x> 0 and all K > 1 the following inequality holds with probability at leakt- e *:

. _K+1/. . r*  (2CK+ 180)x
<= I S it/ I
L(g,g)_K 1<Q|Q£L(g,g)+10(]<c+ = >

Model Selection Theorem (Deviation Bound)

Let (Gk)ken be a countable family of models with, C & for all k e N. If pen :N — R is a real
function onN, then thepenalized minimum empirical risk estimatover the family of models is
defined as

g = argmin(P,£(g) + pen(k)) .
keN,
9eCx

Theorem 22 Assume that there exist
e a pseudo-distance d a8;
e a sequence of sub-root functiof);

¢ two real, nondecreasing sequencgeg) and (Cy);

such that
(i) vo,g € 8, P((g)—£(d))? < d*(9,9);
(ii) vk e N, vg € Gy, d%(g,9%) < CkL(9,9");

(9
(i) VkeN,vge Gk, V(xy), [£9(x),y)] <b
and, if r; denotes the solution dfi(r) =r/Cy,
(iv) VkeN,Vgoe G, Vr>r; E sup |(P—Pn)(4(g) —£(90))|| < Wk(r).

geGy,
d?(g,go)<r
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Let (x) be a nondecreasing sequence of real numbers suclyibate ™ < 1. Let§ > 0,K > 1 be
some real numbers to be fixed in advance. If we define a penalty fupetiok) such that

(65K Cy + 560k ) (X + & +10g(2))
3n ’
then, for the corresponding penalized minimum empirical risk estingattire following inequality
holds with probability greater thath — exp(—§):
1

K+3
aa) < 5 ; ; * .
L(@.9") < 7 nf (glergkL(g,g )+ 2per(k)>

vke N penk) > ZSCK%" +
k

Appendix B: Details of Example 1.

First, we prove the following statements:

(i) If fissuchthati, f(x) =0, thenf € Fyifand only if A > 5 5[ f(x)].

(i) If f* (defined as in the rest of the paper) is such fhgx;) + f*(x2) = f*(x3) + f*(xq) =0,
then so isf, for all A.
PROOF Denotingz = f(x), we havef = ¥;z1,;. Foralli, Ijx; = %(go+gi), and the linear relation

Zi4:19i + 2gp = 0 holds, so that the only ways to wrifeas a combination of the base functions are
exhaustively given by

f:%(i(zwru)gwr <|225+2p> go> ,MER.

If in addition we assum§; z = 0, then the above combination isk for anyA > % Silz+H A+ [y

It is easily seen that the minimum value of this upper bound is obtaingd=dd. This proves (i).
For (ii), let f € F,. Considerf’ obtained fromf by switching its values oy, X, andxs, X4

respectively. Therf’ € F) by symmetry off, andA(f’) = A(f) by the symmetry assumption on

f*. Sof” = %(f + f’) € F, by convexity ofF, andA(f"”) < A(f) by convexity ofe; furthermore

f” satisfies the same symmetry relationsf a3 his proves (ii). |

Now for anyA > 0, putx(A) = f,(x;) > 0 andy(A) = f,(x3) > 0. Clearly these functions are
increasing and hence almost everywhere differentiable functions. From (i) and (ii) we deduce that

A =X(\)+y(A)
and that
A(Tr) =2((05+8)(—x(A)) + (0.5—8)a(X(A)) + ®(—y(A)) -
Differentiating these two equalities we get
YA +X(A) =1,
and

dAé}‘:A) — 2(X(W)[(05-B)@ (X(A)) — (0.5+3)@(~x(N))] - Y M@ (—y(M)) .

Clearly X andy must be such tha?% is the lowest possible given the constraint-y = 1.
Therefore as long a®.5—8)¢ (x(A)) — (0.54+8)@ (—x(A)) > —¢(—y(A)) we must have!(A) =0
andy' (A) = 1. Sincex(0) = y(0) = 0 andg/(0) = 1, one deduces that as long@s—A) > 25, we
havey(A) = A, x(A) =0.
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Appendix C: Refinement of the NonxoRr Condition in a Continuous Setup

In this section we give a slight refinement concerning Theorem 15. In this theorem the assumption
is that no quadruple of points is in aR condition with respect té and thatP(3A) = 0. In that
case the theorem says that we can approximate the indicatoinahe L(P) sense by taking the
sign of mixtures of stumps. We noticed that the result is unchanged if we repfabgdany set
C such that intA) c C C A (where infA) andA denote interior and closure for the usual topology
on [0,1]%). A natural idea would then be that the “naiR condition” should only be required for
points not on the boundary &t so that any problem arising with points on the boundary could be
disregarded.

If such a results holds, it means that, assuming that any four points not on the boundary of
A cannot be in a&OR position, there is a way of choosing a &such that infA) c C C A and
satisfying the full “nonxoR” requirement. The counterexample shown on the right-hand side of
Figure 1 shows that we cannot expect such a result to hold in all generality, even if the boundary
of A is of P-measure zero (consider the case where the center squar®isieasure 0, and the
boundary ofA is dense in this square).

Nevertheless, the following elementary topological lemma states that this result holds if we
assume thadA is of Lebesgue measure zero.

Lemma 23 Suppose thabA is of P-measure zero for some measure P having full suppo#s-
sume that there do not exist any four pointg,xw € X \ A in XOR position with respect to A.
Then any four points,y,z w € X cannot be inrxoR position with respect to € int(A) (the closure
of the interior of A).

PROOF Suppose thaty, Yo, Zg, Wo are inXoR position with respect t€, so thatxg, wy € C; Yo, 7 ¢ C.
We show this leads to a contradiction. Note thatx, ¥, z,w satisfy (5), then knowing, w andig
entirely determiney,z. Considetig as fixed and denote the associated application (exchanging the
ip-th coordinates} : (x,w) — (z,y) = F(x,w) from X x X into itself.

Lete be a positive real and dendB¢u, €) the opere-ball centered i. DenoteDy, = (B(xg,€) N
int(A)) andDy;, = Dy, \ 8A. Sincexo € C = int(A), Dy, is a nonempty open set and they,) > 0
sinceP has full support. Henc&’(D; ) = P(Dy,) > 0 sinceP(dA) = 0 andD{ is also a nonempty
open set. Define similarl;, and consideH = F(D; x Dy, ) andH’ = H\ (A x 8A). H is a
nonempty open set of x X becausé- is a bicontinuous bijection, s8® P(H') = P® P(H) > 0,
and therefored’ is non-void.

From this we deduce that there exigtw) € (B(xp,€) Nint(A)) x (B(wp,€) Nint(A)), and(z)y) =
F(x,w) such thatx,y,z,w satisfy (5) and that none of these four points isdfa This way we
construct a sequenc®,, yn, Z,, Wn) of quadruples satisfying (5), and convergingxgy, z,w) while
staying outside 0dA, with x,, W, € int(A). By hypothesigxn, Yn, Z,, W) are not in axor position
with respect toA, hencey, or z, must belong to intA). Therefore either infinity many,’s or
infinitely manyz,'s belong to infA). Thus,yp or zy belongs tdnt(A) = C, in contradiction with the
initial hypothesis. |
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