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Abstract
A regularized boosting method is introduced, for which regularization is obtained through a pe-

nalization function. It is shown through oracle inequalities that this method is model adaptive. The
rate of convergence of the probability of misclassification is investigated. It is shown that for quite
a large class of distributions, the probability of error converges to the Bayes risk at a rate faster than
n−(V+2)/(4(V+1)) whereV is theVC dimension of the “base” class whose elements are combined by
boosting methods to obtain an aggregated classifier. The dimension-independent nature of the rates
may partially explain the good behavior of these methods in practical problems. Under Tsybakov’s
noise condition the rate of convergence is even faster. We investigate the conditions necessary to
obtain such rates for different base classes. The special case of boosting using decision stumps is
studied in detail. We characterize the class of classifiers realizable by aggregating decision stumps.
It is shown that some versions of boosting work especially well in high-dimensional logistic addi-
tive models. It appears that adding a limited labelling noise to the training data may in certain cases
improve the convergence, as has been also suggested by other authors.

Keywords:classification, boosting, consistency, rates of convergence, decision stumps

1. Introduction

The statistical and learning-theoretical literature has witnessed a recent explosion of theoretical
work attempting to explain the often surprisingly good behavior of classification methods related to
boosting and other algorithms based on weighted voting schemes. Boosting algorithms, originally
introduced by Freund and Schapire (see Freund 1995, Freund and Schapire 1997, and Schapire
1990), are based on an adaptive aggregation of simple classifiers contained in a small “base class”.
Originally, theoretical analysis was based on the observation that ADABOOSTand related methods
tend to produce large-margin classifiers in a certain sense (see Schapire, Freund, Bartlett, and Lee
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1998; Koltchinskii and Panchenko 2002). This view was complemented by Breiman’s observation
(Breiman, 1998) that boosting performs gradient descent optimization of an empirical cost function
different from the number of misclassified samples, see also Mason, Baxter, Bartlett, and Frean
(1999), Collins, Schapire, and Singer (2000), Friedman, Hastie, and Tibshirani (2000). Based on
this new view, various versions of boosting algorithms have been shown to be consistent in different
settings, see Breiman (2000), B¨uhlmann and Yu (2003), Jiang (2003), Lugosi and Vayatis (2003),
Mannor and Meir (2001), Mannor, Meir, and Zhang (2002), Zhang (2003).

The purpose of this paper is a deeper investigation of the convergence of the probability of error
of regularized boosting classifiers by deriving bounds for the rate of convergence. The main point is
the introduction of a boosting procedure with regularization by a penalty function depending on the
`1 norm of the boosting coefficients. The main result of the paper is an oracle inequality showing
that this procedure is model adaptive, and stating in particular that the rate of convergence for the
probability of error of the associated classification rule converges to that of the Bayes classifier at a
dimension-independent rate faster thann−(V+2)/(4(V+1))—whereV is theVC dimension of the base
classifiers—for a large class of distributions. The class of distributions for which this rate holds is
defined in terms of properties of the functionf ∗ minimizing the expected cost function. If the base
classifier set is sufficiently rich, the class turns out to be quite large. The analysis also points out a
curious behavior of boosting methods: in some cases the rate of convergence can be speeded up by
adding (limited) random noise to the data!

We also note that under some additional natural assumption on the distribution, considered by
Tsybakov (2003), Nedelec and Massart (2003), and Bartlett, Jordan, and McAuliffe (2003), the rate
of convergence may be even faster.

One of the main objectives of this paper is to better understand the behavior of boosting methods
using decision stumps. This special case is studied in detail first in a simple one-dimensional setting
and then in general. We characterize the class of classifiers realizable by aggregating decision
stumps. It is shown that some versions of boosting work especially well in high-dimensional logistic
additive models in that they do not suffer from the “curse of dimensionality”.

The paper is organized as follows. In Section 2 our mathematical model of boosting classifi-
cation is described. The main results are stated in Section 3. In particular, rates of convergence
of a regularized boosting classifier are established under certain assumptions on the distribution.
The main result, Corollary 7, is then discussed in subsequent sections in which various concrete ex-
amples are considered. Our introductory example is a one-dimensional problem in which “decision
stumps” are used as a base class. This example, detailed in Section 4, sheds some light on the nature
of the assumption guaranteeing a fast rate of convergence. Also, this example reveals some inter-
esting and surprising phenomena inherent in boosting classifiers. In particular, it is pointed out that
adding random noise to the labels in the data may improve the performance of regularized boosting.
In Section 5 we investigate, in detail, the example of boosting using decision stumps in higher-
dimensional problems. We point out that a sufficient condition for fast rates of convergence is that
the conditional probability function belongs to a logistic additive model, verifying the observation
of Friedman, Hastie, and Tibshirani (2000) that boosting using decision stumps works especially
well in logistic additive models. We point out (see Corollary 12) that regularized boosting using
the logistic cost function and decision stumps has a remarkably good behavior under the additive
logistic model in high dimensional problems. We also characterize the class of classifiers that can
be realized by a convex combination of decision stumps. In Section 6 several important special
cases of base classes are studied briefly. These classes are rich enough so that they allow universally
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consistent classification and have a fast rate of convergence for a large classes of distributions. We
also emphasize the scale and rotation invariance of boosting methods based on several of these base
classes. The proof of Theorem 1 is given in Section 7.

2. Setup

The binary classification problem we consider is described as follows. Let(X,Y) be a pair of random
variables taking values inX ×{−1,1} whereX is a measurable feature space. Given a training data
of n independent, identically distributed observation/label pairsDn = (X1,Y1), . . . ,(Xn,Yn), having
the same distribution as(X,Y), the problem is to design a classifiergn : X →{−1,1} which assigns
a label to each possible value of the observation. The loss ofgn is measured by

L(gn) = P [gn(X) 6= Y|Dn] .

The minimal possible probability of error is the Bayes risk, denoted by

L∗ = inf
g

L(g) = Emin(η(X),1−η(X))

where the infimum is taken over all measurable classifiersg : X → {−1,1} and η(x) = P[Y =
1|X = x] denotes the posterior probability function. The infimum is achieved by the Bayes classifier
g∗(x) = I[η(x)>1/2]− I[η(x)≤1/2] (whereI denotes the indicator function).

The voting classifiers studied in this paper combine their decisions based on a weighted majority
vote of classifiers from a base class of classifiersC , whose elementsg : X →{−1,1} of C are called
thebase classifiers. We denote theVC dimension ofC by V and assume it is finite. For simplicity
we assume thatC is symmetric in the sense that for anyg ∈ C we also have−g ∈ C . (This is
equivalent to allowing negative weights in the voting schemes.)

We define byFλ the class of real-valued functionsf : X → R obtained as nonnegative linear
combinations of the classifiers inC with the sum of the coefficients equal toλ > 0:

Fλ =

{
f (x) =

N

∑
j=1

wjgj(x) : N ∈ N; ∀1≤ j ≤ N , gj ∈ C , wj ≥ 0;
N

∑
j=1

wj = λ

}
.

Note that the symmetry ofC implies thatFλ1
⊂ Fλ2

wheneverλ1 < λ2. Each f ∈ Fλ defines a
classifiergf by

gf (x) =
{

1 if f (x) > 0
−1 otherwise.

To simplify notation, we writeL( f ) = L(gf ) = P[gf (X) 6= Y] and

L̂n( f ) =
1
n

n

∑
i=1

I[gf (Xi) 6=Yi] .

As mentioned in the introduction, boosting methods may be viewed as iterative methods for op-
timizing a convex empirical cost function. The approach taken in this paper is similar to that of
Lugosi and Vayatis (2003) in that we ignore the dynamics of the optimization procedure and simply
consider minimizers of an empirical cost function.
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To this end, letφ : R→R
+ be a twice differentiable, strictly increasing and strictly convex func-

tion such thatφ(0) = 1 and limx→−∞ φ(x) = 0 which we call thecost function. The corresponding
risk functional and empirical risk functional are defined by

A( f ) = Eφ(−Y f(X)) and An( f ) =
1
n

n

∑
i=1

φ(−Yi f (Xi)) .

We recall from Lugosi and Vayatis (2003) the simple fact that there exists an extended-real-valued
function f ∗ minimizing A( f ) over all measurable function, given by

f ∗(x) = argmin
α∈R

{η(x)φ(−α)+ (1−η(x))φ(α)} .

We writeA∗ = A( f ∗) = inf f A( f ).
The estimates we consider take the form

f̂ λ
n = argmin

f∈Fλ

An( f ) .

(Note that the minimum may not be achieved inFλ. However, to simplify the arguments we implic-
itly assume that the minimum in fact exists. All proofs may be adjusted, in a straightforward way, to
handle appropriate approximate minimizers of the empirical cost functional.) As argued in Lugosi
and Vayatis (2003), the parameterλ may be regarded as a smoothing parameter. Large values ofλ
improve the approximation properties of the classFλ at the price of making the estimation problem
more difficult.

The estimators considered in this paper use a value ofλ chosen empirically, by minimizing a
penalized value of the empirical costAn( f̂ λ

n ). To this end, consider a sequence of real numbers
(λk)k∈N increasing to+∞ and letζ : R

+ → R
+ be a so-called penalty (or regularization) function.

Define the penalized estimator by

f̂n = argmin
k≥1

{An( f̂ λk
n )+ ζ(λk)} . (1)

The role of the penalty is to compensate for overfitting which helps find an adequate value ofλk.
For larger values ofλk the classFλk

is larger, and thereforeζ(λk) should be larger as well. By a
careful choice of the penalty, specified in Theorem 1 below, one may find a close-to-optimal balance
between estimation and approximation errors.

The main purpose of this paper is to investigate the probability of errorL( f̂n) of the classifier
gf̂n

induced by the penalized estimator. The decision functiongf̂n
may be regarded as a regularized

boosting classifier where the regularization parameterλ controls the sum of the weights of the
aggregated classifiers and is chosen by minimizing a penalized value of the empirical cost function.

Remark 1. Choosingλ in a countable set is done here to simplify the proof of the oracle inequality
in Theorem 1; the minimum overλ ∈ R

+ could also be considered with similar results up to minor
additional terms in the penalty.

Remark 2. For simplicity we assume that the base classC contains binary-valued functions and that
the class has a finiteVC dimension. However, the results may be generalized in a straightforward
way to the case whenC contains real-valued functions taking values in[−1,1]. The assumption
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of finite VC dimension may be replaced by the more general assumption that the covering num-
bersN (ε,C ,L2(Q)) are bounded bycε−V for some positive constantsc andV for any probability
distributionQ.

Remark 3. (COMPUTATIONAL ISSUES.) To compute the penalized estimatorf̂n in practice, one
may proceed by computing, for eachλk, the minimizerf̂ λk

n of the empirical cost function. This may
be done using iterative boosting algorithms which limit the sum of the weights of the base classifiers,
such as MARGINBOOST.L1 proposed by Mason, Baxter, Bartlett, and Frean (1999). Furthermore,
many other algorithms have also been proposed to solve directly the regularized boosting problems
of the type (1) when the minimization is performed over allλ > 0. We refer the reader to the recent
comprehensive review of Meir and R¨atsch (2003). For additional discussion on the algorithmic
issues we refer to Bennett, Demiriz, and R¨atsch (2002), Lugosi and Vayatis (2003).

2.1 Relation to Earlier Work

Margin bounds. The first theoretical bounds about boosting-type methods are so-called “margin
bounds”. Although the motivation for deriving these bounds was initially to study the AdaBoost
algorithm, these bounds are “agnostic” in the sense that they do not depend on the precise algo-
rithm used, and can be applied for any algorithm which returns an estimator belonging to

⋃
λ>0Fλ.

These bounds rely on the complexity of the base classC and on an empirical quantity, called mar-
gin. Schapire, Freund, Bartlett, and Lee (1998) proved the first bound of this type for boosting
algorithms, and improved rates were obtained by Koltchinskii and Panchenko (2002). Duffy and
Helmbold (2000) used the former result to study boosting-type algorithms with more general poten-
tial functions (such as the functionφ considered in this paper). Margin bounds provide an explicit
confidence interval for the generalization error, although it is recognized that the bounds obtained
are generally too loose to be of practical interest.
Oracle inequalities. As opposed to margin bounds, oracle-type inequalities refer to a precise al-
gorithm, usually some adaptive empirical loss minimization procedure over a family of models.
Oracle inequalities ensure that the adaptive estimator does “almost” as well (up to additional terms
that should be as small as possible) as the best possible function inside each model. Oracle inequal-
ities do not provide an explicit confidence interval, but a guarantee about the performance and good
behavior of the estimator with respect to a given collection of models. They allow, in particular, to
derive bounds about convergence rates of the procedures considered. This type of bound will be our
main focus in this paper.
Convergence rates and model adaptivity.An oracle inequality for the estimator defined by (1)
was derived by Lugosi and Vayatis (2003) (see also Zhang 2003 for oracle inequalities in a related
but different framework), when the penalty functionζ is of ordern−1/2. However, it was proved
by Bartlett, Jordan, and McAuliffe (2003) that, whenλ is fixed, the rate of convergence ofA( f̂ λ

n )
towards inff∈Fλ A( f ) is of ordern−(V+2)/(2(V+1))—hence strictly smaller thanO(n−1/2). This result
can be compared to the the improved rates—which were of the same order—obtained by Koltchin-
skii and Panchenko (2002) for margins bounds. One goal of the present paper is to provide an im-
proved oracle inequality that shows the adaptivity (and consistency) of the penalized estimator with
respect to these faster rates for a corresponding lighter penalty function (of order strictly smaller
than O(n−1/2)). Note that—up to our knowledge—it isnot straightforward to build an adaptive
estimator over the different modelsFλ directly from the single-model analysis of Bartlett, Jordan,
and McAuliffe (2003). In the present paper, although we use similar techniques, we require to use
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additional machinery and slightly different hypotheses for the model adaptive estimator. Additional
discussion can be found in Section 7.

3. Main Results

To study the probability of error of the classifiergf̂n
, we first investigate the magnitude ofA( f̂n)−A∗

which is well-known to be related to the differenceL( f̂n)−L∗. All subsequent results are based on
the following theorem.

Theorem 1 Assume that the cost functionφ is twice differentiable, strictly increasing and strictly
convex withφ(0) = 1 and limx→−∞ φ(x) = 0 such that the constant

Lφ = 0∨max
x∈R

(
2(φ′(x)+ φ′(−x))

φ′′
φ′ (x)+ φ′′

φ′ (−x)
− (φ(x)+ φ(−x))

)
(2)

is finite. (Here a∨b denotes the maximum of a and b.) Define

R(λ,n) = (V +2)
V+2
V+1 ((Lφ +2)φ(λ))

1
V+1 (λφ′(λ))

V
V+1 n−

1
2

V+2
V+1 ,

b(λ) = (Lφ +2)φ(λ) ,

and let(λk)k∈N be an increasing sequence in(1,+∞) such that∑k∈N λ−α
k ≤ 1 for someα > 0. Then

there exist positive constants c1,c2 such that ifζ : R
+ → R

+ satisfies

∀λ > 0, ζ(λ)≥ c1R(λ,n)+
c2b(λ)(α log(λ)+ ξ+ log(2))

n

for some positive numberξ, then, with probability at least1−exp(−ξ), the penalized estimator̂f
defined by(1) satisfies

A( f̂n)−A( f ∗)≤ 2 inf
k≥1

{
inf

f∈Fλk

(A( f )−A( f ∗))+2ζ(λk)

}
.

The proof of this theorem is given in Section 7. A few remarks are in order.

Remark 1. (CONSTANTS.) Concrete values of the constantsc1 andc2 may be obtained from the
proof. However, these values are not optimal and for clarity, and because our main focus here is on
the rate of convergence as a function of the sample size, we preferred not to specify their values.

Remark 2. (CONFIDENCE.) The definition of the penalty given in the theorem depends on the
confidence parameterξ. However, note that its role is minor since it only appears in the smaller
order second term. Indeed, for concreteness, one may take, for example,ξ = 2logn without altering
the obtained rate of convergence. This choice also allows one to deduce “almost sure” convergence
results by an application of the Borel-Cantelli lemma. The theorem presented here is derived as a
consequence of Theorem 7 in Blanchard, Bousquet, and Massart (2003). (The statement of the cited
result is given in Appendix A below.) It is also possible, with a penalty function of the same order
up to logarithmic terms, to derive similar nonasymptotic upper bounds for the expected difference
EA( f̂n)−A( f ∗) using Theorem 8 of Blanchard, Bousquet, and Massart (2003). The corresponding
result is omitted for brevity.
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Remark 3. (COST FUNCTIONS.) The properties required by Theorem 1 of the cost function are
not claimed to be necessary to derive the result. Especially the condition involving the constant
Lφ may seem unnatural, although it is not overly restrictive. In particular, the most widely used
strictly convex cost functions, the exponential and the “logit” functions satisfy the property. Indeed,
it is straightforward to check that forφ(x) = ex, Lφ = 0 while for the logit costφ = log2(1+ ex),
Lφ = 2− 2log2. We give the corresponding explicit corollary for these two cost functions (using
some straightforward upper bounds and the fact thatλ > 1):

Corollary 2 For the exponential cost functionφ(x) = exp(x), the penalty function

ζ(λ) = c1(V +2)exp(λ)λ
V

V+1 n−
1
2

V+2
V+1 +c2

exp(λ)(α logλ+ ξ)
n

,

and for the logit costφ(x) = log(1+ex) the penalty function

ζ(λ) = c3(V +2)λn−
1
2

V+2
V+1 +c4

λ(α logλ+ ξ)
n

,

(where c1,c2,c3,c4 are appropriate constants) satisfy the requirements of Theorem 1.

In particular, for the logit cost, it is interesting to note that a penalization which behaves linearly (up
to a logarithmic factor) inλ is sufficient. This corresponds to a regularization function proportional
to ||w||1, wherew is the collection of coefficients defining a positive linear combination of base
class functions. This type of regularization has been proposed by various authors (see, e.g., Meir
and Rätsch 2003 for an overview).

How restrictive is condition (2) in the case of more general cost functions? Since we assumed
that φ is twice differentiable, strictly increasing and convex,Lφ is finite if and only if the limsup
of the expression inside the maximum in (2), whenx→±∞, is not+∞. A simple sufficient con-
dition for this to hold is that there exists someL > 0 such that liminfx→−∞(φ′′/φ′)(x) > L and
limsupx→+∞(φ′/φ)(x) < L/2. Furthermore, if we assume thatη(X) takes values in[ε,1− ε] almost
surely, then by a straightforward modification of the proof of Theorem 1 (or, to be more precise,
of Lemma 19 in Section 7) one sees that in the definition ofLφ, the maximum can be restricted to
x ∈ [− f ∗ε , f ∗ε ], where f ∗ε is the value off ∗ at a pointx such thatη(x) = 1− ε. In this caseLφ is
necessarily finite. Note that this assumption onη can be enforced by adding a small flipping noise
on the data labels (see the related discussion below).

We note that Bartlett, Jordan, and McAuliffe (2003) study the role of the cost function in depth
and derive convergence results on a fixed modelFλ for much more general cost functions. The more
restrictive conditions needed here come from the fact that we consider anadaptiveestimator over
the set of models.

In the case when the distribution of the(X,Y) happens to be such that the “approximation error”
inf f∈Fλk

A( f )−A∗ vanishes for some value ofλ, the above theorem implies the following immediate

corollary for the rate of convergence ofA( f̂n) to A∗.

Corollary 3 Assume that the distribution of(X,Y) is such that there exists aλ0 > 0 such that
inf f∈Fλ0

A( f ) = A( f ∗). Under the conditions of Theorem 1, if the penalty is chosen to be

ζ(λ) = c1R(λ,n)+
c2b(λ)(α log(λ)+2logn+ log2)

n
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then for every n, with probability at least1−1/n2,

A( f̂n)−A( f ∗)≤Cn−
1
2(V+2

V+1)

where the constant C depends on the distribution, on the classF , and on the cost functionφ.

Note that the penalty function doesnot depend onλ0 above, so that the procedure is truly adaptive.
Of course, our main concern is not the behavior of the expected costA( f̂n) but the probability of

errorL( f̂n) of the corresponding classifier. However for most cost functions the differenceL( f̂n)−
L∗ may directly be related toA( f̂n)−A∗. Next we recall a simple but very useful inequality due to
Zhang (2003). This result has been generalized to a great extent by Bartlett, Jordan, and McAuliffe
(2003) for very general cost functions but we do not use the full power of their result.

Lemma 4 (ZHANG) Let φ be a nonnegative convex nondecreasing cost function such that there
exist constants c and s≥ 1 satisfying, for anyη ∈ [0,1],∣∣∣∣12−η

∣∣∣∣s≤ cs(1−H(η))

where H(η) = infα∈R (ηφ(−α)+ (1−η)φ(α)). Then for any real-valued measurable function f ,

L( f )−L( f ∗) ≤ 2c
(

E

[
(1−H(η(X)))I[gf (X) 6=g∗(X)]

])1/s

≤ 2c(A( f )−A( f ∗))1/s .

We note here that for both the exponential and the logit cost functions the condition of the lemma
is satisfied withc =

√
2 ands= 2.

Lemma 4 implies that the rate of convergence ofL( f )−L( f ∗) to zero is at least as fast as thesth
root of the rate ofA( f )−A( f ∗) to zero. The next lemma shows that, in fact, the excess probability
of errorL( f )−L( f ∗) always goes to zero strictly faster than(A( f )−A( f ∗))1/s whenevers is strictly
greater than one. (Recall that this is the case for the exponential and logit cost functions that are our
main concern in this paper.)

Lemma 5 Letφ be a nonnegative convex nondecreasing cost function such that there exist constants
c and s> 1 satisfying, for anyη ∈ [0,1],∣∣∣∣12−η

∣∣∣∣s≤ cs(1−H(η)) .

Let { fn} be a sequence of real-valued measurable functions withlimn→∞ A( fn) = A( f ∗). Then, as
n→ ∞,

L( fn)−L( f ∗)
(A( fn)−A( f ∗))1/s

→ 0 .

PROOF. The proof is based on Lemma 4 and ideas from Devroye, Gy¨orfi, and Lugosi (1996, Theo-
rem 6.5). Letε ∈ (0,1/2) be an arbitrary number. Then

L( fn)−L( f ∗)

868



RATE OF CONVERGENCE OF BOOSTING CLASSIFIERS

= E

[
|2η(X)−1|I[gfn(X) 6=g∗(X)]

]
(see, e.g., Devroye, Gy¨orfi, and Lugosi 1996, Theorem 2.2)

= E

[
|2η(X)−1|I[gfn(X) 6=g∗(X)]I[|η(X)−1/2|≤ε]

]
+E

[
|2η(X)−1|I[gfn(X) 6=g∗(X)]I[|η(X)−1/2|>ε]

]
≤ E

[
|2η(X)−1|sI[gfn(X) 6=g∗(X)]

]1/s

·
(

P

[
gfn(X) 6= g∗(X), |η(X)−1/2| ≤ ε,η(X) 6= 1

2

](s−1)/s

+P [gfn(X) 6= g∗(X), |η(X)−1/2|> ε](s−1)/s

)
(by Hölder’s inequality applied for both terms)

Using the assumption onφ,

E

[
|2η(X)−1|sI[gfn(X) 6=g∗(X)]

]
≤ (2c)s

E

[
(1−H(η(X)))I[gfn(X) 6=g∗(X)]

]
≤ (2c)s(A( fn)−A( f ))

by Lemma 4. Thus, it suffices to prove that the sum of the two probabilities above may be made
arbitrarily small for largen, by an appropriate choice ofε. To this end, first note that for any fixedε,

lim
n→∞

P [gfn(X) 6= g∗(X), |η(X)−1/2|> ε] = 0

because otherwiseL( fn)− L( f ∗) would not converge to zero, contradicting the assumption that
A( fn)−A( f ∗) converges to zero (by Lemma 4). On the other hand,

P

[
gfn(X) 6= g∗(X), |η(X)−1/2| ≤ ε,η(X) 6= 1

2

]
≤ P

[
|η(X)−1/2| ≤ ε,η(X) 6= 1

2

]
which converges to zero asε→ 0, and the proof is complete.

Thus, whens> 1, L( fn)−L( f ∗) converges to zero faster than(A( fn)−A( f ∗))1/s for all distri-
butions. However, to obtain nontrivial bounds for the ratio of these two quantities, one has to impose
some assumptions on the underlying distribution. This may be done by following Tsybakov (2003)
who pointed out that under certain low-noise assumptions on the distribution much faster rates of
convergence may be achieved. Tsybakov’s condition requires that there exist constantsα ∈ [0,1]
andβ > 0 such that for any real-valued measurable functionf ,

P[gf (X) 6= g∗(X)]≤ β(L( f )−L∗)α . (3)

Notice that all distributions satisfy this condition withα = 0 andβ = 1, while larger values ofα
place more restriction on the distribution. Intuitively, a large value ofα means that the probability
that η(X) is close to 1/2 is small. In the extreme case ofα = 1 it is easy to see thatη(X) stays
bounded away from 1/2 with probability one. For more discussion on the meaning of this condition
we refer to Tsybakov (2003) and Bartlett, Jordan, and McAuliffe (2003). In Bartlett, Jordan, and
McAuliffe (2003) it is shown that under Tsybakov’s noise condition, the rate in Lemma 4 may be
improved as follows.
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Lemma 6 (BARTLETT, JORDAN, AND McAULIFFE) Let φ be a cost function satisfying the condi-
tions of Lemma 4 and assume that condition (3) holds for someα ∈ [0,1] andβ > 0. Then

L( f )−L( f ∗)≤
(

2sc
β1−s(A( f )−A( f ∗))

)1/(s−sα+α)

.

For the cost functions that are most important for the present paper,s= 2 and in that case, asα
moves from zero to one, the exponent 1/(s−sα+ α) changes from 1/2 to 1. Thus, large values of
α significantly improve the rates of convergence ofL( f ) to L∗.

Combining Corollary 3 with Lemmas 4, 5, and 6 we obtain the following result. Even though it
may be generalized trivially for other cost functions, for concreteness and simplicity we only state it
for the two cost functions that have been most important in various versions of boosting classifiers.
Recall that for both of these cost functions the condition of Lemma 4 is satisfied withs= 2.

Corollary 7 Let φ be either the exponential or the logit cost function and consider the penalized
estimatef̂n of Corollary 3. Assume that the distribution of(X,Y) is such that there exists aλ > 0
such thatinf f∈Fλ A( f ) = A( f ∗). Then for every n, with probability at least1−1/n2, the probability

of error L( f̂n) of the associated classifier satisfies

L( f̂n)−L∗ ≤Cn−
1
4(V+2

V+1)

where the constant C depends on the distribution, on the classF , and on the cost functionφ. Also,
with probability one,

lim
n→∞

(
L( f̂n)−L∗

)
n

1
4(V+2

V+1) = 0 .

If, in addition, condition (3) holds for someα ∈ [0,1] and β > 0, then with probability at least
1−1/n2,

L( f̂n)−L∗ ≤Cn−
1

2(2−α) (V+2
V+1) .

Corollary 7 is the main result of this paper on which the rest of the discussion is based. The
remarkable fact about this corollary is that the obtained rate of convergence is independent of the
dimension of the space in which the observations take their values. The rates depend on theVC

dimension of the base class which may be related to the dimension of the input space. However,
this dependence is mild and even ifV is very large, the rates are always faster thann−1/(2(2−α)). In
the rest of the paper we consider concrete examples of base classes and argue that the class of dis-
tributions for which such surprisingly fast rates can be achieved can be quite large. The dependence
on the dimension is mostly reflected in the value of the constantC. Recall from Theorem 1 that the
value ofC is determined by the smallest value ofλ for which inff∈Fλ A( f ) = A( f ∗) and its depen-
dence onλ is determined by the cost functionφ. For complex distributions, high-dimensional input
spaces, and simple base classes, this constant will be very large. The main message of Corollary 7 is
that, as a function of the sample sizen, the probability of error converges at a fast rate, independently
of the dimension. To understand the meaning of this result, we need to study the main condition on
the distribution, that is, that the minimizerf ∗ of the expected cost falls in the closure ofFλ (in the
sense that inff∈Fλ A( f ) = A( f ∗)) for some finite value ofλ. In the next sections we consider several
concrete important examples which help understand the real meaning of Corollary 7.
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Remark. (APPROXIMATION ERROR). In Corollary 7 we only consider the case where
inf f∈Fλ A( f ) = A( f ∗) for some finite value ofλ. In this paper we focus on this simplest situation and
try to understand the nature of the distributions satisfying such conditions. On the other hand, under
general conditions it can be guaranteed that the approximation error inff∈Fλ A( f )−A( f ∗) converges
to zero asλ → ∞, see, for example, Lugosi and Vayatis (2003), and Section 6 of the present paper.
In this case Theorem 1 implies thatA( f̂n) → A( f ∗) with probability one, so that the procedure is
always consistent (thus improving the results of Lugosi and Vayatis (2003) since the penalty we
consider in the present paper is of strictly smaller order inn). Furthermore, Theorem 1 tells us
more: the penalized procedure effectively finds a tradeoff between the approximation properties of
the setsFλ and the estimation error. A precise study of these approximation properties and of the
corresponding rates of convergence is a complex, important, and largely unexplored problem.

4. Decision Stumps on the Real Line

In this section we consider the simple one-dimensional case whenX = [0,1] and when the base class
contains all classifiersg of the formg(x) = s+

t (x) = I[x≥t]− I[x<t] and of the formg(x) = s−t (x) =
I[x<t]− I[x≥t] wheret ∈ [0,1] can take any value. (We note here that all results of this section may be
extended, in a straightforward way, to the case whenX = R by the scale invariance of the estimates
we consider.) Clearly, theVC dimension ofC is V = 2. In order to apply Corollary 7 it remains to
describe the class of distributions satisfying its conditions. The next lemma states a simple sufficient
condition.

Lemma 8 Assume that the cost function and the distribution of(X,Y) are such that the function f∗

is of bounded variation. If| · |BV denotes the total variation, define| f |BV,0,1 = 1
2( f ∗(0)+ f ∗(1)+

| f ∗|BV). Theninf f∈Fλ A( f ) = A( f ∗) wheneverλ≥ | f ∗|BV,0,1.

PROOF. Assume thatf ∗ has a bounded variation. Thenf ∗ may be written as a sum of a nondecreas-
ing and a nonincreasing function. A nondecreasing functionh on [0,1] may be approximated by a
finite mixture of stumps as follows. DenoteC = h(1)− h(0). Let N be a positive integer and let
t1, . . . , tN be 1/N, . . . ,N/N-quantiles ofh, that is,ti = sup{x : h(x) < h(1)i/N}, i = 1, . . . ,N. Then
the function

h̃(x) = h(0)+
N

∑
i=1

C
N

I[x≥ti ] =
h(1)+h(0)

2
s+
0 (x)+

N

∑
i=1

C
2N

s+
ti (x)

is at mostC/N away fromh in the supremum norm. Note also thath̃ ∈ F|h|BV,0,1
. Similarly, a

nonincreasing functiong may be approximated by a functioñg∈ F|g|BV,0,1
such that supx∈[0,1] |g(x)−

g̃(x)| ≤ (g(0)−g(1))/N. Thus, the functioñf = h̃+ g̃ is such that

sup
x∈[0,1]

| f ∗(x)− f̃ (x)| ≤ h(1)−h(0)+g(0)−g(1)
N

=
| f ∗|BV

N

and moreover̃f ∈ F| f ∗|BV,0,1 since|h|BV + |g|BV = | f ∗|BV. Thus, sinceN is arbitrary, f ∗ is in the
closure ofF| f ∗|BV,0,1

with respect to the supremum norm. The statement now follows by the continuity
of φ and the boundedness of the functions in the closure ofF| f ∗|BV,0,1

with respect to the supremum
norm.
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Thus, the fast rates of convergence stated in Corollary 7 can be guaranteed wheneverf ∗ is
everywhere finite and has a bounded variation. Recall that for the exponential cost functionf ∗ =
(1/2) log(η/(1−η)) and for the logit cost functionf ∗ = log(η/(1−η)). In both cases, it is easy
to see thatf ∗ has a bounded variation if and only ifη is bounded away from zero and one and has
a bounded variation. In particular, we obtain the following corollary matching the minimax rate of
convergence for the probability of error obtained with a different method by Yang (1999a).

Corollary 9 Let X∈ [0,1]. Let φ be either the exponential or the logit cost function and consider
the penalized estimatêfn of Corollary 3 based on decision stumps on the real line. If there exists
a constant b> 0 such that b≤ η(X)≤ 1−b with probability one andη has a bounded variation,
then for every n, with probability at least1−1/n2, the probability of error L( f̂n) of the associated
classifier satisfies

L( f̂n)−L∗ ≤Cn−
1
3

where the constant C depends on b and|η|BV. Also, with probability one,

lim
n→∞

n
1
3

(
L( f̂n)−L∗

)
= 0 .

If, in addition, condition (3) holds for someα ∈ [0,1] andβ > 0, then for every n, with probability
at least1−1/n2,

L( f̂n)−L∗ ≤Cn−
2

3(2−α) .

The dependence of the value of the constantC on b and|η|BV may be determined in a straight-
forward way from Theorem 1. Ifλk is the smallest value for which inff∈Fλk

A( f ) = A∗, then the

constantC in the first inequality is proportional to
(
(Lφ +2)φ(λk)

) 1
6 (λkφ′(λk))

1
3 . Clearly,λk can be

bounded as a function ofb and|η|BV as shown in Lemma 8. Concrete values are given in Corollary
12 below in the more general multivariate case.

The condition thatη(x) is bounded away from zero and one may seem to be quite unnatural at
first sight. Indeed, values ofη(x) close to zero and one mean that the distribution has little noise and
should make the classification problem easier. However, regularized boosting methods suffer when
faced with a low-noise distribution since very large values ofλ are required to drive the approx-
imation error inff∈Fλ A( f )−A∗ close to zero. (Note, however, that even whenη does not satisfy
the conditions of Corollary 9, limn→∞ L( f̂n) = L∗ almost surely, under a denseness assumption, by
Corollary 7.) The next simple example illustrates in part that phenomenon: indeed, ifλ is not suffi-
ciently large to makeFλ contain f ∗, then the classifier minimizingA( f ) overFλ may indeed have a
very large probability of error because the function minimizing theA-risk puts all its mass on points
for which η is close to 0 or 1, while “neglecting” other points.

Example 1. (MINIMIZING A COST FUNCTION FOR A FIXED λ MAY BE BAD .) This example shows
a situation in which ifλ is not large enough, even though the classFλ contains a functionf such
that the corresponding classifiergf equals the Bayes classifierg∗, the function f λ minimizing the
expected costA( f ) overFλ induces a classifier with a significantly larger probability of error.

Consider a simple problem where the distribution ofX is atomic, distributed uniformly on the
four pointsx1, . . . ,x4. The base classC contains five classifiers: for eachi = 1, . . . ,4 there is a
gi(x) = 2I[x=xi ]− 1 and alsoC contains the trivial classifierg0(x) ≡ 1. Obviously, for anyλ > 0,
the functions inFλ induce all possible 16 classifiers on the four-point setX = {x1, . . . ,x4}. Now
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consider the distribution defined byη(x1) = 1/2+ δ, η(x2) = 1/2− δ, η(x3) = 1, andη(x4) = 0.
Then it is easy to show that ifφ is a convex strictly increasing differentiable cost function andλ0

is such thatφ′(−λ0) = 2δ, then for anyλ ≤ λ0, the optimizer of the cost functionf λ puts positive
weight onx3 andx4 and zero weight onx1 andx2 and thus has a probability of errorL(gf λ

) = 1/4
while the Bayes error isL∗ = 1/4− δ/2. The details of the proof are given in Appendix B. Note
that the fact thatη is 1 and 0 onx3 andx4 is only to make the example simpler; we could assume
η(x3) = 1/2+ ∆, η(x4) = 1/2−∆ with ∆ > δ and observe a comparable behavior.

If η can be arbitrarily close to 0 and 1, thenf ∗ takes arbitrarily large positive or negative values
and thus cannot be in anyFλ (since functions in this set take values in[−λ,λ]). However, one
may easily force the condition of Corollary 9 to hold by adding some random noise to the data.
Indeed, if, for example, we define the random variableY′ such that it equalsY with probability
3/4 and−Y with probability 1/4, then the functionη′(x) = P[Y′ = 1|X = x] = 1/4+ η(x)/2 takes
its values in the interval[1/4,3/4] (a similar transformation was also proposed by Yang 1999a,
Yang 1999b). More importantly, the Bayes classifierg′ for the distribution(X,Y′) coincides with
the Bayes classifierg∗ of the original problem. Also, recalling from Devroye, Gy¨orfi, and Lugosi
(1996) that for any classifierg,

L(g)−L∗ = EI[g(X) 6=g∗(X)]|2η(X)−1|

and denoting the probability of error ofg under the distribution of(X,Y′) by L′(g) and the corre-
sponding Bayes error byL′∗, we see that for any classifierg,

L(g)−L∗ = 2(L′(g)−L′∗) . (4)

This means that if one can design a classifier which performs well for the “noisy” problem(X,Y′),
then the same classifier will also work well for the original problem(X,Y). Thus, in order to enlarge
the class of distributions for which the fast rates of convergence guaranteed by Corollary 9 holds,
one may artificially corrupt the data by a random noise, replacing each labelYi by a noisy version
Y′

i as described above. Then the distribution of the noisy data is such thatη′(x) is bounded away
from zero. If we also observe that|η′|BV = (1/2)|η|BV and that ifη(x) satisfies condition (3) for
someα ∈ [0,1] andβ > 0 thenη′(x) also satisfies condition (3) with the sameα ∈ [0,1] but with
β′ = 2αβ, we obtain the following corollary.

Corollary 10 Let X∈ [0,1]. Letφ be either the exponential or the logit cost function and consider
the penalized estimatêfn based on decision stumps, calculated based on the noise-corrupted data
set described above. Ifη(x) has a bounded variation, then for every n, with probability at least
1−1/n2, the probability of error L( f̂n) of the associated classifier satisfies

L( f̂n)−L∗ ≤Cn−
1
3

where the constant C depends only on|η|BV. If, in addition, condition (3) holds for someα ∈ [0,1]
andβ > 0, then

L( f̂n)−L∗ ≤Cn−
2

3(2−α) .

Of course, by corrupting the data deliberately with noise one loses information, but it is a curious
property of the regularized boosting methods studied here that the rate of convergence may be
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sped up considerably for some distributions. (Indeed, this fact was already pointed out by Yang
in establishing general minimax rates of convergence in various settings (see Yang 1999a, Yang
1999b).) Besides, recall that, in the case we consider a cost functionφ such that the constantLφ is
infinite in Equation (2), Theorem 1 cannot be applied in general; however since the noise-degraded
η′ is bounded away from 0 and 1,Lφ can be replaced by some finite constant (see the remark
about cost functions following Theorem 1), and hence Theorem 1 can be applied for the noisy
distribution. For many distributions, the performance deteriorates by adding noise, but at least the
rate of convergence is guaranteed to stay the same, and only the value of the constantC will be
affected. Unfortunately, it is impossible to test whetherη is bounded away from zero or not, and
it may be safe to add a little noise. Of course, the level of the added noise (i.e., the probability of
flipping the labels in the training set) does not need to be the 1/4 described above. Any strictly
positive value may be used and Corollary 10 remains true. While a more precise study is out of the
scope of this paper, let us just remark that a sensible choice of the noise level based on the present
bounds should be able to find a tradeoff between the improvement of the bias in theA-risk and the
performance degradation as appearing in Equation (4).

Finally, a natural question is whether the improved convergence rate that could be obtained
by adding a small labelling noise to the training data really is a practical consequence of using a
“surrogate” convex loss (the functionφ) instead of the 0− 1 loss, or if it is just an artefact of the
analysis. Namely, consider a case where the data is completely separable with some marginθ > 0
by some functionf ∈ F1. In this situation the margin bounds of Koltchinskii and Panchenko (2002)
ensure that the convergence rates are as fast as in our analysis, and no labelling noise is needed.
However, in a generic situation the problem with using the surrogateA-risk is the disequilibrium
between regions where the target functionf ∗ is very large or even infinite, and other regions where
it is relatively small (of course in such a situation the data is not separable). In this situation, it may
very well happen that the estimator will tend to concentrate all of its efforts on the former regions
while neglecting the latter, as was shown prototypically in Example 1. Then, adding a small amount
of noise could effectively bring the estimator to improve on the latter regions, which would have a
definite effect on generalization error. Whether adding noise artificially is helpful in practice should
be investigated by an adequate experimental study.

5. Decision Stumps in Higher Dimensions

5.1 Stumps and Generalized Additive Models

In this section we investigate the case whenX = [0,1]d and the base classC contains all “decision
stumps”, that is, all classifiers of the forms+

i,t(x) = I[x(i)≥t]− I[x(i)<t] ands−i,t(x) = I[x(i)<t]− I[x(i)≥t],

t ∈ [0,1], i = 1, . . . ,d, wherex(i) denotes thei-th coordinate ofx.
An important property of boosting using decision stumps is that of scale invariance. Indeed,

if each component of the observation vectorsXi is transformed by a (possibly different) strictly
monotone transformation then the resulting classifier does not change. This remark also implies that
the assumption that the observations take their values from the bounded set[0,1]d is not essential,
we use it for convenience.

A straightforward extension of the proof of Lemma 8 in the previous section shows that the
closure ofFλ with respect to the supremum norm contains all functionsf of the form

f (x) = f1(x(1))+ · · ·+ fd(x(d))
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where the functionsfi : [0,1]→ R are such that| f1|BV,0,1 + · · ·+ | fd|BV,0,1 ≤ λ. Therefore, iff ∗ has
the above form, we have inff∈Fλ A( f ) = A( f ∗).

Recalling that the functionf ∗ optimizing the costA( f ) has the form

f ∗(x) =
1
2

log
η(x)

1−η(x)

in the case of the exponential cost function and

f ∗(x) = log
η(x)

1−η(x)

in the case of the logit cost function, we see that boosting using decision stumps is especially well
fitted to the so-called additive logistic model in whichη is assumed to be such that log(η/(1−η))
is an additive function (i.e., it can be written as a sum of univariate functions of the components of
x), see Hastie and Tibshirani (1990). The fact that boosting is intimately connected with additive
logistic models of classification has already been pointed out by Friedman, Hastie, and Tibshirani
(2000). The next result shows that indeed, whenη permits an additive logistic representation then
the rate of convergence of the regularized boosting classifier is fast and has a very mild dependence
on the distribution.

Corollary 11 Let X∈ [0,1]d with d≥ 2. Let φ be either the exponential or the logit cost function
and consider the penalized estimatef̂n of Corollary 3 based on decision stumps. Let V2 = 3, V3 =
4,V4 = 5, and for d≥ 5, Vd = b2log2(2d)c. If there exist functions f1, . . . , fn : [0,1]→R of bounded

variation such thatlog η(x)
1−η(x) = ∑d

i=1 fi(x(i)) then for every n, with probability at least1−1/n2, the

probability of error L( f̂n) of the associated classifier satisfies

L( f̂n)−L∗ ≤Cn
− 1

4

(
Vd+2
Vd+1

)

where the constant C depends on∑d
i=1 | fi |BV,0,1. If, in addition, condition (3) holds for someα∈ [0,1]

andβ > 0, then

L( f̂n)−L∗ ≤Cn
− 1

2(2−α)

(
Vd+2
Vd+1

)
.

PROOF. The statements follow from Corollary 7. The only detail that remains to be checked is the
VC dimensionVd of the classC of decision stumps. This may be bounded by observing that the
shatter coefficient (i.e., the maximum number of different waysn points in[0,1]d can be classified
using decision stumps) is at most min(2d(n+1),2n). Thus, ford≥ 5, 2d(n+1) < 2n if and only if
n> log2(2d)+ log2(n+1) which is implied byn > 2log2(2d). Ford≤ 4, just notice that decisions
stumps are linear splits and theVC dimension of the class of all linear splits inRd equalsd+1.

Remark. (DEPENDENCE ON THE DIMENSION.) Under the assumption of the additive logistic
model, the rate of convergence is of the order ofn(2(2−α))−1(Vd+2/Vd+1) whereVd depends ond in a
logarithmic fashion. Even for large values ofd, the rate is always faster thann−1/2(2−α). It is also
useful to examine the dependence of the constantC on the dimension. A quick look at Theorem 1
reveals thatC in the first inequality of Corollary 11 may be bounded by a universal constant times√

Vdφ(λ)1/Vdλφ′(λ) whereλ is the smallest number such that inff∈Fλ A( f ) = A∗. Thus, we may
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take λ = ∑d
i=1 | fi |BV,0,1. SinceVd = b2log2(2d)c, the dependence on the dimension is primarily

determined by the growth of the cost functionφ. Here there is a significant difference between the
behavior of the exponential and the logistic cost functions in high dimensions. For the purpose
of comparison, it is reasonable to consider distributions such thatλ = ∑d

i=1 | fi |BV,0,1 is bounded
by a linear function ofd. In that case the constantC depends ond asO(

√
ded logd) in the case

of the exponential cost function, but only asO(
√

d logd) in the case of the logistic cost function
(using directly Theorem 1 instead of the upper bound mentioned above). In summary, regularized
boosting using the logistic cost function and decision stumps has a remarkably good behavior under
the additive logistic model in high dimensional problems, as stated in the next corollary.

Corollary 12 Let X∈ [0,1]d with d≥ 2. Letφ be the logit cost function and consider the penalized
estimatef̂n of Corollary 3 based on decision stumps. Let B be a positive constant. If there exist
functions f1, . . . , fn : [0,1] → R with λ = ∑d

i=1 | fi |BV,0,1 ≤ Bd such thatlog η(x)
1−η(x) = ∑d

i=1 fi(x(i))

then for every n, with probability at least1−1/n2, the probability of error L( f̂n) of the associated
classifier satisfies

L( f̂n)−L∗ ≤C
√

d logd n
− 1

4

(
Vd+2
Vd+1

)
where C is a universal constant and Vd is as in Corollary 11. If, in addition, condition (3) holds for
someα ∈ [0,1] andβ > 0, then

L( f̂n)−L∗ ≤C(d logd)
1

2−α n
− 1

2(2−α)

(
Vd+2
Vd+1

)
.

Remark 1. (ADDING NOISE.) Just like in the one-dimensional case, the conditions of Corollary
11 require thatη be bounded away from zero and one. To relax this assumption, one may try to add
random noise to the data, just like in the one-dimensional case. However, this may not work in the
higher-dimensional problem because even iff ∗ is an additive function, it may not have this property
any longer after the noise is added.

Remark 2. (CONSISTENCY.) The results obtained in this paper (for instance, Corollary 7) imply
the consistency of the classifier̂fn under the only assumption thatf ∗ may be written as a sum of
functions of the components, that is, thatL( f̂ ) → L∗ almost surely. The additional assumption on
the bounded variation of the components guarantees the fast rates of convergence. However, iff ∗ is
not an additive function, consistency cannot be guaranteed, and the example of the previous section
shows that boosting is not robust in the sense that it is not even guaranteed to perform nearly as well
as the best classifier contained in the class. Still, it is important to understand the structure of the
classifiers that can be realized by aggregating decision stumps. The rest of this section is dedicated
to this problem.

5.2 Set Approximation Properties of Mixtures of Stumps

In what follows we investigate what kind of setsA⊂ [0,1]d can be well approximated by sets of the
form Af = {x| f (x) > 0}, where f ∈ Fλ is a linear combination of decision stumps.

It helps understand the main properties of these sets if we first consider the discrete case, that
is, whenX is a grid of the formX = {0,1/k, . . . ,k/k}d. If d = 1, obviously any function can be
written as a mixture of stumps since it is always of finite variation in this discrete setting.
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Figure 1: Points or regions belonging to the setA are in black. Left: four points inXOR position. Right: a
counterexample to Theorem 14 whenX is not a cube: if the center square is not part ofX , the
non-XOR requirement is satisfied, but any way to “extend”X andA to the center square will lead
to a creation of anXOR position.

Next consider the cased = 2. It is then easy to see that if a setA is obtained as the support of the
positive part of an additive function of the formf (x) = f1(x(1))+ f2(x(1)) then there cannot exist
four pointsx,y,z,w, such that these points are the corners of a rectangle aligned with the axes, the
two corners on one diagonal are elements ofA, and the two points of the other diagonal are not inA.
We call this the “XOR” position. It turns out that this simple property, which we call for brevity the
“non-XOR requirement”, is actually a necessary and sufficient condition for a set to be of the form
Af for f ∈ Fλ for anyλ > 0.

Next we generalize this idea tod-dimensions and characterize completely the sets one can obtain
with the additive models in the discrete setting. For this we need a more general definition of the
XOR position (see also Figure 1).

Definition 13 Let X = {0,1/k, . . . ,k/k}d and A⊂ X . We say that four points x,y,z,w are in XOR

position with respect to A if there exists an1≤ i0 ≤ d such that{
x(i0) = y(i0), z(i0) = w(i0);

x(i) = z(i), y(i) = w(i), for i 6= i0;
(5)

and x,w∈ A but y,z 6∈ A.

For a discrete grid we have the following characterization of sets realizable as the positive part
of the mixture of stumps. Recall that a setS is called a monotone layer inRd if it has one of the
following properties: either (1) for anyx∈ Sall pointsy≤ x are also inS, or (2) for anyx∈ Sall
pointsy≥ x are also inS. (We say thaty≤ x if the inequality holds componentwise.)

Theorem 14 Let X = {0,1/k, . . . ,k/k}d and A⊂ X . The following properties are equivalent:
(i) There exists f such that A= {x| f (x) > 0} where f(x) = f1(x(1))+ . . .+ fd(x(d));
(ii) There does not exist any x,y,z,w∈ X in XOR position with respect to A;
(iii) A can be transformed into a monotone layer by a permutation of the order along each axis,

that is, there exist permutationsσ1, . . . ,σd of {0, . . . ,k} such that the image of A by the function
s : x = (i1/k, . . . , id/k) 7→ s(x) = (σ1(i1)/k, . . . ,σd(id)/k) is a monotone layer.
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PROOF. (i) ⇒ (ii): consider four pointsx,y,z,w satisfying (5). Suppose thatx,w ∈ A andy 6∈ A,
which meansf (x), f (w) > 0, f (y) ≤ 0. Note that condition (i) and (5) imply thatf (x)+ f (w) =
f (y)+ f (z). Hence we must havef (z) > 0 and the points cannot be inXOR position.

(ii) ⇒ (iii): consider “slices” ofX perpendicular to the first coordinate axis, that is,S1
i ={

x∈ X |x(1) = i/k
}

. Define an order on the slices by saying thatS1
i � S1

j if and only if for any
x= (i/k,x2, . . . ,xd) ∈ S1

i , if we denotey= ( j/k,x2, . . . ,xd) ∈ S1
j , thenI[A(x)] ≤ I[A(y)]. Now, note that

(ii) implies that this order is total, that is, for anyi, j eitherS1
i � S1

j or S1
j � S1

i . As a consequence,
we can rearrange the order along the first coordinate using a permutationσ1, so that the slices are
sorted in increasing order. By doing this we do not alter the non-XOR property, hence we can repeat
the corresponding procedure along all the other coordinates. It is then easy to see that the image of
A by these successive reorderings is now a monotone layer.

(iii) ⇒ (i): first note that any monotone layer can be represented as a set of the form described
in (i). Therefore, any set obtained from a monotone layer by permutations of the order along each of
the axes can also be represented under this form, since it is just a matter of accordingly rearranging,
separately, the values off1, . . . , fd.

Note that it is essential in the last theorem thatX is an hypercube[0,1]d. In Figure 1 we show
a contrived counterexample whereX is not a cube and satisfies condition (ii) of the above theorem;
yet it is not possible in this case to find a functionf satisfying (i), because there is no way to
“complete” the middle square so that the non-XOR requirement is still satisfied.

In the general case whenX = [0,1]d, we can derive, based on the discrete case, an approximation
result for sets whose boundary is of measure zero. The approximation is understood in the sense
of L1 distance between indicators of sets with respect to the probability measure ofX on X (or,
equivalently, the measure of the symmetric difference of the sets). Note that this distance is always
at least as large as the excess classification error.

Theorem 15 Let A⊂ X be a set whose boundaryδA is of measure zero. Suppose there do not exist
four points x,y,z,w ∈ X in XOR position with respect to A. Then there exists a sequence( fn) of
linear combinations of decision stumps such that

lim
n→∞

P[|I[ fn(X)>0]− I[X∈A]|]→ 0 .

PROOF. We approximateX by discrete grids. Fix somen∈N and forI = (i1, . . . , id)∈{0, . . . ,n−1}d

denotexI = (i1/n, . . . , id/n) and letB(I) be the closed boxxI +[0,1]d. Let ∆n be the set of indicesI
such thatB(I) contains at least a point of the boundary ofA, andBn = ∪I∈∆nB(I).

Now consider the discrete setXn =
{

xI , I ∈ {0, . . . ,n−1}d
}

and the projectionAn = A∩Xn.

Now in Xn, An satisfies the hypothesis (ii) of Theorem 14, and hence (i) is satisfied as well and there
exists a functionfn(x) = fn,1(x(1))+ . . .+ fn,d(x(d)) defined forx∈Xn with An = {x∈ Xn| f (x) > 0}.
Extend the functionsfn, j on [0,1] by defining (with some abuse of notation)fn, j(i/n+ε) = fn, j(i/n)
for ε ∈ (0,1/n). Obviously, the extended functionsfn, j are still mixtures of stumps.

Let now gn(x) = I[ fn(x)>0],x ∈ X . We havegn(x) = I[A(x)] for x 6∈ Bn, by construction, and
therefore

P[|I[ fn(X)>0]− I[X∈A]|]≤ P[X ∈ Bn] ,

which converges to zero asn→ ∞, sinceI[Bn] → I[δA] pointwise.
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Remark. (DISREGARDING THE BOUNDARY.) Since we concentrate on setsA with boundary of
measure 0, it is equivalent in the sense of theL1 distance between sets to considerA, its closureA or
its interior int(A). One could therefore change the above theorem by stating that it is sufficient that
the “non-XOR requirement” be satisfied by some setC such that int(A)⊂C⊂ A. It would be even
nicer, if only of side interest, only to take into account quadruples of points not on the boundary
of A to satisfy the non-XOR requirement, so that any problem arising with the boundary may be
disregarded. In Appendix C we show that this is actually the case wheneverP(δA) = 0 for some
measureP having full support, e.g., the Lebesgue measure).

The theorems above help understand the structure of classifiers that can be realized by a linear
combination of decision stumps. However, for boosting to be successful it is not enough that the
Bayes classifierg∗ can be written in such a form. It may happen that even thoughg∗ is in the class of
classifiers induced by functions inFλ, the classifier corresponding tof λ minimizing the costA( f )
in Fλ is very different. This is the message of Example 1 above. The next example shows a similar
situation in whichfor anyλ > 0 there exists anf ∈ Fλ such thatgf = g∗.

Example 2. (BAYES CLASSIFIER MAY BE DIFFERENT FROM THE ONE CHOSEN BY BOOSTING.)
Consider a two-dimensional problem with only two non-trivial classifiers inC given by two linear
separators, one vertical and one horizontal, and the trivial classifier assigning−1 to everything. We
have four regions (denoted

(D1 D2
D3 D4

)
) and only three parameters (only one parameter per classifier

including the trivial one). By considering only symmetric situations whereη is the same onD1 and
D4, we see thatf , the function minimizingA( f ) over

⋃
λ>0Fλ, must also be symmetric and hence

we reduce (after re-parameterization) to two parametersa,b. The minimizer f is then of the form

f =
(

(a+b)/2 a
b (a+b)/2

)
.

First consider a situation in whichX falls in D1 or D4 with probability zero. Then in this case
f = f ∗ on D2 andD3. Furthermore, by choosingη suitably in these regions, one may assume that
a > 0 > b but a+ b > 0. Now suppose that we put a tiny positive weightε on regionsD1 andD4,
with the Bayes classifier on these regions being class−1. But by continuity, the associatedf ε will
stay positive on these regions ifε is small enough. Thengf ε

6= g∗ on these regions, while obviously

for anyλ > 0 we can find an appropriate functionf ∈Mλ such thatgf = g∗ =
(−1 1
−1 −1

)
in this case.

6. Examples of Consistent Base Classes

The results of the previous section show that using decision stumps as base classifiers may work
very well under certain distributions such as additive logistic models but may fail if the distribution
is not of the desired form. Thus, it may be desirable to use larger classes of base classifiers in order
to widen the class of distributions for which good performance is guaranteed. Recent results on
the consistency of boosting methods (see, e.g., Breiman 2000, B¨uhlmann and Yu 2003, Jiang 2003,
Lugosi and Vayatis 2003, Mannor and Meir 2001, Mannor, Meir, and Zhang 2002, Zhang 2003)
show that universal consistency of regularized boosting methods may be guaranteed whenever the
base class is so that the class of linear combinations of base classifiers is rich enough so that every
measurable function can be approximated. In this section we consider a few simple choices of base
classes satisfying this richness property. In particular, we recall here the following result (Lugosi
and Vayatis, 2003, Lemma 1):

Lemma 16 (LUGOSI AND VAYATIS ) Let the classC be such that its convex hullF1 contains all
the indicators of elements ofB0, a subalgebra of the Borelσ-algebraB(Rd) of R

d, such thatB0
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generatesB(Rd). Then
lim
λ→∞

inf
f∈λ·F1

A( f ) = A∗ .

More generally, a straightforward modification of this Lemma shows that wheneverF =
⋃

λ>0Fλ
is dense inL1(µ), then it is true that inff∈F A( f ) = A( f ∗).

We consider the following examples; in all cases we assume thatX = R
d.

(1) Clin contains all linear classifiers, that is, functions of the formg(x) = 2I[a·x≤b]−1, a∈ R
d,

b∈ R.

(2) Crect contains classifiers of the formg(x) = 2I[x∈R]−1 whereR is either a closed rectangle or
its complement inRd.

(3) Cball contains classifiers of the formg(x) = 2I[x∈B]− 1 whereB is either a closed ball or its
complement inRd.

(4) Cell contains classifiers of the formg(x) = 2I[x∈E]−1 where eitherE a closed ellipsoid or its
complement inRd.

(5) Ctree contains decision tree classifiers using axis parallel cuts withd+1 terminal nodes.

Clearly, the list of possibilities is endless, and these five examples are just some of the most
natural choices. All five examples are such that

⋃
λ>0 Fλ is dense inL1(µ) for any probability

distribution µ (In the cases ofCrect, Cball, andCell this statement is obvious. ForClin this follows
from denseness results of neural networks, see Cybenko 1989, Hornik, Stinchcombe, and White
1989. ForCtree, see Breiman 2000.) (We also refer to the general statement given as a universal
approximation theorem by Zhang 2003 and which shows that, for the classical choices of the cost
functionφ, we have, for any distribution, inff∈⋃λ>0 Fλ A( f ) = A∗ as soon as

⋃
λ>0 Fλ is dense in the

space of continuous functions under the supremum norm.) In particular, the results in the present
paper imply that in all cases, the penalized estimatef̂n of Corollary 3 is universally consistent, that
is, L( f̂n)→ L∗ almost surely asn→ ∞.

Recall that the rates of convergence established in Corollary 7 depend primarily on theVC

dimension of the base class. TheVC dimension equalsV = d + 1 in the case ofClin , V = 2d + 1
for Crect, V = d+2 for Cball, and is bounded byV = d(d+1)/2+2 for Cell and byV = d log2(2d)
for Ctree (see, e.g., Devroye, Gy¨orfi, and Lugosi, 1996). Clearly, the lower the VC dimension is,
the faster the rate (estimation is easier). The following question arises naturally: find a class with
VC dimension as small as possible whose convex hull is sufficiently rich inL1(µ). A recent result
by Lugosi and Mendelson (2003) establishes the existence of such a class with VC dimension at
most 2. This fact reveals that the combinatorial complexity of a class is not always a reliable
measure of the approximation capacity of its convex hull. However, the construction by Lugosi
and Mendelson is theoretical and there is probably more to say if one is concerned with practical
implementations of boosting methods (see also Remark 1 below). In all cases, for even moderately
large values ofd, the rate of convergence stated in Corollary 7 is just slightly faster thann−1/(2(2−α)),
and the most interesting problem is to determine the class of distributions for which inff∈Fλ A( f ) =
A∗ for some finite value ofλ. In all the above-mentioned special cases this class is quite large,
giving rise to a remarkably rich class of distributions for which the dimension-independent rates of
convergence holds. The characterization of these classes of distributions similar to the one given
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in the one-dimensional case is far from being well understood. In the case ofClin the problem
is closely related to the approximation properties of neural networks. We merely refer to Barron
(1992, 1993), Darken, Donahue, Gurvits, and Sontag (1997), Girosi and Anzelloti (1993), Maiorov,
Meir, and Ratsaby (1999), Meir and Maiorov (2000), Pinkus (1999), Sontag (1992) for related
results. Most of these references provide quantitative results relating the approximation error to
the smoothness of the target function. However, there are very few attempts to characterize the
functions that can actually be reconstructed with given dictionaries. In one dimension, the problem
is well-understood: the closure under the uniform norm of the class of piecewise constant functions
is the class of regulated functions (for which both left and right limits exist at each point). Hence,
by limiting the bounded variation, we lose the ability to approximate these regulated functions
with linear combinations of decision stumps. InR

d, there is no straightforward generalization of
regulated functions. Another interesting question is to investigate the approximation rates in terms
of the smoothing parameterλ for universal base classes when the approximating function is taken
in Fλ, and the work by Meir and Maiorov (2000), Mannor, Meir, and Zhang (2002), may provide
some hints for a systematic approach.

Remark 1. (COMPUTATIONAL PROBLEMS.) Using the above-mentioned classes as base classifiers
may cause computational problems in high-dimensional problems. Typical boosting algorithms
perform an iterative gradient descent optimization to minimize the empirical costAn( f ) and each
iteration step involves optimization over the classC . This may be efficiently computed whenC
is the class of decision stumps but in any of the cases considered in this section, optimization
may be problematic. There seems to exist a tradeoff between the richness of the base class and
computational feasibility of the optimization. In practice one may try to find classes “in between”,
that is, base classes larger than decision stumps which may not give rise to universally consistent
classifiers but still allow efficient optimization. Here we do not pursue this issue further.

Remark 2. (INVARIANCE.) In the previous section we already emphasized that the classifierf̂n is
invariant under monotone transformations of the coordinate axes, whenC is the class of decision
stumps. This invariance property is important in situations when the different components of the
feature vectorX belong to incomparable physical quantities. Scale invariance shared by the method
based on the classesCrect andCtree but not with the rest. On the other hand, the rest of the examples
have different important invariance properties. For example, boosting based onClin , Cball, andCell

are rotation invariant, andClin andCell are invariant under arbitrary invertible linear transformations
of the feature space. The choice of the base class should be influenced by the desirable invariance
property in practice.

7. Proof of Theorem 1 and Related Results

In this section we apply general abstract single-model and model selection theorems appearing in
Blanchard, Bousquet, and Massart (2003) (recalled in Appendix A for completeness) in the regular-
ized boosting setting to derive Theorem 1. We state here single-model convergence rate theorems
as well since the hypotheses to satisfy are essentially the same. This way we can recover a theorem
that is similar to results appearing in Bartlett, Jordan, and McAuliffe (2003) (see a short discussion
below). The theorems cited in Appendix are extensions of model selection methods by penalization
originating in works by Birg´e and Massart (1998), Massart (2000). We also use the technique of lo-
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calized Rademacher averages for fine-scale estimates of the capacity of function classes, a principle
that has been put forward in

Bartlett and Mendelson (2002), Bartlett, Bousquet, and Mendelson (2002), and Bousquet (2003).

7.1 Rates of convergence in a fixed model

In this section we first restrict our attention to the empirical risk minimization estimator on a fixed
modelFλ. Define f̂ λ

n = argminf∈Fλ
An( f ). We then have the following theorems.

Theorem 17 Assume that the base classC has VC dimension V. Then, for any C> 1, with proba-
bility at least1−exp(−δ), we have:

A( f̂ λ
n )−A( f ∗)≤ C+1

C−1

(
inf
f∈Fλ

(A( f )−A( f ∗))+CR1(λ,n)+
Cb1(λ)δ

n

)
,

where
R1(λ,n) = c1(V +2)

V+2
V+1
(
(Lφ +2)φ(λ)

) 1
V+1 (λφ′(λ))

V
V+1 n−

1
2

V+2
V+1

and
b1(λ) = c2(Lφ +2)φ(λ),

where c1,c2 are numerical constants, and Lφ is defined by(2).

Theorem 18 (EXACT BIAS; BARTLETT, JORDAN, AND McAULIFFE.) Assume that the base class
C has VC dimension V . Then, with probability at least1−exp(−δ), we have:

A( f̂ λ
n )−A( f ∗)≤ inf

f∈Fλ
(A( f )−A( f ∗))+R2(λ,n)+

b2(λ)δ
n

,

where

R2(λ,n) = c1(V +2)
V+2
V+1 max

(
M(λ)−1φ′(λ)2,φ(λ)

) 1
V+1 (λφ′(λ))

V
V+1 n−

1
2

V+2
V+1

and
b2(λ) = c2(φ′(λ)2M(λ)−1+ φ(λ)),

where c1,c2 are numerical constants, and M(λ) = infx∈[−λ,λ] φ′′(x).

Remark. These two theorems are also consequences of a general theorem recalled in Appendix
A—the difference comes from a slight difference in the application of the latter. We mention these
two statements here to draw a short comparison. Theorem 18 is almost identical to Theorem 17
of Bartlett, Jordan, and McAuliffe (2003) (more precisely it is a special case of the latter, since, as
already pointed out earlier, our general assumptions aboutφ are stronger in this paper). Note also
that the proofs use very similar tools, although in the present paper a good part of them is wrapped
up into the general theorem quoted in Appendix A. Theorem 17 on the other hand, is really the
single-model counterpart of the penalized procedure of Theorem 1.

An advantage of Theorem 18 is the exact bias term, that is, the absence of the factor of(C+
1)/(C− 1) in front of the approximation error. Note, however, that this exact bias is lost anyway
when one turns to the true classification risk using Lemma 6. Also, since in our corollaries we
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assume the bias to be zero, this improvement becomes irrelevant. On the other hand, the dependence
inV of the multiplicative constant is slightly better in Theorem 17 (note that a factor of orderφ(λ)

1
V+1

is replaced by(φ′(λ)2M(λ)−1)
1

V+1 in Theorem 18: for instance takingφ as the exponential loss, the
latter expression is the third power of the former; for the logit cost, this even more noticeable: the
latter expression is of order exp(λ/(V +1)) while the former is only of orderλ

1
V+1 ).

Finally, note that neither of these theorems can be used directly (at least up to our knowledge)
to derive an oracle bound for a penalized procedure. For the proof of Theorem 1 we need additional
model selection machinery which in particular only works under the hypotheses of Theorem 17.

7.2 Proofs

PROOF OFTHEOREM 1. Theorem 1 will be derived as a consequence of Theorem 22 in Appendix
A. According to the notations used in the Appendix, we define the loss function`(x,y) = φ(−xy)
and write`( f ) as a shorthand notation for the function(x,y) 7→ `( f (x),y), so thatA( f ) = E[`( f )].

We define the reference spaceG as the set of functionsf from X into R∪{−∞,+∞} such that
`( f ) ∈ L2(P) whereP denotes the probability measure induced by(X,Y). Note thatf ∗ ∈G (even if
f ∗ is infinite at some points, because for any fixed pointx∈X , the average lossE[`( f ∗(X),Y)|X = x]
is always bounded by 1). We consider the countable family of models(Fλk

),k∈ N.
Next we verify assumptions(i)− (iv) of Theorem 22. In the sequel,c will denote a numerical

constant whose value is not necessarily the same in different lines. We first need to choose a pseudo-
distanced onG. We use

d2( f , f ′) = E[(`( f )− `( f ′))2].

This makes assumption(i) trivially satisfied. Hypothesis(iii ) (model-wise boundedness assump-
tion) is also straightforward: for anyf ∈ Fλ,

|`( f )(x,y)| = |φ(−y f(x))| ≤ φ(λ),

so that hypothesis(iii ) is satisfied withbk = φ(λk).
The verification of hypothesis(ii) is summarized in the following Lemma.

Lemma 19 Assumeφ : R → R+ is a twice differentiable, strictly increasing and strictly convex
function. Denote

Lφ = 0∨max
x∈R

(
2(φ′(x)+ φ′(−x))

φ′′
φ′ (x)+ φ′′

φ′ (−x)
− (φ(x)+ φ(−x))

)
.

If Lφ < ∞, then for any function f∈ Fλ, we have

E[(`( f )− `( f ∗))2]≤ (φ(λ)+ φ(−λ)+Lφ)E[`( f )− `( f ∗)] .

Thus, hypothesis(ii) holds withCk = (Lφ +2)φ(λk).
Finally, we turn to hypothesis(iv) which contains the most information about the models. The

goal is first to bound, for anyf0 ∈ Fλ,

Fλ(r) = E

 sup
f∈Fλ

d2( f , f0)≤r

|(P−Pn)(`( f )− `( f0))|

 ,
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whereP f andPn f denote the expectation off underP and under the empirical probability distribu-
tion Pn, respectively. If we define the set of functions

Gλ, f0 = {`( f )− `( f0)| f ∈ Fλ},

then

Fλ(r) = E

 sup
g∈Gλ, f0
Pg2≤r

|(P−Pn)g|


≤ 2

n
EPEε sup

g∈Gλ, f0
Pg2≤r

∣∣∣∣∣ n

∑
i=1

εig(Xi ,Yi)

∣∣∣∣∣ ,
where theεi are i.i.d. Rademacher variables, by a standard symmetrization argument.

We use the following lemma (which is essentially the same as Lemma 2.5 in Mendelson (2002),
except that we need to make some multiplicative factors explicit).

Lemma 20 (MENDELSON). Let F be a class of functions such that‖ f‖∞ ≤ T for all f ∈ F . Set
τ2 = supf∈F EP f 2 and assume that for someγ > 0 and p< 2, for any empirical measure Pn,

logN (ε,F ,L2(Pn))≤ γε−p.

(whereN (ε,F ,L2(Pn)) denotes theε-covering number ofF with respect to the distance L2(Pn)).
Then, putting B= γ 1

2 (2− p)−1, we have

1√
n

EPEε sup
f∈F

∣∣∣∣∣ n

∑
i=1

εi f (Xi)

∣∣∣∣∣≤ cmax
(

Bτ
2−p

2 ,B
4

2+p T
2−p
2+p n−

1
2

2−p
2+p

)
To apply the lemma we need to estimate the entropy numbers of classGλ, f0. First, sinceC is of

finite dimensionV, we have that for any empirical measurePn,

logN (ε,conv(C ),L2(Pn))≤ cε−p,

wherep = 2V
V+2, as a consequence of Theorem 2.6.9 of van der Vaart and Wellner (1996, p. 142).

Now note that for a class of real functionsF over X , if we defineG as the set of functions over
X ×{−1;1} that can be written as(x,y) 7→ y f(x) for somef ∈ F , then the covering numbers ofF
for L2(Pn) are the same as the covering numbers of setG for L2(Qn) provided the marginal ofQn

on X is Pn.
Furthermore, functions inFλ take values in[−λ,λ], andφ has Lipschitz constantφ′(λ) on this

interval. Therefore, by standard arguments (translation by a fixed function, dilation, application of
a Lipschitz function, see, e.g., Pollard 1984 for the necessary tools), we have

logN (ε,Gλ, f0,L2(Pn))≤ logN
(

ε
λφ′(λ)

,F ,L2(Pn)
)
≤ c(λφ′(λ))pε−p.
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We can now apply Lemma 20 to the classGλ, f0, with

τ2 = sup
g∈Gλ, f0
Pg2≤r

Pg2 ≤ r ,

Tλ = φ(λ), andγλ = c(λφ′(λ))p, so that we obtain, puttingBλ = (λφ′(λ))p/2(2− p)−1,

1√
n

E sup
g∈Gλ, f0
Pg2≤r

∣∣∣∣∣ n

∑
i=1

εig(Xi ,Yi)

∣∣∣∣∣≤ cmax

(
Bλr

2−p
4 ,B

4
2+p

λ T
2−p
2+p

λ n−
1
2

2−p
2+p

)
. (6)

To study the behavior of the last upper bound, we determine when then first term is dominant in the
above max. This is the case when

r ≥ (TλBλ)
4

2+p n−
2

2+p . (7)

Thus, if the above condition overr is satisfied, we have

Fλ(r) ≤ ψλ(r) =
A√
n

Bλr
2−p

4

for some numerical constantA that we can assume to be greater than 1, andψλ is a sub-root function
as requested.

Finally, the solutionr∗λ of the equationψλ(r) = r/Cλ is given by

r∗λ = (ABλCλ)
4

2+p n−
2

2+p .

For λ = λk, we takeCλk
= Ck = (2+ Lφ)φ(λk) so that, sinceA≥ 1 andCk ≥ Tλk

, condition (7) is
ensured wheneverr ≥ r∗k = r∗λk

. This concludes the check for hypothesis(iv).
To wrap up, hypotheses(i)− (iv) of Theorem 22 are satisfied with the following choices

• bk = φ(λk);

• Ck = (Lφ +2)φ(λk);

• r∗k = c(BλCλ)
4

2+p n−
2

2+p = c((V +2)(Lφ +2)φ(λ))
V+2
V+1 (λφ′(λ))

V
V+1 n−

1
2

V+2
V+1 .

Eventually, setxk = α logλk which concludes the proof.

PROOF OFLEMMA 19. It suffices to look at a fixed pointx and to take the expectation as a final
step. We therefore first omit the dependence onx to simplify the notation. Recall that if we denote
η = P(Y = 1), then

f ∗(η) = argmin
α∈R

{ηφ(−α)+ (1−η)φ(α)}

is defined implicitly as the solution of

ηφ′(− f ∗) = (1−η)φ′( f ∗) . (8)

Sinceφ is strictly convex and increasing,φ′(x)/φ′(−x) is increasing fromR onto R+. It is then
easy to deduce thatf ∗ is an increasing function ofη and thatf ∗([0,1]) = R, so thatf ∗ is invertible.
Furthermore, by the implicit function theoremf ∗ is a differentiable function ofη.
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Consider some functionf ∈ Fλ and putα = f (x) at the pointx considered. Note that|α| ≤ λ.
Define

N(η,α) = EY[(`( f )− `( f ∗))2]

= η(φ(−α)−φ(− f ∗(η)))2 +(1−η)(φ(α)−φ( f ∗(η)))2

and

D(η,α) = EY[`( f )− `( f ∗)]
= η(φ(−α)−φ(− f ∗(η)))+ (1−η)(φ(α)−φ( f ∗(η))) .

The goal is to show thatN≤C(α)D. To this end, first note thatN(( f ∗)−1(α),α)= D(( f ∗)−1(α),α)=
0. We then compare the derivatives ofN andD with respect toη. We have

∂D
∂η

= (φ(−α)−φ(− f ∗))− (φ(α)−φ( f ∗))+
(
ηφ′(− f ∗)− (1−η)φ′( f ∗)

) d f∗

dη
= (φ(−α)−φ(− f ∗))− (φ(α)−φ( f ∗)) ,

using (8). Note that∂D/∂η is therefore positive forf ∗ ≥ α (or, equivalently, forη ≥ ( f ∗)−1(α))
and negative otherwise. We now turn to the derivative ofN:

∂N
∂η

= (φ(−α)−φ(− f ∗))2− (φ(α)−φ( f ∗))2

+2
(
ηφ′(− f ∗)(φ(−α)−φ(− f ∗))− (1−η)φ′( f ∗)(φ(α)−φ( f ∗))

) d f∗

dη
= (φ(−α)−φ(− f ∗)+ φ(α)−φ( f ∗)) (φ(−α)−φ(− f ∗)− (φ(α)−φ( f ∗)))

+ (ηφ′(− f ∗)+ (1−η)φ′( f ∗))(φ(−α)−φ(− f ∗)− (φ(α)−φ( f ∗)))
d f∗

dη

=
∂D
∂η

(
φ(α)+ φ(−α)+ (ηφ′(− f ∗)+ (1−η)φ′( f ∗))

d f∗

dη
− (φ( f ∗)+ φ(− f ∗))

)
,

where the second equality follows from (8) again. If we now denote

Lφ = 0∨ max
η∈[0,1]

(
(ηφ′(− f ∗)+ (1−η)φ′( f ∗))

d f∗

dη
− (φ( f ∗)+ φ(− f ∗))

)
,

we have, for allη≥ ( f ∗)−1(α),

∂N
∂η

≤ (φ(α)+ φ(−α)+Lφ)
∂D
∂η

,

and the opposite inequality forη ≤ ( f ∗)−1(α). By integrating overη to the left or to the right of
( f ∗)−1(α), we deduce that for anyη ∈ [0,1],

N ≤ (φ(α)+ φ(−α)+Lφ)D≤ (φ(λ)+ φ(−λ)+Lφ)D,

where the second inequality follows from the convexity ofφ. Integration overx leads to the desired
inequality.
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For a slightly more explicit expression ofLφ, note that by differentiating (8) we obtain

d f∗

dη
=

φ′(− f ∗)+ φ′( f ∗)
ηφ′′(− f ∗)+ (1−η)φ′′( f ∗)

.

Then we can rewrite the ratio

ηφ′(− f ∗)+ (1−η)φ′( f ∗)
ηφ′′(− f ∗)+ (1−η)φ′′( f ∗)

=
η

1−η φ′(− f ∗)+ φ′( f ∗)
η

1−η φ′′(− f ∗)+ φ′′( f ∗)

=
2

φ′′
φ′ (− f ∗)+ φ′′

φ′ ( f ∗)
,

where we have used (8) again at the last line. This yields the expression forLφ given in the statement
of the Lemma.

SKETCH OF THE PROOF OFLEMMA 20. Putting

Rn,P =
1√
n

EPEε sup
f∈F

∣∣∣∣∣ n

∑
i=1

εi f (Xi)

∣∣∣∣∣ ,
we have, following the proof of Lemma 2.5 in Mendelson (2002), and after applying standard
chaining techniques (see Dudley, 1978) and contraction inequalities (see Ledoux and Talagrand,
1991),

Rn,P ≤ c
γ 1

2

2− p
(τ2 +Tn−

1
2 Rn,P)

1
2(1− p

2 ).

(Note the slight difference as compared to Mendelson 2002 here as in this reference the author
assumedT = 1). Now puttingB = γ 1

2 (2− p)−1, we have

Rn,P ≤ cBmax(τ2,Tn−
1
2 Rn,P)

1
2(1− p

2 ).

Now solving separately for the two terms of the above maximum, we obtain the conclusion.

PROOF OFTHEOREM 17. The theorem is a consequence of Theorem 21 quoted in Appendix A.
The hypotheses to satisfy are exactly the same as for Theorem 1 (but for one single modelFλ), so
one can just recycle the previous proof.

PROOF OFTHEOREM 18. This theorem is again a consequence of Theorem 21 but this time we pick
a different reference spaceG. We chooseG = Fλ and denotef λ = argminf∈Fλ

E[`( f )]. (Again, we
suppose here that the above minimum is attained to simplify the argument; the proof may easily be
adjusted accordingly if this is not the case.)

In this case hypothesis(iii ) is changed as compared to the previous theorem. This, in turn,
changes the definition of the factorCλ and hence ofr∗λ. To check hypothesis(iii ) we may apply
directly Lemmas 15 and 16 from Bartlett, Jordan, and McAuliffe (2003). These imply that ifφ has
Lipschitz constantL on [−λ,λ] and satisfies the uniform convexity assumption

∀x,y∈ [−λ,λ]
φ(x)+ φ(y)

2
−φ
(

x+y
2

)
≥ δ(x−y)2 ,
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then for anyf ∈ Fλ,

E[(`( f )− `( f λ))
2]≤ L2

2δ
E[`( f )− `( f λ)] .

In our setting we can takeL = φ′(λ) andδ = cM(λ) (by second-order Taylor expansion). Thus we
can takeC̃λ = c.φ′(λ)2M(λ)−1. To satisfy hypothesis(iii ) we use Equation (6) again so that we can
use the sub-root function

ψ̃λ(r) = cmax

(
Bλr

2−p
4 n−

1
2 ,B

4
2+p

λ T
2−p
2+p

λ n−
2

2+p

)
,

with the same notation as in the proof of Theorem 1. Solving the equationψ̃λ(r) = r/C̃λ, we then
apply Theorem 21. The constantC > 1 appearing in that theorem can be taken arbitrarily close to
1, so that with probability 1−exp(−δ) the following bound holds:

A( f̂ λ
n )−A( f λ)≤R2(λ,n)+

b2(λ)δ
n

,

(whereR2 andb2 are defined in the statement of the theorem). AddingA( f λ)−A( f ∗) on each side
finishes the proof.

Appendix A: General Theorems for Single-Model and Model Selection Estimator
Convergence

This section is devoted to recalling, in a compact version, the statements of abstract theorems ap-
pearing in Blanchard, Bousquet, and Massart (2003) (respectively: Proposition 1 and Theorem 7 in
the latter reference).

Setup

We recall thatX denotes a measurable feature space. Let`(x,y) : R×{−1,1} → R be a loss
function. Given a functiong : X → R, the notation`(g) is used for the function(x,y) ∈ X ×
{−1,1} 7→ `(g(x),y). Let P be a probability distribution onX ×{−1,1} andG a set of extended-
real functions onX such that̀ (G)⊂ L2(P). The target functiong∗ is defined as

g∗ = argmin
g∈G

P`(g)

and for anyg∈G we denote
L(g,g∗) = E[`(g)]−E[`(g∗)] .

Let ((Xi,Yi))i=1,...,n be an i.i.d.n-sample drawn from the probability distributionP and letPn denote
the associated empirical measure. For a real functionf onX ×{−1,1}, P f is an alternative notation
for EP[ f ] (so that alsoPn f = 1

n ∑n
i=1 f (Xi,Yi)). We say that a functionψ : [0,∞)→ [0,∞) is sub-root

if it is non-negative, non-decreasing, and ifr 7→ ψ(r)/
√

r is non-increasing forr > 0.

Rate of Convergence in a Single Model

Let G be a subset ofG. The empirical risk minimization estimator over the modelG is defined by

ĝ = argmin
g∈G

Pn`(g).
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Theorem 21 Assume that there exists

• a pseudo-distance d onG

• a sub-root functionψ

• constants b and C

such that

(i) ∀g,g′ ∈G, P(`(g)− `(g′))2 ≤ d2(g,g′);
(ii) ∀g∈ G , d2(g,g∗)≤CL(g,g∗);
(iii ) ∀(x,y), ∀g∈ G , |`(g(x),y)| ≤ b;

and, if r∗ denotes the solution ofψ(r) = r/C,

(iv) ∀g0 ∈ G , ∀r ≥ r∗ E

[
sup

g∈G :d2(g,g0)≤r
|(P−Pn)(`(g)− `(g0))|

]
≤ ψ(r).

Then for all x> 0 and all K > 1 the following inequality holds with probability at least1−e−x:

L(ĝ,g∗)≤ K +1
K−1

(
inf
g∈G

L(g,g∗)+100K
r∗

C
+

(2CK+18b)x
n

)
.

Model Selection Theorem (Deviation Bound)

Let (Gk)k∈N be a countable family of models withGk ⊂ G for all k ∈ N. If pen :N → R is a real
function onN, then thepenalized minimum empirical risk estimatorover the family of models is
defined as

g̃ = argmin
k∈N,
g∈Gk

(Pn`(g)+pen(k)) .

Theorem 22 Assume that there exist

• a pseudo-distance d onG;

• a sequence of sub-root functions(ψk);

• two real, nondecreasing sequences(bk) and(Ck);

such that

(i) ∀g,g′ ∈G, P(`(g)− `(g′))2 ≤ d2(g,g′);
(ii) ∀k∈ N, ∀g∈ Gk, d2(g,g∗)≤CkL(g,g∗);
(iii ) ∀k∈ N, ∀g∈ Gk, ∀(x,y), |`(g(x),y)| ≤ bk;

and, if r∗k denotes the solution ofψk(r) = r/Ck,

(iv) ∀k∈ N, ∀g0 ∈ Gk, ∀r ≥ r∗k E

 sup
g∈Gk,

d2(g,g0)≤r

|(P−Pn)(`(g)− `(g0))|

≤ ψk(r).

889



BLANCHARD, LUGOSI, AND VAYATIS

Let (xk) be a nondecreasing sequence of real numbers such that∑k∈N e−xk ≤ 1. Letξ > 0,K > 1 be
some real numbers to be fixed in advance. If we define a penalty functionpen(k) such that

∀k∈ N pen(k)≥ 250K
r∗k
Ck

+
(65KCk +56bk)(xk + ξ+ log(2))

3n
,

then, for the corresponding penalized minimum empirical risk estimatorg̃, the following inequality
holds with probability greater than1−exp(−ξ):

L(g̃,g∗)≤ K + 1
5

K−1
inf
k∈N

(
inf

g∈Gk

L(g,g∗)+2pen(k)
)

.

Appendix B: Details of Example 1.

First, we prove the following statements:
(i) If f is such that∑4

i=1 f (xi) = 0, then f ∈ Fλ if and only if λ ≥ 1
2 ∑i | f (xi)|.

(ii) If f ∗ (defined as in the rest of the paper) is such thatf ∗(x1)+ f ∗(x2) = f ∗(x3)+ f ∗(x4) = 0,
then so isf λ for all λ.

PROOF. Denotingzi = f (xi), we havef = ∑i ziI[xi ]. For all i, I[xi ] =
1
2(g0+gi), and the linear relation

∑4
i=1gi +2g0 = 0 holds, so that the only ways to writef as a combination of the base functions are

exhaustively given by

f =
1
2

(
4

∑
i=1

(zi +µ)gi +

(
∑

i

zi +2µ

)
g0

)
, µ∈R .

If in addition we assume∑i zi = 0, then the above combination is inFλ for anyλ≥ 1
2 ∑i |zi +µ|+ |µ|.

It is easily seen that the minimum value of this upper bound is obtained forµ= 0. This proves (i).
For (ii), let f ∈ Fλ. Consider f ′ obtained fromf by switching its values onx1,x2 andx3,x4

respectively. Thenf ′ ∈ Fλ by symmetry ofFλ andA( f ′) = A( f ) by the symmetry assumption on
f ∗. So f ′′ = 1

2( f + f ′) ∈ Fλ by convexity ofFλ andA( f ′′) ≤ A( f ) by convexity ofφ; furthermore
f ′′ satisfies the same symmetry relations asf . This proves (ii).

Now for anyλ > 0, putx(λ) = f λ(x1) ≥ 0 andy(λ) = f λ(x3) ≥ 0. Clearly these functions are
increasing and hence almost everywhere differentiable functions. From (i) and (ii) we deduce that

λ = x(λ)+y(λ)

and that
A( f λ) = 2((0.5+ δ)φ(−x(λ))+ (0.5−δ)φ(x(λ))+ φ(−y(λ)) .

Differentiating these two equalities we get

y′(λ)+x′(λ) = 1,

and
dA( f λ)

dλ
= 2

(
x′(λ)[(0.5−δ)φ′(x(λ))− (0.5+ δ)φ′(−x(λ))]−y′(λ)φ′(−y(λ)

)
.

Clearly x′ andy′ must be such thatdA( f λ)
dλ is the lowest possible given the constraintx′ + y′ = 1.

Therefore as long as(0.5−δ)φ′(x(λ))− (0.5+δ)φ′(−x(λ))≥−φ′(−y(λ)) we must havex′(λ) = 0
andy′(λ) = 1. Sincex(0) = y(0) = 0 andφ′(0) = 1, one deduces that as long asφ′(−λ) ≥ 2δ, we
havey(λ) = λ,x(λ) = 0.
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Appendix C: Refinement of the Non-XOR Condition in a Continuous Setup

In this section we give a slight refinement concerning Theorem 15. In this theorem the assumption
is that no quadruple of points is in anXOR condition with respect toA and thatP(δA) = 0. In that
case the theorem says that we can approximate the indicator ofA in theL1(P) sense by taking the
sign of mixtures of stumps. We noticed that the result is unchanged if we replacedA by any set
C such that int(A)⊂C⊂ A (where int(A) andA denote interior and closure for the usual topology
on [0,1]d). A natural idea would then be that the “non-XOR condition” should only be required for
points not on the boundary ofA, so that any problem arising with points on the boundary could be
disregarded.

If such a results holds, it means that, assuming that any four points not on the boundary of
A cannot be in aXOR position, there is a way of choosing a setC such that int(A) ⊂C ⊂ A and
satisfying the full “non-XOR” requirement. The counterexample shown on the right-hand side of
Figure 1 shows that we cannot expect such a result to hold in all generality, even if the boundary
of A is of P-measure zero (consider the case where the center square is ofP-measure 0, and the
boundary ofA is dense in this square).

Nevertheless, the following elementary topological lemma states that this result holds if we
assume thatδA is of Lebesgue measure zero.

Lemma 23 Suppose thatδA is of P-measure zero for some measure P having full supportX . As-
sume that there do not exist any four points x,y,z,w ∈ X \ δA in XOR position with respect to A.
Then any four points x,y,z,w∈ X cannot be inXOR position with respect to C= int(A) (the closure
of the interior of A).

PROOF. Suppose thatx0,y0,z0,w0 are inXOR position with respect toC, so thatx0,w0∈C;y0,z0 6∈C.
We show this leads to a contradiction. Note that, ifx,y,z,w satisfy (5), then knowingx,w and i0
entirely determinesy,z. Consideri0 as fixed and denote the associated application (exchanging the
i0-th coordinates)F : (x,w)→ (z,y) = F(x,w) from X ×X into itself.

Let ε be a positive real and denoteB(u,ε) the openε-ball centered inu. DenoteDx0 = (B(x0,ε)∩
int(A)) andD′

x0
= Dx0 \δA. Sincex0 ∈C = int(A), Dx0 is a nonempty open set and thusP(Dx0) > 0

sinceP has full support. Hence,P(D′
x0

) = P(Dx0) > 0 sinceP(δA) = 0 andD′
x0

is also a nonempty
open set. Define similarlyD′

w0
and considerH = F(D′

x0
×D′

w0
) andH ′ = H \ (δA× δA). H is a

nonempty open set ofX ×X becauseF is a bicontinuous bijection, soP⊗P(H ′) = P⊗P(H) > 0,
and thereforeH ′ is non-void.

From this we deduce that there exist(x,w)∈ (B(x0,ε)∩ int(A))×(B(w0,ε)∩ int(A)), and(z,y) =
F(x,w) such thatx,y,z,w satisfy (5) and that none of these four points is inδA. This way we
construct a sequence(xn,yn,zn,wn) of quadruples satisfying (5), and converging to(x,y,z,w) while
staying outside ofδA, with xn,wn ∈ int(A). By hypothesis(xn,yn,zn,wn) are not in aXOR position
with respect toA, henceyn or zn must belong to int(A). Therefore either infinity manyyn’s or
infinitely manyzn’s belong to int(A). Thus,y0 or z0 belongs toint(A) = C, in contradiction with the
initial hypothesis.
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