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Abstract
This paper provides a comprehensive survey of the field of grammar induction applied to randomly
generated languages using sparse example sets.
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1. Introduction

This paper provides a survey of work conducted on inferring a class of randomly generated DFA
(Deterministic Finite State Automata) from sparsely labeled example strings. Since the introduction
of this class of problems to the grammar induction community, a number of solutions have been
proposed. Our paper is the first comprehensive and comparative study of this interesting domain
and is intended to fill the gap left by a lack of comprehensive introductory papers.

With this review, we hope to provide some background on the history of the problem and the
motivation behind some of the leading algorithms. This includes a critical analysis of what leads
to success and the necessary nomenclature for understanding the specific problem domain and its
complexity.

We begin by presenting, in Sections 2 through 9, several key concepts and definitions of gram-
mar induction. Included among the definitions is a simple example of how the training data for a
specific class of grammar induction problems can be easily represented. The problem class, called
Abbadingo-styleproblems, was introduced in a 1997 DFA learning competition held to promote
new algorithms and to determine the limitations of learning DFA from sparse example data (Lang
and Pearlmutter, 1997).

In order to understand the principles behind the current state of the art inference engine for
Abbadingo-styleproblems, we proceed in Section 10 with an overview of an algorithm proposed
several years earlier by Trakhtenbrot and Barzdin (1973). While this algorithm was initially de-
signed for dealing with completely labeled data sets, it can be easily modified to deal with incom-
plete data sets as well (Lang, 1992) (see Section 11). This extension has had a great impact on the
grammar induction community. We see this in Section 12 where we proceed with the details and
results of the Abbadingo One DFA Learning Competition. Finally, in Sections 13 through 15 we
provide a brief introduction to several additional algorithms designed to deal with smaller problem
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sets. Although these benchmark data sets differ from theAbbadingo-styleproblems, they have been
used to evaluate new inference techniques and are included for completeness. Some of these tech-
niques can be carried over to other problem domains and therefore are essential in our review of
relevant work.

2. General Definition of Grammar Induction

The general problem of grammar induction is defined as follows.

Definition 1 Given sets of labeled example strings S+ and S− s.t. S+ ⊂ L(G) and S− ⊂ L′(G) infer
a DFA (A) such that the language of A denoted L(A) = L(G). L(G) is a language generated from
an unknown Type-3 grammar(G). Its complement, L′(G), is defined as L′(G) = ∑∗−L(G) where
∑∗ is the set of all strings over the alphabet(∑) of L(G).

A more precise definition of the problem of learningAbbadingo-styleDFA will be presented
once we have covered most of the necessary nomenclature and problem specific details.

2.1 Type-3 Grammars

Only Type-3 grammars are considered for the above problem since the languages that they generate
are precisely the sets accepted by Deterministic Finite State Automata (Hopcroft and Ullman, 1969).
As defined by Harrison (1978), a Type-3 grammar is a four tuple:

G = {T,N,P,S}
where

• T ⊆N is a finite non-empty set called the terminal alphabet ofG,

• N is a finite non-empty set called the total vocabulary ofG,

• P is a finite set of production rules,

• S∈ (N−T) is referred to as the start state,

and the rules inP are of the form

• A→ aB, or

• A→ a,

whereA,B∈N−T anda∈ T.
To simplify matters, the problem domain is further restricted to only consist of Type-3 grammars

having the set of terminalsT = {0,1}. We should note that this does not change the fundamental
challenge of the problem.
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2.2 Deterministic Finite State Automata

The Deterministic Finite State Automata (DFA) representing such grammars are quintuplets. Fol-
lowing Hopcroft and Ullman (1969), a formal definition of a DFA(A) is given below:

A = {Q,∑,δ,s,F}
where

• Q is a finite non-empty set of states,

• ∑ is a finite non-empty set of input symbols or input alphabet,

• δ : Q×∑→ Q the transition function,

• s∈ Q the start state,

• F ⊆Q the final states or accepting states ofA.

The size of a DFA will be defined as the total number of states or elements inQ denoted|Q|.

3. Problem Domain

The DFA considered for inference (the target DFA) areAbbadingo-styleDFA. In this paper, we fo-
cus on a class of problems proposed by Lang, Pearlmutter, and Price (1998b), Lang and Pearlmutter
(1997) as part of an international competition to promote new and better algorithms for inferring
Abbadingo-styleproblems. The generation process is driven by a nominal automaton sizen which
allows the user to select an approximate number of states in the final automaton. The procedure for
generating such problems operates as follows.

First, a random digraph with(5/4)n states is created. The 5/4 term was empirically developed
to generate automata which, after minimization, produce automata with approximatelyn states. (It
is not know to what degree this method would work for automata with alphabets that are not binary.)
Each state is given an out-going edge for every element of the input alphabet(∑) and a label of either
accept or reject with equal probability. The start state(s) is chosen randomly with equal probability
from the complete set of states(Q). Any state which is not reachable froms is discarded. Finally,
after removing all unreachable states, the Moore minimization algorithm is applied to the DFA. If
the resulting DFA does not have depth exactly(2log2n)− 2 (rounded to the nearest integer) it is
discarded and the procedure is repeated. The selection of automata with a particular depth was used
to ensure fairness for the competition and subsequent experiments in which automata with greater
depth are generally more difficult to learn.

The depth of a DFA is defined as the minimum number of transitions required to reach the
furthest state from the start state. The depth constraint enforced on the generation of the target DFA
ensures a set of problems whose relative difficulty remains consistent along the dimension of target
size (Juillé and Pollack, 1998b, Lang and Pearlmutter, 1997). Actually, the difficulty of the problem
may be increased along two dimensions: (1) the size of the target DFA as mentioned above and (2)
the sparsity of the training set(tr) defined astr = (S+,S−).

At this stage it is unclear how the methods proposed forAbbadingo-styleDFA translate to
problems with other sample generation techniques. In particular, using larger alphabets remains an
interesting but largely unaddressed issue.
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4. Generating Positive and Negative Examples

The disjoint setsS+ andS− otherwise known as positive and negative exemplars respectively, are
subsets of∑∗ and are given to provide clues for the inference of the production rules(P) of the
unknown grammar(G) used to generate the language(L). Creating setsS+ andS− for Abbadingo-
style problems first requires using the target DFA to classify all strings(Stot) of length at most
b(2log2n)+3c wheren is the total number of states in the target DFA, as either accepted or rejected
by G. If a strings is considered accepted byG then it is considered as part of the language ofL,
however, if strings is rejected byG then it is considered as part of the complementary language of
L, namelyL′. Using a uniform distribution, a subset of the labeled strings are randomly chosen and
added to eitherS+ or S− depending on whether they have been classified as accepted or rejected by
G respectively. When we refer to the density(d) of the training data, we will be referring to the
ratio of the complete set of all strings included inS+ andS− such that

d =
|S+|+ |S−|

|⋃b(2log2n)+3c
k=0 ∑k |

×100%

(see Definition 3). A completely labeled data set has a density of 100% when the training data sets
S+ andS− include the complete set of all example strings up to a given length.

5. Augmented Prefix Tree Acceptor

The definition of an augmented prefix tree acceptor (APTA) will now be introduced in order to
illustrate how setsS+ andS− may be dealt with simultaneously. Following the work of Coste and
Nicolas (1997), an APTA with respect toS+ andS− denoted APTA(S+,S−) is defined as a 6-tuple:

APTA = {Q,∑,δ,s,F+,F−}
where

• Q is a finite non-empty set of nodes.

• ∑ is a finite non-empty set of input symbols or input alphabet,

• δ : Q×∑→ Q the transition function,

• s∈ Q the start or root node,

• F+ ⊆ Q identifying final nodes of strings inS+,

• F− ⊆ Q identifying final nodes of strings inS−.

The size of an APTA will be defined as the total number of elements inQ denoted|Q|.

5.1 Example

Consider setsS+ = {1,110,01,001} andS− = {00,10,000}, the APTA with respect toS+ andS−
or ATPA(S+,S−) is illustrated in Figure 1.
Notice that each node within the APTA is assigned one of three labels. All paths that start from the
root of the tree and end on a node(q) with an accepting label(q∈ F+), a rejecting label(q∈ F−),
or an unknown label(q /∈ F+ and q /∈ F−) represent elements ofS+, S−, and((Stot −S+)−S−)
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Figure 1: An incompletely labeled APTA of depth 3 representing setsS+ = {1,110,01,001} and
S− = {00,10,000}.

respectively. The problem of inferring unknown DFA from example setsS+ andS− can be reduced
to simply contracting the APTA to directly obtain the target DFA. In other words, a minimization
algorithm analogous to that of Hopcroft and Ullman (1969) can be used to identify equivalent nodes
and merge them, thus simplifying the representation. If the APTA is complete, then the applica-
tion of such an algorithm is straight-forward, but in our case it is not since only a fraction of the
complete data set is represented by the APTA. The absence of example strings results in undefined
transitions and or labels within the APTA and consequently can carry over to the hypothesis DFA.
It is important to note that merging nodes within the APTA places constraints on future merges,
hence, the order with which the nodes are merged makes a difference. We now examine the issue
of merging in more detail.

5.2 Merging for Determinization

In the previous section it was mentioned that pairs of equivalent nodes within the APTA may be
merged to obtain a DFA. To clarify the phrase “equivalent nodes” the following recursive, contra-
dictive definition has been included.

Definition 2 Two nodes qi and qj in the APTA are considered notequivalent iff:

1. (qi ∈ F+ and qj ∈ F−) or (qi ∈ F− and qj ∈ F+), or

2. ∃s∈ ∑ s.t. if (qi ,s,qi′),(qj ,s,qj ′) ∈ δ then qi′ not equivalent to qj ′

Definition 2, is analogous to that implied in Moore’s minimization algorithm (Hopcroft and
Ullman, 1969). Definition 2 simply states that two nodes in the APTA where each belongs to either
setF+ or F− are not equivalent if (1) their labels differ and or (2) they have transitions on a common
symbol that lead to nodes which are not equivalent. Note that the application of Definition 2 is valid
for both the cases whereδ is a complete mapping and whereδ is incomplete, and that in the latter
case, the criterion will be easier to satisfy.
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Such constraints maintain the property of determinism for the resulting DFA. For instance, this
guarantees that each state within the hypothesis will have at most, one transition defined for each
element of∑. This is crucial since any DFA containing a state with multiple transitions for any ele-
ment in∑ would no longer be a Deterministic Finite State Automaton but rather a Non-Deterministic
Finite State Automaton (NFA).

The property of merging for determinization will become more apparent in the following sec-
tions. The examples included clearly illustrate the constraints imposed on merging nodes within the
APTA.

6. Occam’s Razor

At this point, we should note that there can be no single solution to the problem defined in Definition
1 since there are many DFA with different languages that are consistent withS+ and S− (Gold,
1967). Therefore, we need a method or inductive bias for selecting the “best” solution from many
valid solutions in this under-constrained problem. It is for this reason that we adopt Occam’s Razor
(Pitt, 1989) as an inductive bias for the inference process. Occam’s Razor simply states thatentities
should not be multiplied unnecessarily. As an inference technique, we will take this to mean that
among competing hypothesis, the simplest is preferable (Pitt, 1989). From an information-theoretic
stand-point, simplest could be interpreted as the least number of bits (Pitt, 1989). If so, Occam’s
Razor would imply that the simplest hypothesis DFA would be that which has the least number of
states since fewer states require less representation. We will refer to the smallest hypothesis DFA
for a Type-3 Grammar(G) as the canonical DFA of(G).

7. Grammar Induction with Abbadingo-styleProblems

We will now redefine the problem of grammar induction in the context of Occam’s Razor as an
inductive bias. In particular we will use the following problem definition for an automaton with
nominal sizen.

Definition 3 Given sets of labeled example strings S+ and S− s.t. S+ ⊂ L(G) and S− ⊂ L′(G) infer
a DFA(A) with the least number of states possible. L(G) is a language generated from an unknown

Type-3 grammar(G). Its complement, L′(G), is defined as L′(G) =
⋃b(2log2n)+3c

k=0 ∑k−L(G) where
⋃b(2log2n)+3c

k=0 ∑k is the set of all strings of length at mostb(2log2n) + 3c over the alphabet(∑) of
L(G) and n is the size of the canonical DFA of G.

Note, with Definition 1 the challenge is to infer a valid DFA for the unknown grammar(G). That
is, an automaton that correctly classifies the test data. However, since the complete set of example
strings is not made available during the inference process and there are several DFA with different
languages that are consistent withS+ andS−, the challenge in Definition 3 is to infer a hypothesis
DFA with the least number of states possible that is consistent with the training examples. We hope
that in addition, the hypothesis DFA should be one that, based on the training examples, would
classify correctly the set of unseen example strings (the test data). While we cannot be sure that the
smallest DFA will satisfy this objective in the absence of other data, we will assume our best choice
is to use Occam’s Razor as the inductive bias.
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8. Problem Complexity

If the “completely labeled” data set is available then an exact solution for a givenAbbadingo-style
problem can be obtained, in the limit, in polynomial time (Trakhtenbrot and Barzdin, 1973). The
following definition is a natural interpretation of polynomial time limiting identification. It was
initially introduced by Pitt (1989).

Let A be an inference algorithm for DFA. After seeingi examples,A conjectures some
DFA Mi . We say thatA makes animplicit error of predictionat stepi if Mi is not con-
sistent with the(i +1)st example. (The algorithm is notexplicitly making a prediction,
but rather the conjectured DFAimplicitly predicts the classification of the next example
string). We propose the following as a definition of polynomial time identification in
the limit. The definition is stated in terms of DFA, but may be applied to any inference
domain.

Definition 4 DFA are identifiable in the limit in polynomial time iff there exists an
inference algorithm(A) for DFA such that A has polynomial update time, and A never
makes more than a polynomial number of implicit prediction errors. More specifically,
there must exist polynomials p and q s.t. for any n, for any DFA M of size n, and
for any presentation of M, the number of implicit errors of prediction made by A is at
most p(n), and the time used by A between receiving the ith example and outputting
the ith conjectured DFA is at most q(n,m1 + . . .+mi), where mj is the length of the jth

example.

If however, the data set is incompletely labeled, then an approximating definition of learning
is required. DFA were considered approximately learned when 99% or greater of the test data was
correctly classified Lang and Pearlmutter (1997). Then, Occam’s razor serves as an inductive bias
to the learning algorithm, under the assumption that minimum size automata also give maximum
accuracy. The problem of minimum automaton identification from incompletely labeled training
data has been proven to be NP-Complete (Gold, 1978). However, Lang (1992) and Freund, Kearns,
Ron, Rubinfeld, Shapire, and Sellie (1993) have shown that the average case is tractable. In other
words, randomly generated DFA can be “approximately learned” from sparse uniform examples
within polynomial time.

9. Problem Space

We will now introduce an extremely useful way of representing the problem space. Note, in this
context, the term problem space will signify the complete set of all possible merge choices that exist
in the APTA at any given point of the inference process. Similar to the APTA, the problem space
can be conveniently represented as a tree which we shall refer to as the search tree (see Figure 2),
but the two tree types should not be confused.

Each node within the search tree, excluding the root and leaf nodes, represents a partial solution
to the problem. For instance, the root node represents the APTA and all transitions leading from
the root are valid merge choices. Transitions signify commitments or decisions of what nodes to
merge next within the APTA. Continuing to select transitions within the search tree at each merge
level will eventually lead to a leaf node. Such a leaf node will be a minimized DFA with possibly
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Figure 2: A representation of the problem space as a tree.

some state labels or transitions missing. Once a leaf node has been reached no other merge choices
are available and an automaton matching the training set is obtained. Whether this automaton is a
solution to the problem formulated in Definition 3 depends on the size of the automaton. Therefore,
the inference engines used for DFA learning are essentially searching for the path that leads from
the root of the search tree to the leaf node that represents the target DFA. In this sense, grammar
induction can be viewed as a classical artificial intelligence tree search problem.

10. Induction on a Complete Data Set -Trakhtenbrot and Barzdin

The inference algorithm described in this section is the algorithm which was initially introduced by
Trakhtenbrot and Barzdin (1973). It is very simple but effective in that it will produce the canonical
DFA of any language for which it obtains the complete data set in polynomial time. A description
of the algorithm is as follows.

10.1 Algorithm Description

• Consider the root of the APTA as a unique node and append it to the current empty list of
unique nodes.

610



INDUCING GRAMMARS FROM SPARSEDATA SETS

• While visiting each proceeding node(λ) of the APTA in breadth-first order, compare the
sub-tree rooted atλ with the sub-tree rooted at each node in the unique nodes list

• If λ is pairwise distinguishable from each node in the unique list, appendλ to the end of the
list.

• Otherwise, disconnectλ from the APTA by redirecting all transitions leading toλ to point to
the first node encountered from the list of unique nodes with whichλ is indistinguishable.

10.1.1 EXAMPLE

To illustrate how the algorithm works, consider the completely labeled APTA in Figure 3. The null
string, represented by theε symbol, which is a member ofS− indicates a string of length zero. The
label associated withε within the APTA is the label assigned to the root node. Hence, upon input
of a string of length zero, according to the APTA in Figure 3, the target DFA will be in a rejecting
state.

Each node within the APTA is assigned a number according to a breadth-first order. For in-
stance, the root which would be visited first in a breadth-first traversal of the APTA is assigned the
number 1 and the second node which would be visited in a breadth-first traversal of the APTA (the
root’s left-most child) is assigned the number 2 and so on. The level order enumeration of the nodes
is for the sole purpose of simplifying this example.
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Figure 3: A completely labeled APTA of depth 3, representing setsS+ and S− where S+ =
{001,01,1,101} andS− = {ε,0,00,000,010,011,10,100,11,110,111}.

We begin the algorithm by adding node 1 to the list of unique nodes. A node is added to the
unique nodes list when it is found to be pairwise distinguishable from the nodes visited previously.
Pairwise distinguishable nodes are nodes which are not equivalent as defined in Subsection 5.2.
Since the root node is the first node visited in a breadth-first traversal of the APTA, we have no
choice but to add it to the list of unique nodes. We then start the iterative process of comparing
the sub-tree rooted at each successive node in breadth-first order, with the sub-tree rooted at each
node in the unique list to determine whether they are indistinguishable. For example, the next step
would be to compare the sub-tree rooted at node 2 with the sub-tree rooted at each node within the
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unique nodes list (in this case just node 1). This involves, first comparing the label assigned to the
root node (first node in the unique nodes list) with the label assigned to node 2. Since the labels are
the same, we continue by redirecting the parent of node 2 to point to node 1. By doing this, we see
from Figure 4 that the sub-tree rooted at node 2 is completely detached from the APTA. The idea is
as follows, if there are no labeling conflicts within the sub-trees rooted at nodes 1 and 2, then node
2 and its descendants can be discarded, hence, reducing the size of the APTA. However, if there are
labeling conflicts within the sub-trees rooted at nodes 1 and 2, the changes to the APTA must be
undone and the next node in the unique nodes list is to be considered for merging with node 2.
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Figure 4: The above figure is an illustration of the end result of redirecting the transition leading
to node 2 from its parent (node 1) to the current node in the unique nodes list which is
considered for merging (in this case node 1). The dotted arrows represent which nodes
would be merged in the event that there are no labeling conflicts. For example, we see
that nodes 8, 4, and 2 would merge with node 1, nodes 5 and 9 with node 3, and nodes 10
and 11 with nodes 6 and 7 respectively.

From Figure 4 we see that there are no labeling conflicts within the sub-trees rooted at nodes 1
and 2 and therefore, we need not consider for merging, node 2 with any other node within the list
of unique nodes. In other words, the changes made to the APTA are kept and the sub-tree rooted at
node 2 is discarded.

We now consider the next node (node 3) for merging with the first node (node 1) in the list of
unique nodes. Since the labels differ, nodes 1 and 3 have rejecting and accepting labels respectively,
merging these nodes is not possible. This forces us to consider for merging the next node in the list
of unique nodes with node 3. However, since there are no other unique nodes to consider, we must
promote node 3 as a unique node and append it to the list of unique nodes.

The next step is to consider merging node 6 with the first node (node 1) in the unique list. Since
the sub-trees rooted at nodes 1 and 6 do not have any labeling conflicts, the transition leading from
the parent node of node 6 remains pointing to node 1 and the sub-tree rooted at node 6 is discarded.
This is illustrated in Figure 5.

The next node considered for merging is node 7. Similar to node 3 and 1, it is distinguishable
from the current set of nodes in the unique list. At first, it may seem that this is not the case since
the labels of nodes 7 and 1 are similar, however, a 1 transition from node 7 leads to a rejecting node
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Figure 5: The result of redirecting the transition leading from the parent node of node 6 to the root
node (node 1).

where as, a 1 transition from the root node leads to an accepting node. Since there is a labeling
conflict within the sub-trees rooted at nodes 1 and 7, and the labels of node 3 and 7 differ, we have
no choice but to add node 7 to the list of unique nodes.

Finally, remaining are nodes 14 and 15. Since they are both leaf nodes, they will be merged
with the first node within the unique list which shares the same label. For instance, nodes 14 and 15
will be merged with node 1 as illustrated in Figures 6 and 7.

The order in which nodes are considered for merging is very important here. Notice that even
though nodes 14 and 15 could have been merged with node 7 they are not. Instead, these nodes
are merged with the first node in the list of unique nodes to which they were determined to be
equivalent.
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Figure 6: The state of the APTA after redirecting the transition leading to node 14 to point to node
1 (the state with which node 14 is merging).
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Figure 7: The state of the APTA after redirecting the transition leading to node 15 to point to node
1 (the state with which node 15 is merging).

614



INDUCING GRAMMARS FROM SPARSEDATA SETS

Therefore, the DFA represented by the APTA in Figure 3 is shown in Figure 8. There are many
important concepts that are enforced in this example. For instance, the data set was complete for
example strings of length 3. As stated in Section 8, if the complete set of example strings are
available during the inference process, a solution can be obtained in polynomial time. Also, since
the data set was complete there are no missing transitions or labels for any of the states within the
final hypothesis DFA which is quite common when dealing with incomplete data sets. Perhaps what
is more important to note here is that not only was a solution obtained for this example problem, but
also the canonical DFA for the language represented by the example strings inS+ andS−.
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Figure 8: The final result obtained from performing the algorithm proposed by Trakhtenbrot and
Barzdin on a completely labeled data set.

10.1.2 ADVANTAGES AND DISADVANTAGES

Perhaps the biggest advantage of this algorithm is its simplicity. It provides a very simple and
systematic approach to dealing with various size data sets in a very short time frame. Unfortunately,
this has its disadvantage since the algorithm merges compatible nodes in breadth-first order despite
the evidence or clues present within the training data. In other words, the attempted merge order
is predetermined. The advantage of this is that very little search of the problem space is necessary
to determine the next merge pair. Of course, this results in a fast running algorithm with very
little over head. However, this does not make efficient use of the evidence or clues in the training
data. It is important to note that the advantages and disadvantages outlined above apply not only to
the algorithm proposed by Trakhtenbrot and Barzdin (1973) for compete data sets but also for the
modified version of this algorithm which is able to deal with incomplete training data.

10.1.3 THE RUNNING TIME

The upper bound on the running time of this algorithm ismn2, wherem is the total number of nodes
in the initial APTA andn is the total number of states in the final hypothesis (Lang, Pearlmutter, and
Price, 1998b).

11. Lang 1992 -The Average Case is Tractable

A variation on the Trakhtenbrot and Barzdin algorithm (Traxbar) was implemented by Lang (1992),
in an attempt to show that random DFA can be approximately learned from sparse uniform exam-
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ples. The modifications made to the algorithm were needed to maintain consistency with incomplete
training sets. For instance, unlabeled nodes and missing transitions in the APTA needed to be con-
sidered.

11.1 Dealing with Incomplete Data Sets

The simple extensions added to the Trakhtenbrot and Barzdin algorithm are summarized as follows.
If nodeq2 is to be merged with nodeq1 then;

• labels of labeled nodes in the sub-tree rooted atq2, must be copied over their respective
unlabeled nodes in the sub-tree rooted atq1.

• transitions in any of the nodes in the sub-tree rooted atq2 that do not exist in their respective
node in the sub-tree rooted atq1, must be spliced in.

As a result of these changes, the Traxbar algorithm will produce a (not necessarily minimum
size) DFA that is consistent with the training set (Lang, 1992).

Experiments with the algorithm were conducted on randomly generated problem sets which
consisted of target DFA and training data which varied in size and density. The variations in the
problem sets allowed Lang (1992) to make several observations of how well the Traxbar algorithm
performs on problems which vary in difficulty.

11.2 Training Data Density

One of the experiments conducted by Lang (1992) examined how the Traxbar algorithm performs
as the training data density varied from approximately 0 to 5 percent. The generation of the 512
state target DFA used in these experiments are described in the following section.

11.2.1 GENERATION OF THEPROBLEM SETS

The target DFA which were roughly 512 states were constructed from randomly generated 640 state
DFA. Each state of the 640 state DFA was assigned a 0 and 1 out-going transition with random
destinations. Each state was then assigned an accepting or rejecting label with probability 0.5. Any
states not reachable from the start state were removed. Finally, the DFA were then minimized with
the Moore minimization algorithm. Any of the resulting DFA that did not have a depth of 16 were
discarded.

For the 1000 learning trials, the size of the training data ranged from 200 to 200000 examples
strings. The construction of the data set first involved generating all binary strings of length 0 to
21 and then, without replacement, randomly selecting example strings which were to be assigned a
label according to the target DFA.

11.2.2 RESULTS

The experiments showed that as the density of the training data varied, the performance of the
learning algorithm went through three distinct states.

Stage 1: For training data density of less than 1.5 percent the learning algorithm produced hy-
potheses which were no better than random guesses. For instance, the hypotheses DFA were
large and the generalization accuracy on the test data remained at approximately 50 percent.
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Stage 2: As the training data density varied within the range of 1.5 to almost 3 percent, it was
observed that smaller hypotheses (only 10 percent greater than the target DFA) were being
generated and the generalization on the test data improved significantly, achieving classifica-
tions of about 99.9 percent accuracy.

Stage 3: Once the training data density reached about 3 percent, the hypotheses were approxi-
mately the correct size and the generalization achieved ranged from 99.99 to 99.999 percent
accuracy. It was observed that increasing the density of the training data beyond 3 percent
had little effect on the accuracy of the generalization.

11.3 How Performance Scales with Target Size

Another experiment conducted by Lang (1992), examined how the requirement of training data
changes as the number of states in the target DFA varies. There were 2000 learning trials conducted
for each of the 6 problem sets. The average size of the target DFA for the 6 problem sets were 31.9,
63.9, 127.4, 254.8, 510.7, and 1020.5 states. The generation of the target DFA involved extracting
the sub-graph reachable from a randomly selected start state of a randomly generated degree-2
digraph consisting of (5/4)n states. As with the first experiment, if the depth of the target DFA was
not 2log2n−2 it was discarded.

11.3.1 RESULTS

From these experiments, several observations were made.

1. For good generalization, doubling the size of the target DFA required that the training data be
increased by a factor of roughly 3.

2. For target DFA increasingly large, the requirement for training set density approaches 0.

11.4 Summary

Gold (1978) showed that exact identification of DFA from sparsely labeled example strings is NP-
Complete, but Lang (1992) demonstrated experimentally that the average case is tractable, while
Freund, Kearns, Ron, Rubinfeld, Shapire, and Sellie (1993) actually proved that the average case
is polynomial, albeit with an enormously less efficient algorithm. In other words, approximate
identification of DFA from sparsely labeled example strings is possible in polynomial time. Also,
Lang (1992) has identified boundaries on the density of the training sets required for a specific class
of DFA learning problems.

In addition to exploring the boundaries of inducing DFA from sparsely labeled training data
and examining the amount of training data required for various size DFA, Lang (1992) introduced a
method of consistently producing DFA to which the inference capabilities of future algorithms can
be compared. For instance, the enforced proportion of the number of states relative to the depth of
the DFA maintains a consistent level of difficulty for learning DFA. This restricted set of DFA sets
a standard for which future algorithms can be tested relative to each other.

Lastly, Lang (1992) is the first to conduct such experiments on large scale problems. This is very
important since previous research only involved DFA that were considerably smaller and perhaps
not a very realistic representation of any specific class of DFA.
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12. Abbadingo One DFA Learning Competition

In 1997, Kevin J. Lang and Barak A. Pearlmutter held a DFA learning competition. The competition
presented the challenge of predicting, with 99% accuracy, the labels which an unseen DFA would
assign to test data given training data consisting of positive and negative examples. As described by
Lang, Pearlmutter, and Price (1998b), Lang and Pearlmutter (1997), there were 3 main goals of the
competition. The first was to promote the development of new and better algorithms. The second
was to present to the machine learning community problems which lie beyond proven bounds with
respect to the sparseness of the training data and to collect data regarding the performance of a
variety of algorithms on these problems. Finally, the third goal of the competition was to provide a
consistent means of comparing the effectiveness of new and existing algorithms for learning DFA.

12.1 How the Problems were Generated

A DFA with a nominal size ofn states was generated according to Section 3. Each of the possible
16n2− 1 binary strings whose length ranged from 0 to 2log2n+ 3 where classified according to
the DFA. The training set and the test set were then uniformly drawn without replacement from
the complete set of labeled binary strings according to the desired density. Participants only had
available to them the labeled training set and an unlabeled test set which they were expected to label
and later submit for evaluation. Competition winners consisted of those participants who where the
first to solve a problem which was not dominated by other solved problems.

12.2 The Dominance Rule

The dominance rule (Lang and Pearlmutter, 1997) exercised during the competition stated that a
problemx is dominated by a problemy when either or both of the following held true.

1. the training set fory is less dense than the training set forx

2. the number of states of the target DFA for problemy is greater than that of problemx.

12.3 Results

The dominance rule allows for multiple winners. In fact, there were two winners of the Abbadingo
One Learning Competition, Rodney Price for solving problemsRandSand Hugues Juill´e for solv-
ing problem 7. The competition consisted of 16 problems in total, 4 (A, B, C, andD) were for
practice only and had been previously solved by the Traxbar algorithm and the remaining 12 where
the official challenge problems. A summary of the 16 problems and the competition results are
found in Table 1.

The official challenge problems consisted of 3 distinct groups. Each group mainly differed in
the sparseness of the training sets. For example, each group contained DFA that ranged in size from
approximately 65 to 512 states, however, the training sets were significantly less dense for the third
group of problems such that 8, 9, andT remained unsolved.

Table 2 illustrates a 2-dimensional partial ordering of the 16Abbadingo-styleproblems. Note,
this is only a partial ordering since some problems are incomparable (see Subsection 12.2). The 2-D
grid works as follows. Problemx dominates problemy if it is (1) in the same column but below it,
or (2) in the same row but to the right of it, or (3) below it and to the right of it.
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Problem Solved By Target Size Target Depth Training Set Size
A - 61 10 4456
B - 119 12 13894
C - 247 14 36992
D - 498 16 115000
1 Juillé 63 10 3478
2 Juillé 138 12 10723
3 Price 260 14 28413
R Price 499 16 87500
4 Juillé 68 10 2499
5 Juillé 130 12 7553
6 Juillé 262 14 19834
S Price 506 16 60000
7 Juillé 65 10 1521
8 unsolved 125 12 4382
9 unsolved 267 14 11255
T unsolved 519 16 32500

Table 1: Problems and results obtained fromhttp://abbadingo.cs.unm.edu of the 1997 Ab-
badingo One Learning Competition

decreasing density
→

increasing A 1 4 7
DFA B 2 5 8
size C 3 6 9
↓ D R S T

Table 2: A 2-D partial ordering of the 16Abbadingo-styleproblems used in the Abbadingo One
Learning Competition.
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12.4 Price’s Winning Algorithm

Price was able to win the Abbadingo One Learning Competition by using an evidence driven state
merging (EDSM) algorithm. Essentially, Price realized that an effective way of choosing which pair
of nodes to merge next within the APTA would simply involve selecting the pair of nodes whose
sub-trees share the most similar labels. Since every label comparison could reveal the incorrectness
of the merge, on average, a merge that survives more label comparisons is most likely to be correct
(Lang, Pearlmutter, and Price, 1998b).

12.5 Post-Competition Work

A post-competition version of the EDSM algorithm as described by Lang, Pearlmutter, and Price
(1998b) is included below.

12.5.1 ALGORITHM DESCRIPTION

• Evaluate all possible pairings of nodes within the APTA.

• Merge the pair of nodes which has the highest calculated score. The score is calculated by
assigning one point for each overlapping labeled node within the sub-trees rooted at the nodes
considered for merging.

• Repeat the steps above until no other nodes within the APTA can be merged.

12.5.2 ADVANTAGES AND DISADVANTAGES

The general idea of the EDSM approach to merge pair selection is to avoid bad merges by selecting
the pair of nodes within the APTA which has the highest score. It is expected that the scoring
will indicate the correctness of each merge, since on average, a merge that survives more label
comparisons is most likely to be correct (Lang, Pearlmutter, and Price, 1998b). Unfortunately, the
difficulty of detecting bad merge choices increases as the density of the training data decreases.
Since the number of labeled nodes decreases within the APTA as the training data becomes more
sparse, the idea of selecting merge pairs based on the highest score proves less effective. This
explains why the EDSM approach did well with large automata but not as well with low density
problems.

Unlike the Traxbar algorithm introduced earlier, the EDSM approach for DFA learning relies
on the training data to select its merge order. For instance, the order in which nodes are merged is
directly dependent on the number of matched labels within the sub-trees rooted at each node. On
the other hand, the Traxbar algorithm attempts to merge nodes in a predefined order despite the
available evidence in the training data. The restriction on the merge order results in a trade-off of
accuracy for simplicity and fast performance. It is the performance that is the biggest disadvantage
to the EDSM approach in that it is not very practical for large problems. Considering every potential
merge pair at each stage of the inference process is computationally expensive.

12.6 Windowed EDSM (W-EDSM)

To improve the running time of the EDSM algorithm, it is suggested that we only consider merging
nodes that lie within a fixed sized window from the root node of the APTA (Lang, Pearlmutter, and
Price, 1998b). The idea is incorporated in the following algorithm description.
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12.6.1 ALGORITHM DESCRIPTION

• In breadth-first order, create a window of nodes starting from the root of the APTA. The
recommended size of the window is twice the number of states in the target DFA.

• Evaluate all possible merge pairs within the window.

• Merge the pair of nodes which has the highest number of matching labels within its sub-trees.

• If the merge reduces the size of the window, in breadth-first order, include the number of
nodes needed to regain a window of size twice the number of states in the target DFA.

• If no merge is possible within the given window, increase the size of the window by a factor
of 2.

• Terminate when no merges are possible.

12.6.2 ADVANTAGES AND DISADVANTAGES

As should be expected, the running time of the W-EDSM algorithm is much better than that of
EDSM. The improvement in the running time is due to the reduction of the search space at each
merge step of the algorithm. Of course, this can hurt the performance of the algorithm in that rel-
atively rare, high scoring merges involving deep nodes may be excluded from the window (Lang,
Pearlmutter, and Price, 1998b). For instance, the ideal algorithm would consider all possible merge
pairs and select for merging, the pair of nodes which scores highest. Since such an algorithm is com-
putationally expensive, only a subset of possible merge pairs are to be considered. This, of course,
presents the task of selecting the correct set of nodes to be included within the window. Similar
to Traxbar, nodes are included within the window based on a breadth-first order. Unfortunately,
this selection process does not include nodes based on the evidence within the training data, hence,
limiting the success of the algorithm to problems that favour windows which grow in breadth-first
order.

Another problem with the W-EDSM algorithm is that a recommended window size of twice
the target DFA be used. If the size of the target DFA is not known then this could be a problem.
However, a simple solution could include executing the algorithm several times while gradually
increasing the window size. Unfortunately, this has it’s problems also since you do not know exactly
when to stop increasing the window size.

12.6.3 THE RUNNING TIME

It is conjectured that a tight upper bound on the running time of the W-EDSM algorithm is closer to
m3n than tom4n wherem is the number of nodes in the APTA andn is the number of states in the
final hypothesis (Lang, Pearlmutter, and Price, 1998b).

12.7 Blue-Fringe EDSM

An alternative windowing method to that used by the W-EDSM algorithm is also described by
Lang, Pearlmutter, and Price (1998b). It uses a red and blue colouring scheme to provide a simple
but effective way of choosing the pool of merge candidates at each merge level in the search. The
Blue-Fringe windowing method aids in the implementation of the algorithm and improves on its
running time.
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12.7.1 ALGORITHM DESCRIPTION

• Colour the root of the APTA red.

• Colour the non-red children of each red node blue.

• Evaluate all possible pairings of red and blue nodes.

• Promote the shallowest blue node which is distinguishable from each red node. Break ties
randomly.

• Otherwise, merge the pair of nodes which have the highest number of matching labels within
their sub-trees.

• Terminate when there are no blue nodes to promote and no possible merges to perform.

12.7.2 ADVANTAGES AND DISADVANTAGES

Similar to the W-EDSM algorithm, Blue-Fringe EDSM places a restriction on the merge order. For
example, the algorithm always starts with the root node coloured red and its children blue resulting
in a maximum of 2 possible merge pairs to choose from at the start. Considering the sparseness of
some of the data sets, one would assume that the pool of possible merge pairs should be greatest
from the start and then gradually decrease to save on the running time. This appropriately considers
all the evidence within the training data at the start which ideally would contribute in making the
correct decisions in the initial stage of the algorithm. This is important since changing the label of a
node after it has been labeled as a result of a merge isn’t possible within this algorithm. Instead, as
the algorithm progresses, the number of red and blue nodes increases resulting in a larger number
of possible merge choices. Despite the restriction in the merge order and the reduction in merge
choices at each merge level within the search tree, Blue-Fringe EDSM is very effective and its
inference capabilities are comparable to those of W-EDSM.

12.7.3 THE RUNNING TIME

The upper bound on the running time of the Blue-Fringe EDSM algorithm ismn3 wherem is the
total number of nodes andn is the total number of states in the initial APTA and final hypothesis
respectively (Lang, Pearlmutter, and Price, 1998b). It is important to note that this is of an order of
magnitude greater than the Traxbar algorithm.

12.8 Juillé’s Winning Algorithm

The inference engine used by Hugues Juill´e is vastly different than the algorithms discussed thus
far. Actually, Juillé and Pollack are the first to use random sampling techniques on search trees as a
heuristic to control the search (Juill´e and Pollack, 1998a). The idea of using a tree to visualize the
search space is very practical (see Section 9).

12.8.1 SAGE

The algorithm is based on a Self-Adaptive Greedy Estimate search procedure (SAGE). Each iter-
ation of the search procedure is composed of two phases, aconstruction phaseand acompetition
phase.
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It is in theconstruction phasewhere the list of alternatives or merge choices is determined. All
the alternatives in the list have the same depth within the search tree. Each member of a population
of processing elements is then assigned one alternative from the list. Each processing element then
scores its assigned alternative by randomly choosing a path down the search tree until a leaf node is
reached or a valid solution is encountered. Next, thecompetition phasekicks in.

The scores assigned to each alternative in the search tree are then used to guide the search.
The meta-level heuristic determines whether to continue with the next level of search. If so, each
processing element is randomly assigned one of the children of it’s assigned alternative. The search
ends when no new node can be expanded upon.

To avoid an exhaustive search of the problem space only the first set of initial merges are ex-
plored. These are thought of as the most critical merge choices since each merge places constraints
on future merges.

12.8.2 ADVANTAGES AND DISADVANTAGES

The random selection of merge pairs at a given level of the search tree results in a fast technique for
obtaining an hypothesis DFA. Since there is no need for managing a window of merge pairs there is
a savings in computation. In addition, this provides an unbiased exploration of the problem space.
However, selecting merge pairs at random ignores the clues in the training data and results in a lot
of unnecessary searching. This approach is thus, much more computationally intensive than the
EDSM algorithm and its derivatives. More search results in a greater demand on CPU time and in
that respect, an implementation of SAGE on large problems is not very realistic unless it is designed
for a system with a highly parallel architecture. For instance, Juill´e and Pollack (1998b,a) conducted
several simulations on a network of Pentium PCs and SGI workstations. This is in sharp contrast to
the EDSM simulations mentioned above which were implemented on desktop computer equipment.
In effect, the portability of the SAGE inference engine is far more limited than the others mentioned
previously.

12.9 Exploring the Search Space Using the EDSM Approach

Experimenting with the ideas incorporated in SAGE, Lang (1998) introduced several new algo-
rithms which use the idea of exploring the search space combined with the EDSM approach. These
algorithms consist of a generic outer loop that supplies a binary control string to a base algorithm.
Each time the base algorithm is run, a modified control string is used to guide the base algorithm
in it’s search. For example, when a 0 bit is encountered in the control string the base algorithm
makes the same choice as the original algorithm, however, if a 1 bit is encountered the choice of
the original algorithm is not made and is considered as invalid for the remainder of the run (Lang,
1998). According to Lang (1998), the results obtained from the application of the new algorithms on
Abbadingo-styleproblems are the best ever and use far less computation than the SAGE algorithm.

In later work, Lang (1999) describes an implementation of these ideas. The resultant algorithm
(Ed-beam) consisted of the outer loop described above wrapped around the Blue-Fringe algorithm.

12.9.1 ADVANTAGES AND DISADVANTAGES

An advantage that Ed-beam has over SAGE is that it uses the matching labels heuristic instead of a
random traversal down the search tree. This makes better use of the clues within the training data.
Although, as with any algorithm that incorporates the matching labels heuristic, when the number
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of labeled nodes decreases within the APTA, the matching labels heuristic generates more ties.
Since ties are broken randomly, the effectiveness of the heuristic quickly diminishes. Lang (1998)
indicates Juillé replaced the random merge pair selection heuristic in SAGE with the matching labels
heuristic during the Abbadingo One Learning Competition to solve problem 7 of the benchmark
problem set.

12.10 A New Limited Search Approach to LearningAbbadingo-styleDFA

Recent work by Cicchello and Kremer (2002b), Cicchello (2002) has lead to a new and more ef-
ficient method of searching the problem space. Instead of performing an exhaustive search over
the initial set of merges of the inference process as does Ed-beam (see Subsection 12.9), Cicchello
and Kremer (2002b), Cicchello (2002) suggest focusing on choosing an alternative first merge. The
new algorithm (TBW-EDSM) was inspired by the results obtained from evaluating the importance
of choosing an alternative merge choice to that of the matching labels heuristic on one of the first
5 levels of the search tree (Cicchello and Kremer, 2002a). Realizing that the potential for improve-
ment is greatest when altering just the first merge, Cicchello and Kremer (2002b), Cicchello (2002)
incorporate a breadth-first traversal of the available first merges and perform the remaining merges
in the order suggested by the matching labels heuristic. Since a breadth-first merge order considers
the largest trees of suffixes first, it is expected that on average the most changes in the form of splic-
ing transitions and labeling of unlabeled nodes within the APTA will occur. By making a sufficient
amount of correct changes to the APTA on the first merge, the matching labels heuristic will be
better able to select the order of the remaining merges. The argument behind this assumption is
as follows. Sparser data sets result in fewer labeled nodes within the APTA for a given problem.
Fewer labeled nodes implies rare high scoring merge pairs and more ties. Since ties are broken ran-
domly, the effectiveness of the matching labels heuristic quickly becomes comparable to randomly
choosing merge pairs at the beginning of the inference process. Therefore, we must introduce new
and better ways of selecting the initial merges. One way to do so is by using the breadth-first merge
order as implemented in the TBW-EDSM algorithm.

12.10.1 ADVANTAGES AND DISADVANTAGES

An advantage of the TBW-EDSM algorithm is that it avoids exhaustively searching through the
initial merge of the inference process. Since the order of the first merge is predefined, maintaining
a window of nodes and evaluating each possible merge pair is not necessary. This results in an
improvement on the running time of the W-EDSM algorithm. However, the biggest disadvantage of
the TBW-EDSM algorithm is that there may not exist a first merge which makes enough changes to
the APTA. Under this condition, additional search may be required in other levels of the search tree.

12.11 Summary

To say the least, the Abbadingo One DFA Learning Competition was a great success. Several
new DFA learning algorithms were introduced to the grammar induction community and what was
thought of as being beyond the bounds of DFA learning forAbbadingo-styleproblems was re-
defined. Since the competition, improvements to the algorithms have been made and additional
algorithms such as Ed-beam and TBW-EDSM have been suggested. Clearly, what was accepted as
the new limit of DFA learning forAbbadingo-styleproblems has once again been exceeded.
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13. Induction of Small DFA

The focus thus far has been on algorithms that have been evaluated usingAbbadingo-styleproblems.
The benchmark problem sets introduced in this section do not posses the consistency in the dimen-
sion of training set density and DFA size with respect to depth as do theAbbadingoproblem sets.
However, some of the inference techniques introduced in the inference engines developed to deal
with smaller problem sets can be carried over to other problem domains and therefore are included.

14. Tomita Grammars

Prior to to the work of Lang (1992), an accepted benchmark set of Grammars used for induction
were those presented by Tomita (1982). As initially presented by Tomita (1982), the seven gram-
mars are;

1. 1∗

2. (10)∗

3. any string without an odd number of consecutive 0’s after an odd number of consecutive 1’s.

4. any string without more than 2 consecutive 0’s.

5. any string of even length which, making pairs, has an odd number of (0 1) or (1 0)’s.

6. any string such that the difference between the numbers of 1’s and 0’s is 3n.

7. 0∗1∗0∗1∗

Tomita Grammars can be represented by DFA ranging in size from 3 to 6 states. In comparison
to theAbbadingo-styleproblems, the DFA representing these grammars are very small and permit
the use of inference engines that are computationally more expensive. As an example, consider
the hill-climbing algorithm introduced by Tomita (1982). The initial step of the algorithm involves
constructing a randomn state DFA. A copy of the DFA is then made and mutated by randomly
choosing one of the following operations.

• removing a transition

• inserting a transition

• changing the destination of a transition to another destination

• converting an accepting state to a rejecting state and vice versa

Both DFA are evaluated by a scoring function. The DFA which achieves the best score is kept
while the other is discarded. The scoring function used to evaluate the DFA isr −w wherer is the
number of example strings inS+ classified correctly andw is the number of example strings inS−
classified incorrectly. A flowchart of the algorithm can be seen in Figure 9.

The training setsS+ andS− used for inference varied in size within [6, 13] and [16, 25] ex-
ample strings respectively. The largest string from either set was 18 characters long. Although
the algorithm proposed by Tomita (1982) is not very practical for dealing withAbbadingo-style
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yes

no

A’ = mutate(A)

A = random

A = A’

F(A) < F(A’)

Figure 9: Flowchart of Tomita 1992 hill-climbing algorithm.

problems and the Tomita Grammars are relatively simple to infer, the contribution made by Tomita
(1982) has had a positive impact on the development of new algorithms. For example, Giles, Chen,
Miller, Chen, Sun, and Lee (1991), Pollack (1991), Forcada and Carrasco (1995), Dupont (1994),
Luke, Hamahashi, and Kitano (1999), Bengio and Frasconi (1995) have incorporated the Tomita
Grammars in evaluating the performance of their inference engines. The algorithms introduced in
these papers describe applications of Genetic algorithms and Second-Order Recurrent Networks for
rule induction. The introduction of the Tomita Grammars to the grammar induction community
brought attention to the fact that there was a need for a benchmark problem set for comparing the
effectiveness of various inference engines.

15. Exact DFA Inference with the Aid of Backtracking

Another benchmark problem set that has been used in the development of new algorithms is that
which was used to evaluate exact DFA learning algorithms by Lang (1999). Earlier versions of
the benchmark problem set were introduced by Oliveira and Silva (1998) and Oliveira and Edwards
(1996). The benchmark problem set used by Lang (1999) consisted of 810 problems1. Each problem
was generated by using an unknown Moore machine having between 4 and 21 states to label 20
binary strings of length 30. The training data consisted of not 20 labels, one label for each string,

1. The 810 problems are available for download athttp://algos.inesc.pt/ ∼aml .
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but rather a label for each state that was visited throughout each of the strings. The objective was to
infer a minimum size DFA consistent with each training set.

The DFA learning algorithms evaluated using the benchmark problem set described above in-
corporated a new concept which was first proposed by Beirmann and Petry (1975). The concept is
backtracking and is included in MMM an exact DFA learning algorithm presented by Oliveira and
Edwards (1996).

15.1 MMM

The algorithm begins with a one state hypothesis DFA. The hypothesis is expanded upon by com-
paring transitions within to transitions in the APTA. For example, every node within the APTA is
mapped to a state in the hypothesis DFA. If there exists a transition from a node in the APTA which
is absent in its corresponding state in the hypothesis DFA, the transition is added and is directed to
either one of the existing states or to a new one. If the corresponding transition is present, it is tested
for consistency with the APTA. In the event that the hypothesis DFA is inconsistent with the APTA,
the last choice made is undone. Otherwise, the algorithm continues.

15.2 Bica

A more constructive approach to resolving the inconsistencies within the hypothesis DFA and the
APTA was introduced by Pena and Oliveira (1998). Instead of just undoing the last choice made
as is the case with MMM, Pena and Oliveira (1998) suggest trying to determine which decision(s)
made earlier on is responsible for the current inconsistencies between the hypothesis DFA and the
APTA. By determining which move is the cause of the impasse, a jump to this point within the
search tree may be made and the branch of the search space rooted at this point can be ignored for
the rest of the search. These jumps are called non-chronological backtracks or back-jumps (Russel
and Norvig, 1996). This is very different than MMM since MMM just undoes the last choice made
and does not determine the exact cause of the inconsistencies. The set of techniques incorporated
in Bica is known as dependency directed backtracking. These techniques have already been used in
other applications but have not been applied to DFA learning until the work of Oliveira and Silva
(1998).

There are many benefits to eliminating specific branches within the search tree. For instance,
by refining the search space more time can be spent exploring regions of the search tree that are
expected to contain, as a leaf, the target DFA. This results in a more efficient search and avoids the
MMM approach of exhaustively searching unfruitful regions of the search tree to regain consistency
between the hypothesis DFA and the APTA. Unfortunately, pruning the search tree comes at a cost
and as a result, Bica is more expensive per node searched than MMM.

15.3 Exbar

An improvement to MMM was described by Lang (1999). Unlike MMM, Exbar does not commit
to merges until the determinization rule has been enforced. For example, Exbar immediately tries
to perform the additional merges implied by the determinization rule (Lang, 1999). This prevents
any unnecessary backtracking to decisions made earlier on that caused inconsistencies between the
hypothesis DFA and the APTA. A description of the algorithm is included below.
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15.3.1 ALGORITHM DESCRIPTION

• Assume that the size of the target DFA is one.

• Within the APTA, “choose a blue node that can be disposed of in the fewest ways. For
example, the preferred kind of blue node can’t be merged with any red node, and thus yields
a forced promotion to red. The next best kind of blue node has only one possible merge,
resulting in two choices to be searched, etc.” (Lang, 1999)

• Try merging each red node with the blue node. Once a compatible red node is found continue
selecting blue nodes using the criteria described above and merge them with any of the avail-
able red nodes. If an impasse is reached, undo the most recent merge and try merging the blue
node with the next available red node.

• If all possible merges have been tried and rejected for the current blue node, try promoting
the blue node to red.

• If promoting the blue node to red exceeds the initial size of the target DFA then undo the next
most recent merge.

• If the assumed size of the target DFA cannot represent the complete training data, assume that
the size of the target DFA is one state larger than previously assumed and begin the whole
process again.

• Continue until no more blue nodes exist.

The colour scheme of red and blue nodes was described in Subsection 12.7. Recall, red nodes
are pairwise distinguishable nodes and will be included in the final hypothesis. The blue nodes,
however, are the children of the red nodes and are to either be promoted to red or merged with a red
node.

15.4 Summary

In a sense, the algorithms SAGE (Juill´e and Pollack, 1998a), Ed-beam (Lang, 1999), and TBW-
EDSM (Cicchello and Kremer, 2002b) all incorporate the technique of backtracking. Although, it
is done with far less book-keeping at each merge choice. For instance, the SAGE algorithm simply
explores random merge choices at a given level within the search tree until it decides which merge
pair(s) to expand upon. The only book-keeping involved includes the scores obtained by the merge
choices explored. However, the backtracking does not involve jumping levels within the search tree
like Bica but it does involve backtracking to the last merge made similar to MMM and Exbar.

On the other hand, the Ed-beam algorithm allows for modifications in the control string of the
outer loop. Since the modification of a bit can occur anywhere within the binary control string,
the algorithm is in effect jumping levels within the search tree. Again, book-keeping is kept at a
minimum with Ed-beam. In fact, the only information that is stored is that which is represented by
the binary control string. When a 1 bit is encountered as opposed to a 0 bit, the algorithm takes an
alternative merge pair to that which is recommended by the matching labels heuristic.

Lastly, the TBW-EDSM algorithm simply backtracks to the first merge and tries to expand on
it. This avoids exhaustively searching the set of initial merges in the initial stage of the inference
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process (Cicchello and Kremer, 2002b) and avoids any unnecessary book-keeping since alternative
merge choices are selected in the predefined breadth-first order.

We should point out that there are some similarities in the algorithms described above for in-
ferring minimal size DFA and those described for inferringAbbadingo-styleDFA. As mentioned
previously, the algorithms described in the preceding section are not very practical for large DFA
since they simply involve either (1) too much search over the problem space and/or (2) too much
book-keeping. However, it is the technique of backtracking described in the preceding section(s)
which we should continue to incorporate in new algorithms since it consistently proves its effective-
ness across various problem sets.

16. Conclusion

This paper has surveyed over 10 years of research on the Abbadingo problem domain. This problem
domain represents an admittedly limited, but still interesting test-bed for grammar induction tech-
niques on sparsely labeled example strings. While the exact identification of DFA from sparsely
labeled example strings is NP-Complete, the algorithms described here are able to approximately
(with 99% accuracy) solve problem classes with varying problem sizes and training set densities in
a tractable fashion.

The Abbadingo problem definition has provided an interesting point of comparison for algo-
rithms designed to identify automata. Over the past six years, the upper bounds on learnability have
changed significantly as a direct consequence of participation in the competition. Two dimensions,
problem size and training set density have provided a frontier for exploration and new algorithms
such as EDSM, SAGE, Ed-beam and TBW-EDSM have pushed that frontier even further than was
previously thought possible. We included the definition of a uniform terminology and key defini-
tions for the variety of different approaches, and have described, in detail, the leading algorithms
along with a thorough analysis of their strengths and weaknesses. The breakthroughs thus far have
come from better selection methods for potential merge pairs and backtracking techniques to apply
search to the problem.

Our main intension was to provide an accessible introduction and to inspire new interest in this
problem domain, by providing the grammar induction community with a single paper that offers a
comprehensive review of relevant work and findings. In addition, we hope we have brought to light
some of the current issues with the general problem of grammar induction. These issues range from
algorithm limitations to the general complexity of the problem.

Although the Abbadingo problem domain is very specific, the concepts and algorithmic ap-
proaches can be adapted to other problem domains. Yet, it is clear that much work and experi-
mentation still remains in this area of research. In particular, a few areas of exploration spring to
mind.

The problems investigated thus far have focused on binary alphabets. The applicability of the
methods used here and necessary adjustments required for larger alphabets remain to be investi-
gated.

While the Abbadingo problem generation mechanism offers a great method to generate an un-
limited supply of benchmark problems with graded difficulties, it by no means represents the only
problems of interest or even a set of problems inspired by any real-world application. Further study
of other problem generation mechanisms are required and the general applicability of the algorithms
proposed for Abbadingo problems to other frameworks remains to be examined.
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Finally, for those interesting in trying their hand at the kinds of problems described in this
paper, we note that a follow-up to the Abbadingo competition is available on-line at the Gowachin
site (Lang, Pearlmutter, and Coste, 1998a). This new competition adds noise to the Abbadingo
paradigm and allows users to generate their own problem sets on demand.

It is clear that the history of inducing grammars from sparse data sets has proven to be an
interesting one. We can only guess what new problem definitions, algorithms and performance
breakthroughs the next years will bring.
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