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Abstract

We study the problem of learning to accurately rank a set of objects by combining a given
collection of ranking or preference functions. This problem of combining preferences arises
in several applications, such as that of combining the results of different search engines,
or the “collaborative-filtering” problem of ranking movies for a user based on the movie
rankings provided by other users. In this work, we begin by presenting a formal framework
for this general problem. We then describe and analyze an efficient algorithm called Rank-
Boost for combining preferences based on the boosting approach to machine learning. We
give theoretical results describing the algorithm’s behavior both on the training data, and
on new test data not seen during training. We also describe an efficient implementation
of the algorithm for a particular restricted but common case. We next discuss two exper-
iments we carried out to assess the performance of RankBoost. In the first experiment,
we used the algorithm to combine different web search strategies, each of which is a query
expansion for a given domain. The second experiment is a collaborative-filtering task for
making movie recommendations.

1. Introduction

Consider the following movie-recommendation task, sometimes called a “collaborative-
filtering” problem (Hill et al., 1995, Shardanand and Maes, 1995). In this task, a new
user, Alice, seeks recommendations of movies that she is likely to enjoy. A collaborative-



filtering system first asks Alice to rank movies that she has already seen. The system then
examines the rankings of movies provided by other viewers and uses this information to
return to Alice a list of recommended movies. To do that, the recommendation system
looks for viewers whose preferences are similar to Alice’s and combines their preferences to
make its recommendations.

In this paper, we introduce and study an efficient learning algorithm called RankBoost
for combining multiple rankings or preferences (we use these terms interchangeably). This
algorithm is based on Freund and Schapire’s (1997) AdaBoost algorithm and its recent
successor developed by Schapire and Singer (1999). Similar to other boosting algorithms,
RankBoost works by combining many “weak” rankings of the given instances. Each of
these may be only weakly correlated with the target ranking that we are attempting to
approximate. We show how to combine such weak rankings into a single highly accurate
ranking.

We study the ranking problem in a general learning framework described in detail in
Section 2. Roughly speaking, in this framework, the goal of the learning algorithm is simply
to produce a single linear ordering of the given set of objects by combining a set of given
linear orderings called the ranking features. As a form of feedback, the learning algorithm
is also provided with information about which pairs of objects should be ranked above or
below one another. The learning algorithm then attempts to find a combined ranking that
misorders as few pairs as possible, relative to the given feedback.

In Section 3, we describe RankBoost in detail and we prove a theorem about its ef-
fectiveness on the training set. We also describe an efficient implementation for “bipartite
feedback,” a special case that occurs naturally in many domains. We analyze the complexity
of all of the algorithms studied.

In Section 4, we describe an efficient procedure for finding the weak rankings that will
be combined by RankBoost using the ranking features. For instance, for the movie task,
this procedure translates into using very simple weak rankings that partition all movies into
only two equivalence sets, those that are more preferred and those that are less preferred.
Specifically, we use another viewer’s ranked list of movies partitioned according to whether
or not he prefers them to a particular movie that appears on his list. Such partitions of
the data have the advantage that they only depend on the relative ordering defined by
the given rankings rather than absolute ratings. In other words, even if the ranking of
movies is expressed by assigning each movie a numeric score, we ignore the numeric values
of these scores and concentrate only on their relative order. This distinction becomes very
important when we combine the rankings of many viewers who often use completely different
ranges of scores to express identical preferences. Situations where we need to combine the
rankings of different models also arise in meta-searching problems (Etzioni et al., 1996) and
in information-retrieval problems (Salton, 1989, Salton and McGill, 1983).

In Section 5, for a particular probabilistic setting, we study the generalization perfor-
mance of RankBoost, that is, how we expect it to perform on test data not seen during
training. This analysis is based on a uniform-convergence theorem that we prove relating
the performance on the training set to the expected performance on a separate test set.

In Section 6, we report the results of experimental tests of our approach on two different
problems. The first is the meta-searching problem. In a meta-search application, the goal
is to combine the rankings of several web search strategies. Each search strategy is an



operation that takes a query as input, performs some simple transformation of the query
(such as adding search directives like “AND”, or search tokens like “home page”) and sends
it to a particular search engine. The outcome of using each strategy is an ordered list of
URL’s that are proposed as answers to the query. The goal is to combine the strategies
that work best for a given set of queries.

The second problem is the movie-recommendation problem described above. For this
problem, there exists a large publicly available dataset that contains ratings of movies
by many different people. We compared RankBoost to nearest-neighbor and regression
algorithms that have been previously studied for this application using several evaluation
measures. RankBoost was the clear winner in these experiments.

In addition to the experiments that we report, Collins (2000) and Walker, Rambow,
and Rogati (2001) describe recent experiments using the RankBoost algorithm for natural-
language processing tasks. Also, in a recent paper (Iyer et al., 2000), two versions of
RankBoost were compared to traditional information retrieval approaches.

Despite the wide range of applications that use and combine rankings, this problem
has received relatively little attention in the machine-learning community. The few meth-
ods that have been devised for combining rankings tend to be based either on nearest-
neighbor methods (Resnick et al., 1995, Shardanand and Maes, 1995) or gradient-descent
techniques (Bartell et al., 1994, Caruana et al., 1996). In the latter case, the rankings
are viewed as real-valued scores and the problem of combining different rankings reduces
to numerical search for a set of parameters that will minimize the disparity between the
combined scores and the feedback of a user.

While the above (and other) approaches might work well in practice, they still do not
guarantee that the combined system will match the user’s preference when we view the scores
as a means to express preferences. Cohen, Schapire and Singer (1999) proposed a framework
for manipulating and combining multiple rankings in order to directly minimize the number
of disagreements. In their framework, the rankings are used to construct preference graphs
and the problem is reduced to a combinatorial optimization problem which turns out to be
NP-complete; hence, an approximation is used to combine the different rankings. They also
describe an efficient on-line algorithm for a related problem.

The algorithm we present in this paper uses a similar framework to theirs but avoids the
intractability problems. Furthermore, as opposed to their on-line algorithm, RankBoost is
more appropriate for batch settings where there is enough time to find a good combination.
Thus, the two approaches complement each other. Together, these algorithms constitute
a viable approach to the problem of combining multiple rankings that, as our experiments
indicate, works very well in practice.

2. A formal framework for the ranking problem

In this section, we describe our formal model for studying ranking.

Let X be a set called the domain or instance space. Elements of X are called instances.
These are the objects that we are interested in ranking. For example, in the movie-ranking
task, each movie is an instance.

Our goal is to combine a given set of preferences or rankings of the instance space. We
use the term ranking feature to denote these given rankings of the instances. A ranking



feature is nothing more than an ordering of the instances from most preferred to least
preferred. To make the model flexible, we allow ties in this ordering, and we do not require
that all of the instances be ordered by every ranking feature.

We assume that a learning algorithm in our model is given n ranking features denoted
f1,--., fn- Since each ranking feature f; defines a linear ordering of the instances, we can
equivalently think of f; as a scoring function where higher scores are assigned to more
preferred instances. That is, we can represent any ranking feature as a real-valued function
where f;(z1) > fi(xo) means that instance z; is preferred to xo by f;. The actual numerical
values of f; are immaterial; only the ordering that they define is of interest. Note that this
representation also permits ties (since f; can assign equal values to two instances).

As noted above, it is often convenient to permit a ranking feature f; to “abstain” on a
particular instance. To represent such an abstention on a particular instance x, we simply
assign f;(x) the special symbol | which is incomparable to all real numbers. Thus, f;(z) = L
indicates that no ranking is given to = by f;. Formally, then, each ranking feature f; is a
function of the form f; : X — R, where the set R consists of all real numbers, plus the
additional element L.

Ranking features are intended to provide a base level of information about the ranking
task. Said differently, the learner’s job will be to learn a ranking expressible in terms of
the primitive ranking features, similar to ordinary features in more conventional learning
settings. (However, we choose to call them “ranking features” rather than simply “features”
to stress that they have a particular form and function.)

For example, in one formulation of the movie task, each ranking feature corresponds
to a single viewer’s past ratings of movies, so there are as many ranking features as there
are past users of the recommendation service. Movies which were rated by that viewer are
assigned the viewer’s numerical rating of the movie; movies which were not rated at all by
that viewer are assigned the special symbol L to indicate that the movie was not ranked.
Thus, fi(x) is movie-viewer i’s numerical rating of movie x, or L if no rating was provided.

The goal of learning is to combine all of the ranking functions into a single ranking of
the instances called the final or combined ranking. The final ranking should have the same
form as that of the ranking features; that is, it should give a linear ordering of the instances
(with ties allowed). However, unlike ranking features, we do not permit the final ranking
to abstain on any instances, since we want to be able to rank all instances, even those not
seen during training. Thus, formally the final ranking can be represented by a function
H : X — R with a similar interpretation to that of the ranking features, i.e., 1 is ranked
higher than zo by H if H(x1) > H(xo). Note the explicit omission of L from the range
of H, thus prohibiting abstentions. For example, for the movie task, this corresponds to a
complete ordering of all movies (with ties allowed), where the most highly recommended
movies at the top of the ordering have the highest scores.

Finally, we need to assume that the learner has some feedback information describing
the desired form of the final ranking. Note that this information is not encoded by the
ranking features, which are merely the primitive elements with which the learner constructs
its final ranking. In traditional classification learning, this feedback would take the form
of labels on the examples which indicate the correct classification. Here our goal is instead
to come up with a good ranking of the instances, so we need some feedback describing, by
example, what it means for a ranking to be “good.”



One natural way of representing such feedback would be in the same form as that of a
ranking feature, i.e., as a linear ordering of all instances (with ties and abstentions allowed).
The learner’s goal then might be to construct a final ranking which is constructed from the
ranking features and which is “similar” (for some appropriate definition of similarity) to
the given feedback ranking. This model would be fine, for instance, for the movie ranking
task since the target movie-viewer Alice provides ratings of all of the movies she has seen,
information that can readily be converted into a feedback ranking in the same way that
other users’ have their rating information converted into ranking features.

However, in other domains, this form and representation of feedback information may
be overly restrictive. For instance, in some cases, two instances may be entirely unrelated
and we may not care about how they compare. For example, suppose we are trying to rate
individual pieces of fruit. We might only have information about how individual apples
compare with other apples, and how oranges compare with oranges; we might not have
information comparing apples and oranges. A more realistic example is given by the meta-
search task described in Section 2.1.

Another difficulty with restricting the feedback to be a linear ordering is that we may
consider it very important (because of the strength of available evidence) to rank instance
x1 above xg, but only slightly important that instance x5 be ranked above x3. Such varia-
tions in the importance of how instances are ranking against one another cannot be easily
represented using a simple linear ordering of the instances.

To allow for the encoding of such general feedback information, we instead assume that
the learner is provided with information about the relative ranking of individual pairs of
instances. That is, for every pair of instances xq, 1, the learner is informed as to whether x{
should be ranked above or below z¢, and also how important or how strong is the evidence
that this ranking should exist. All of this information can be conveniently represented by
a single function ®. The domain of & is all pairs of instances. For any pair of instances
xg,x1, ®(x0, 1) is a real number whose sign indicates whether or not z; should be ranked
above xg, and whose magnitude represents the importance of this ranking.

Formally, then, we assume the feedback function has the form & : X x X — R. Here,
®(xg,21) > 0 means that z1 should be ranked above zy while ®(zp,z1) < 0 means the
opposite; a value of zero indicates no preference between x( and x1. As noted above, the
larger the magnitude |®(xg,x1)|, the more important it is to rank x; above or below z.
Consistent with this interpretation, we assume that ®(z,z) = 0 for all z € X', and that ® is
anti-symmetric in the sense that ®(zg,z1) = —®(z1,x0) for all zg,x1 € X. Note, however,
that we do not assume transitivity of the feedback function.?

For example, for the movie task, we can define ®(xg,z1) to be +1 if movie x; was
preferred to movie xg by Alice, —1 if the opposite was the case, and 0 if either of the movies
was not seen or if they were equally rated.

1. In fact, we do not even use the property that & is anti-symmetric, so this condition also could be
dropped. For instance, we might instead formalize ® to be a nonnegative function in which a positive
value for ®(zo,z1) indicates that x1 should be ranked higher than zo, but there is no prohibition against
both ®(x0,x1) and ®(x1,z0) being positive. This might be helpful when we have contradictory evidence
regarding the “true” ranking of o and x1, and is analogous in classification learning to the same example
appearing twice in a single training set with different labels.



As suggested above, a learning algorithm typically attempts to find a final ranking that is
similar to the given feedback function. There are perhaps many possible ways of measuring
such similarity. In this paper, we focus on minimizing the (weighted) number of pairs of
instances which are misordered by the final ranking relative to the feedback function. To
formalize this goal, let D(zg,z1) = ¢ - max{0, ®(xg,x1)} so that all negative entries of ®
(which carry no additional information) are set to zero. Here, ¢ is a positive constant chosen

so that
Z D(l‘o,l’l) =1.

Z0o,T1

(When a specific range is not specified on a sum, we always assume summation over all
of X.) Let us define a pair xg,z; to be crucial if ®(xg,z1) > 0 so that the pair receives
non-zero weight under D.

The learning algorithms that we study attempt to find a final ranking H with a small
weighted number of crucial-pair misorderings, a quantity called the ranking loss and denoted
rlossp(H). Formally, the ranking loss is defined to be

> D(wo,x1) [H(21) < H(x0)] = Priagz)~p [H(w1) < H(zp)]. (1)

Z0o,T1

Here and throughout this paper, we use the notation [7] which is defined to be 1 if predicate
7 holds and 0 otherwise.

There are many other ways of measuring the quality of a final ranking. Some of these
alternative measures are described and used in Section 6.

Of course, the real purpose of learning is to produce a ranking that performs well even
on instances not observed in training. For instance, for the movie task, we would like to
find a ranking of all movies that accurately predicts which ones a movie-viewer will like
more or less than others; obviously, this ranking is only of value if it includes movies that
the viewer has not already seen. As in other learning settings, how well the learning system
performs on unseen data depends on many factors, such as the number of instances covered
in training and the representational complexity of the ranking produced by the learner.
Some of these issues are addressed in Section 5.

In studying the complexity of our algorithms, it will be helpful to define various sets and
quantities which measure the size of the input feedback function. First of all, we generally
assume that the support of ® is finite. Let Xg denote the set of feedback instances, i.e.,
those instances that occur in the support of ®:

Xo={reXx|I e€Xx:  dxq1)+#0}
Also, let |®| be the size of the support of ®:
|| = [{(xg,21) € X x X | ®(x0,21) # 0}].

In some settings, such as the meta-search task described next, it may be appropriate
for the learner to accept a set of feedback functions ®1,...,®,,. However, all of these can
be combined into a single function ® simply by adding them: & = ) ; @5 (If some have
greater importance than others, then a weighted sum can be used.)



2.1 Example: Meta-search

To illustrate this framework, we now describe the meta-search problem and how it fits into
the general framework. Experiments with this problem are described in Section 6.1.

For this task, we used the data of Cohen, Schapire and Singer (1999). Their goal was
to simulate the problem of building a domain-specific search engine. As test cases, they
picked two fairly narrow classes of queries—retrieving the homepages of machine-learning
researchers (ML), and retrieving the homepages of universities (UNIV). They chose these
test cases partly because the feedback was readily available from the web. They obtained a
list of machine-learning researchers, identified by name and affiliated institution, together
with their homepages,? and a similar list for universities, identified by name and (sometimes)
geographical location from Yahoo! We refer to each entry on these lists (i.e., a name-
affiliation pair or a name-location pair) as a base query. The goal is to learn a meta-search
strategy that, given a base query, will generate a ranking of URL’s that includes the correct
homepage at or close to the top.

Cohen, Schapire and Singer also constructed a series of special-purpose search templates
for each domain. Each template specifies a query expansion method for converting a base
query into a likely seeming AltaVista query which we call the ezpanded query. For exam-
ple, one of the templates has the form +"NAME" +machine +learning which means that
AltaVista should search for all the words in the person’s name plus the words ‘machine’
and ‘learning’. When applied to the base query ‘Joe Researcher from Shannon Labora-
tory in Florham Park’ this template expands to the expanded query +"Joe Researcher"
+machine +learning.

A total of 16 search templates were used for the ML domain and 22 for the UNIV
domain.? Each search template was used to retrieve the top thirty ranked documents. If
none of these lists contained the correct homepage, then the base query was discarded from
the experiment. In the ML domain, there were 210 base queries for which at least one
search template returned the correct homepage; for the UNIV domain, there were 290 such
base queries.

We mapped the meta-search problem into our framework as follows. Formally, the
instances now are pairs of the form (q,u) where ¢ is a base query and wu is one of the
URL’s returned by one of the search templates for this query. Each ranking feature f;
is constructed from a corresponding search template ¢ by assigning the jth URL w on its
list (for base query ¢) a rank of —j; that is, fi((¢,u)) = —j. If u is not ranked for this
base query, then we set f;((q,u)) = L. We also construct a separate feedback function
®, for each base query ¢ that ranks the correct homepage URL u, above all others. That
is, ®4((q,u), (g, us)) = +1 and ®¢((q,us), (¢,u)) = —1 for all u # u,. All other entries of
P, are set to zero. All the feedback functions ®, were then combined into one feedback
function ® by summing as described earlier: ® = ) ¢ 2q

The output of a learning algorithm is some final ranking H. In the meta-search example
H is a weighted combination of the different search templates f;. To apply H, given a test
base query ¢, we first form all of the expanded queries from search templates and send these

2. From ‘http://www.aic.nrl.navy.mil/~aha/research/machine-learning.html’.
3. See (Cohen, Schapire, and Singer, 1999) for the list of search templates.



Algorithm RankBoost

Given: initial distribution D over X x X.
Initialize: D1 = D.

Fort=1,...,T:

e Train weak learner using distribution D;.
o Get weak ranking h; : X — R.
e Choose a; € R.
Dy(zo, 1) exp (cu (e (z0) — he(21)))
Zy
where Z; is a normalization factor (chosen so that D,y will be a distribution).

e Update: Dyy1(z0,21) =

T
Output the final ranking: H(z) = Z athy(x)
t=1

Figure 1: The RankBoost algorithm.

to the search engine to obtain lists of URL’s. We then evaluate H on each pair (¢, u), where
u is a returned URL, to obtain a predicted ranking of all of the URL’s.

3. A boosting algorithm for the ranking task

In this section, we describe an approach to the ranking problem based on a machine learning
method called boosting, in particular, Freund and Schapire’s (1997) AdaBoost algorithm
and its successor developed by Schapire and Singer (1999). Boosting is a method of pro-
ducing highly accurate prediction rules by combining many “weak” rules which may be
only moderately accurate. In the current setting, we use boosting to produce a function
H : X — R whose induced ordering of X will approximate the relative orderings encoded
by the feedback function ®.

3.1 The RankBoost algorithm

We call our boosting algorithm RankBoost, and its pseudocode is shown in Figure 1. Like
all boosting algorithms, RankBoost operates in rounds. We assume access to a separate
procedure called the weak learner that, on each round, is called to produce a weak ranking.
RankBoost maintains a distribution D; over X x X’ that is passed on round ¢ to the weak
learner. Intuitively, RankBoost chooses D; to emphasize different parts of the training data.
A high weight assigned to a pair of instances indicates a great importance that the weak
learner order that pair correctly.

Weak rankings have the form h; : X — R. We think of these as providing ranking
information in the same manner as ranking features and the final ranking. The weak
learner we used in our experiments is based on the given ranking features; details are given
in Section 4.

The boosting algorithm uses the weak rankings to update the distribution as shown in
Figure 1. Suppose that zg, z is a crucial pair so that we want x; to be ranked higher than
xo (in all other cases, D; will be zero). Assuming for the moment that the parameter a; > 0
(as it usually will be), this rule decreases the weight Dy(z9,x1) if hy gives a correct ranking



(he(x1) > he(xp)) and increases the weight otherwise. Thus, D; will tend to concentrate on
the pairs whose relative ranking is hardest to determine. The actual setting of a; will be
discussed shortly.

The final ranking H is a weighted sum of the weak rankings. In the following theorem we
prove a bound on the ranking loss of H. This theorem also provides guidance in choosing a;
and in designing the weak learner as we discuss below. on the training data. As in standard
classification problems, the loss on a separate test set can also be theoretically bounded
given appropriate assumptions using uniform-convergence theory (Bartlett, 1998, Haussler,
1992, Schapire et al., 1998, Vapnik, 1982). In Section 5 we will derive one such bound on
the ranking generalization error of H and explain why the classification generalization error
bounds do not trivially carry over to the ranking setting.

Theorem 1 Assuming the notation of Figure 1, the ranking loss of H is
T
rlossp(H) < HZt :
t=1

Proof: Unraveling the update rule, we have that

Dry1(20,21) = D(mxl)expl_}HZ(fO) — H(z1))

Note that [z > 0] < e® for all real x. Therefore, the ranking loss with respect to initial
distribution D is

> D(xo,21) [H(wo) > H(x1)] < Y D(wo,21)exp (H(wo) — H(x1))

x0,T1 Zo,T1
= > Druox)[[ 2 =]] %
x0,T1 t t

This proves the theorem. ®

Note that our methods for choosing «;, which are presented in the next section, guar-
antee that Z; < 1. Note also that RankBoost generally requires O(|®|) space and time per
round.

3.2 Choosing a; and criteria for weak learners

In view of the bound established in Theorem 1, we are guaranteed to produce a combined
ranking with low ranking loss if on each round ¢ we choose a; and the weak learner constructs
h; so as to minimize

Zy = Dilwo,x1) exp (as(he(wo) — hu(w1))) -

0,21

Formally, RankBoost uses the weak learner as a black box and has no control over how
it chooses its weak rankings. In practice, however, we are often faced with the task of
implementing the weak learner, in which case we can design it to minimize Z;.

There are various methods for achieving this end. Here we sketch three. Let us fix ¢
and drop all ¢ subscripts when clear from context. (In particular, for the time being, D will
denote D, rather than an initial distribution.)



First method. First and most generally, for any given weak ranking h, it can be shown
that Z, viewed as a function of «, has a unique minimum which can be found numerically
via a simple binary search (except in trivial degenerate cases). For details, see Section 6.2
of Schapire and Singer (1999).

Second method. The second method of minimizing Z is applicable in the special case
that h has range {0,1}. In this case, we can minimize Z analytically as follows: For
be {—1,0,+1}, let

Wy =Y D(zo,21) [A(0) — h(z1) =1].

0,71

Also, abbreviate Wy by W, and W_1 by W_. Then Z = W_e™® 4+ Wy + W_pe®. Using
simple calculus, it can be verified that Z is minimized by setting

a=tm (7] ?)

7 =Wy + 2/ W_W,. (3)
Thus, if we are using weak rankings with range restricted to {0,1}, we should attempt to
find h that tends to minimize Eq. (3) and we should then set « as in Eq. (2).

which yields

Third method. For weak rankings with range [0, 1], we can use a third method of setting
a based on an approximation of Z. Specifically, by the convexity of e** as a function of z,

it can be verified that . .
QT < ( —;‘T> ea+< ;‘T> e

for all real a and = € [—1,+1]. Thus, we can approximate Z by

S D(wg, 1) Kl + h(:m; - h(m)) oy (1 - h(ﬂco; + h(x1)> e_a}

Z0,T1
1— 1
— ( 2r>ea+< ;T>e_°‘ (4)

r= Y D(x,21)(h(z1) — h(zo)). (5)

Z0o,T1

Z

IN

where

The right hand side of Eq. (4) is minimized when

azélnGj:) (6)

which, plugging into Eq. (4), yields Z < /1 — r2. Thus, to approximately minimize Z using
weak rankings with range [0, 1], we can attempt to maximize |r| as defined in Eq. (5) and
then set « as in Eq. (6). This is the method used in our experiments.

We now consider the case when any of these three methods for setting « assign a weak
ranking h a weight @ < 0. For example, according to Eq. (2), « is negative if W, the weight

10



of misordered pairs, is greater than W_, the weight of correctly ordered pairs. Similarly for
Eq. (6), @ < 0if r < 0 (note that » = W_ —W.). Intuitively, this means that h is negatively
correlated with the feedback; the reverse of its predicted order will better approximate the
feedback. RankBoost allows such weak rankings and its update rule reflects this intuition:
the weights of the pairs that h correctly orders are increased, and the weights of the incorrect
pairs are decreased.

3.3 An efficient implementation for bipartite feedback

In this section, we describe a more efficient implementation of RankBoost for feedback of
a special form. We say that the feedback function is bipartite if there exist disjoint subsets
Xop and X7 of X such that ® ranks all instances in X7 above all instances in Xy and says
nothing about any other pairs. That is, formally, for all xg € Xy and all 1 € X; we have
that ®(xg,z1) = +1, ®(z1,20) = —1 and @ is zero on all other pairs.

Such feedback arises naturally, for instance, in document rank-retrieval tasks common
in the field of information retrieval. Here, a set of documents may have been judged to be
relevant or irrelevant. A feedback function that encodes these preferences will be bipartite.
The goal of an algorithm for this task is to discover the relevant documents and present
them to a user. Rather than output a classification of documents as relevant or irrelevant,
the goal here is to output a ranked list of all documents that tends to place all relevant doc-
uments near the top of the list. One reason a ranking is preferred over a hard classification
is that a ranking expresses the algorithm’s confidence in its predictions. Another reason is
that typically users of ranked-retrieval systems do not have the patience to examine every
document that was predicted as relevant, especially if there is large number of such docu-
ments. A ranking allows the system to guide the user’s decisions about which documents
to read.

The results in this section can also be extended to the case in which the feedback
function is not itself bipartite, but can nevertheless be decomposed into a sum of bipartite
feedback functions. For instance, this is the case for the meta-search problem described in
Sections 2.1 and 6.1. However, for the sake of simplicity, we omit a full description of this
straightforward extension and instead restrict our attention to the simpler case.

If RankBoost is implemented naively as in Section 3.2, then the space and time-per-
round requirements will be O(|X¢| | X1]). In this section, we show how this can be improved
to O(|Xo| + | X1|). Note that, in this section, X = Xo U X;.

The main idea is to maintain a set of weights vy over X (rather than the two-argument
distribution D;), and to maintain the condition that, on each round,

Di(xo, 1) = ve(o)ve (1) (7)

for all crucial pairs g,z (recall that D, is zero for all other pairs).

The pseudocode for this implementation is shown in Figure 2. Eq. (7) can be proved by
induction on t. It clearly holds initially. Using our inductive hypothesis, it is straightfor-
ward to expand the computation of Z; = Z) - Z} in Figure 2 to see that it is equivalent to
the computation of Z; in Figure 1. To show that Eq. (7) holds on round ¢ + 1, we have, for
crucial pair xg, x1:

Dy (o, 1) exp (vt (he(z0) — hi(21)))
Z

Dy (w0, 1) =
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Algorithm RankBoost.B
Given: disjoint subsets Xy and X; of X.
Initialize:
1/|X1| ifz € X3
vi(z) = { 1/|Xo| ifz € Xo

Fort=1,...,T:
e Train weak learner using distribution D; (as defined by Eq. (7)).
e Get weak ranking hy : X — R.
e Choose a; € R.
e Update:
—az h
ve(x) exp(Ztlat +(2)) foe X,
U1 (@) =4 gy () exp (a h(a) e X
70 0

where Z} and Z? normalize v; over X; and Xo:

zZl = th(:v)exp(—atht(:v))

reX,

7 = th(:v) exp(athy(x))

zeXo

T
Output the final ranking: H(z) = Z athe(x).
t=1

Figure 2: A more efficient version of RankBoost for bipartite feedback.

vi(xo) exp (athi (o))  vi(w1) exp (—athi(z1))
70 7

= ve1(w0) - v (21)-

Finally, note that all space requirements and all per-round computations are O(| X | + | X1]),
with the possible exception of the call to the weak learner. Fortunately, if we want the weak
learner to maximize |r| as in Eq. (5), then we also only need to pass |Xg| weights to the
weak learner, all of which can be computed in time linear in |X3|. Omitting ¢ subscripts,
and defining

S({E)— +1 ifZL'GXl
] -1 if z € X ’

we can rewrite r as

r o= Z D(xg,z1)(h(z1) — h(zo))

0,71

= Z Z ’U(:L'(])U(IL‘l) (h(l’l)s(l‘l) + h($0)3($0))

ro€Xg x1€X1

= > v@o) Y v) | s(xo) hlao) + Y | vl@r) Y vlwo) | s(ar) h(z1)

ro€Xo r1€X1 r1€X1 ro€Xo

12



where

x':s(x)#s(x’)

All of the weights d(x) can be computed in linear time by first computing the sums that
appear in this equation for the two possible cases that x is in Xy or X;. Thus, we only need
to pass | Xg| + | X1| weights to the weak learner in this case rather than the full distribution
D, of size | Xo| | X1/

4. Finding weak rankings

As described in Section 3, our algorithm RankBoost requires access to a weak learner to
produce weak rankings. In this section, we describe an efficient implementation of a weak
learner for ranking.

Perhaps the simplest and most obvious weak learner would find a weak ranking A that
is equal to one of the ranking features f;, except on unranked instances. That is,

fi(z) if fi(z) e R
hz) = { Gos I filz) = L

for some qq.¢ € R.

Although perhaps appropriate in some settings, the main problem with such a weak
learner is that it depends critically on the actual values defined by the ranking features,
rather than relying exclusively on the relative-ordering information which they provide. We
believe that learning algorithms of the latter form will be much more general and applicable.
Such methods can be used even when features provide only an ordering of instances and
no scores or other information are available. Such methods also side-step the issue of
combining ranking features whose associated scores have different semantics (such as the
different scores assigned to URL’s by different search engines).

For these reasons, we focus in this section and in our experiments on {0, 1}-valued weak
rankings that use the ordering information provided by the ranking features, but ignore
specific scoring information. In particular, we will use weak rankings h of the form

1 if fi(x) >0
ha)=4 0 if fi(z) <6 (9)
Qaer  if fz(x) =1

where 6 € R and g4 € {0,1}. That is, a weak ranking is derived from a ranking feature f;
by comparing the score of f; on a given instance to a threshold 8. To instances left unranked
by f;, the weak ranking assigns the default score ¢q.¢. For the remainder of this section, we
show how to choose the “best” feature, threshold, and default score.

Since our weak rankings are {0, 1}-valued, we can use either the second or third methods
described in Section 3.2 to guide us in our search for a weak ranking. We chose the third
method because we can implement it more efficiently than the second. According to the
second method, the weak learner should seek a weak ranking that minimizes Eq. (3). For
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a given candidate weak ranking, we can directly compute the quantities Wy, W_, and W,
as defined in Section 3.2, in O(|®|) time. Moreover, for each of the n ranking features,
there are at most |Xp|+ 1 thresholds to consider (as defined by the range of f; on Xp) and
two possible default scores (0 and 1). Thus a straightforward implementation of the second
method requires O(n|®||X|) time to generate a weak ranking.

The third method of Section 3.2 requires maximizing |r| as given by Eq. (5) and has
the disadvantage that it is based on an approximation of Z. However, although a straight-
forward implementation also requires O(n|®||Xg|) time, we will show how to implement
it in O(n|Xp| + |®|) time. (In the case of bipartite feedback, if the boosting algorithm of
Section 3.3 is used, only O(n|Xg|) time is needed.) This is a significant improvement from
the point of view of our experiments in which |®| was large.

We now describe a time and space efficient algorithm for maximizing |r|. Let us fix ¢
and drop it from all subscripts to simplify the notation. We begin by rewriting r for a given
D and h as follows:

ro= Y D(zo,z1) (h(z1) — h(z0))

Zo,T1
= § D(xg,x1)h g D(xg,1)h(x0)
To,x1 x0,%1

= > h@)Y D' ) Y b)Y D(z,a!)
= Y h(x) Y (D!, ) = Dia, )

Z.l

= Y h@) () . (10)

where we define w(z) = ) _,(D(2',x) — D(z,2’)) as the potential of x. Note that 7(x)
depends only on the current distribution D. Hence, the weak learner can precompute all
the potentials at the beginning of each boosting round in O(|®|) time and O(|X3|) space.
When the feedback is bipartite, comparing Eqgs. (8) and (10), we see that 7(z) = d(z)s(z)
where d and s are defined in Section 3.3; thus, in this case, m can be computed even faster
in only O(|X3|) time.

Now let us address the problem of finding a good threshold value 8 and default value g4
We need to scan the candidate ranking features f; and evaluate |r| (defined by Eq. (10))
for each possible choice of f;, 6 and qq.. Substituting into Eq.(10) the h defined by Eq. (9),
we have that

SEPNCLERD WNCLEED WD (1)

x: fi(x)>0 x: fi(x)<0 z:fi(z)=L
= > 7@t », () (12)
z:fi(x)>0 z:fi(x)=1

For a fixed ranking feature f;, let Xy, = {x € X | fi(x) # L} be the set of feedback instances
ranked by f;. We only need to consider |Xy,| + 1 threshold values, namely, {fi(z) | z €
Xy, } U{—o0} since these define all possible behaviors on the feedback instances. Moreover,
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we can straightforwardly compute the first term of Eq. (12) for all thresholds in this set in
time O(|X},|) simply by scanning down a pre-sorted list of threshold values and maintaining
the partial sum in the obvious way.

For each threshold, we also need to evaluate |r| for the two possible assignments of ¢
(0 or 1). To do this, we simply need to evaluate Zx:fi(x):L m(x) once. Naively, this takes
O(|Xp — Xy,|) time, i.e., linear in the number of unranked instances. We would prefer all
operations to depend instead on the number of ranked instances since, in applications such
as meta-searching and information retrieval, each ranking feature may rank only a small
fraction of the instances. To do this, note that > 7(x) = 0 by definition of 7(x). This

implies that
Z m(x) = — Z (x). (13)
x:fi(z)=1 x:fi(z)#L

The right hand side of this equation can clearly be computed in O(|XY,|) time. Combining
Egs. (12) and (13), we have

r= Z (X)) — Gaer Z m(x). (14)

x: fi(z)>0 TEXY,

The pseudocode for the weak learner is given in Figure 3. Note that the input to the
algorithm includes for each feature a sorted list of candidate thresholds {ej}}]=1 for that
feature. For convenience we assume that §; = oo and 0; = —oco. Also, the value |r| is
calculated according to Eq. (14): the variable L stores the left summand and the variable
R stores the right summand. Finally, if the default rank g, is specified by the user, then
step 6 is skipped.

Thus, for a given ranking feature, the total time required to evaluate |r| for all candidate
weak rankings is only linear in the number of instances that are ranked by that feature. In
summary, we have shown the following theorem:

Theorem 2 The algorithm of Figure 3 finds the weak ranking of the form given in Eq. (9)
that maximizes |r| as in Eq. (10). The running time is O(n|®||Xs|) per round of boosting.
An efficient implementation runs in time

0 <!<I>\ +) !XM) = O(|®| + n| X)) .
=1

If the feedback is bipartite, the running time can be improved to O(n|Xg|).

Positive cumulative weights. Since the final ranking has the form H(z) = Zle arhy ()
and the rankings output by WeakLearn are binary, if h;(x) = 1 then h; contributes its weight
a4 to the final score of z. During the boosting process, WeakLearn may output distinct
rankings that correspond to different thresholds of the same feature f. If we view these
rankings in increasing order by threshold, we see that f’s contribution to the final score of
x is the sum of the weights of the rankings whose thresholds are less than f(z). To simplify
matters, if we assume that h; occurs exactly once among h,..., hy, then if the weights oy
are always positive, then f’s contribution increases monotonically with the score it assigns
instances.
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Algorithm WeakLearn
Given: distribution D over X x X
set of features {f;}X,
for each f;, the set Xy, = {zk}szl such that f;(x1) > ... > fi(zk)
for each f;, the set of candidate thresholds {oj}j]:1 such that 6; > ... >0,

Initialize: for all x € Xg, 7(x) = Z D(',z) — D(z,2') ; r*=0
' e€Xp
Fori=1,...,N:
1. L=0
2. R= Z 7(x) /¥ L — qaetR is ths of Eq. (14) */
Tz€Xy,
3. 90 =
4. Forj=1,...,J:
5. L=L+ Z 7(x) /* compute L = Z w(x) */
x:0;_12>fi(x)>0; z: fi(z)>0
6 it |[L| > |L — R| /* find best value for g */
7. then ¢ =0
8. elseg=1
9. if|L—gqR|>|r* /* find best weak ranking */
10. r*=L—qR
11. =1
12. 0" =0,
13. Qaes = 4

Output weak ranking (f;, 0%, ¢}.;)

Figure 3: The weak learner.

This behavior of a feature’s contribution being positively correlated with the score it
assigns is desirable in some applications. In the meta-search task, it is natural that the
search strategy f should contribute more weight to the final score of those instances that
appear higher on its ranked list. Put another way, it would seem strange if, for example,
f contributed more weight to instances in the middle of its list and less to those at either
end, as would be the case if some of the «;’s were negative. Also, from the perspective of
generalization error, if we allow some a4’s to be negative then we can construct arbitrary
functions of the instance space by thresholding a single feature, and this is probably more
complexity than we would like to allow in the combined ranking (in order to avoid overfit-
ting). In summary, while RankBoost may set some «;’s to be negative, we developed an
alternative version that enforces the constraint that all of the values of a;’s are positive.
Thus, each ranking feature is forced to be positively correlated with the final ranking that
RankBoost outputs.

To address this situation, we implemented an additional version of WeakLearn that
chooses its rankings to exhibit this monotonic behavior. In practice, our earlier assumption
that all h;’s are unique may not hold. If it does not, then the contribution of a particular
ranking h will be its cumulative weight, the sum of those ay’s for which h; = h. Thus we
need to ensure that this cumulative weight is positive. Our implementation outputs the
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ranking that maximizes |r| subject to the constraint that the cumulative weight of that
ranking remains positive. We refer to this modified weak learner as WeakLearn.cum.

5. Generalization Error

In this section, we derive a bound on the generalization error of the combined ranking when
the weak rankings are binary functions and the feedback is bipartite. That is, we assume
that the feedback partitions the instance space X into two disjoint sets, X and Y, such
that ®(z,y) > 0 for all x € X and y € Y, meaning the instances in Y are ranked above
those in X. Many problems can be viewed as providing bipartite feedback, including the
meta-search and movie recommendation tasks described in Section 6, as well as many of
the problems in information retrieval (Salton, 1989, Salton and McGill, 1983).

5.1 Probabilistic Model

Up to this point we have not discussed where our training and test data come from. The
usual assumption of machine learning is that there exists a fixed and unknown distribution
over the instance space. The training set (and test set) is a set of independent samples
according to this distribution. This model clearly translates to the classification setting
where the goal is to predict the class of an instance. The training set consists of an inde-
pendent sample of instances where each instance is labeled with its correct class. A learning
algorithm formulates a classification rule after running on the training set, and the rule is
evaluated on the test set, which is a separate independent sample of unlabeled instances.

This probabilistic model does not translate as readily to the ranking setting, however,
where the goal is to predict the order of a pair of instances. A natural approach for the
bipartite case would be to assume a fixed and unknown distribution D over X x X, pairs
from the instance space.* The obvious next step would be to declare the training set to be a
collection of instances sampled independently at random according to D. The generalization
results for classification would then trivially extend to ranking. The problem is that the
pairs in the training set are not independent: if (x1,y;) and (x2,y2) are in the training set,
then so are (x1,y2) and (x2,y1).

Here we present a revised approach that permits sampling independence assumptions.
Rather than a single distribution D, we assume the existence of two distributions, D over
X and D over Y. The training instances are the union of an independent sample according
to Dy and an independent sample according to Dy. (This is similar to the “two button”
learning model in classification (Haussler et al., 1991).) The training set, then, consists of
all pairs of training instances.

Consider the movie recommendation task as an example of this model. The model
suggests that movies viewed by a person can be partitioned into an independent sample of
good movies and an independent sample of bad movies. This assumption is not entirely true
since people usually choose which movies to view based on movies they’'ve seen. However,
such independence assumptions are common in machine learning.

4. Note that assuming a distribution over X X Y trivializes the ranking problem: the rule which always
ranks the second instance over the first is perfect.
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5.2 Sampling Error Definitions

Given this probabilistic model of the ranking problem, we can now define generalization
error. The final ranking output by RankBoost has the form

T
H(IE) = Z Oétht(l‘)
t=1

and orders instances according to the scores it assigns them. We are concerned here with
the predictions of such rankings on pairs of instances, so we consider rankings of the form
H:XxX—{-1,0,+1}, where

T T
H(z,y) = sign <Z arh(y) — Z Oétht(l')> (15)
t=1 t=1

where the h; come from some class of binary functions H. Let C be the set of all such
functions H.

A function H misorders (x,y) € X x Y if H(z,y) # 1, which leads us to define the
generalization error of H as

e(H) = Pre~poy~D: [H(z,y) # 1]
= Epy,p, [[H(z,y) #1]] .

We first verify that this definition is consistent with our notion of test error. For a given
test sample Ty x T where Ty = (x1,...,zp) and 11 = (y1,...,y,), the expected test error
of H is

1 1

Erym p—q%:[[H(xi,yj)#l]] = p_qZETO,Tl [[H (xi,y;) # 1]]
1

= 2o 2 Prawy, [Hwiy) # 1

- piq%:s(H) — o(H) .

Similarly, if we have a training sample Sy x S; where Sy = (x1,...,zy) and S; =
(Y1, -, Yn), the training (or empirical) error of H is
. 1
E(H) = %ZHH(%ZM’) #1] .
Z7-7

Our goal is to show that, with high probability, the difference between é(H) and e(H) is
small, meaning that the performance of the combined ranking H on the training sample is
representative of its performance on any random sample.
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5.3 VC analysis

We now bound the difference between the training error and test error of the combined
ranking output by RankBoost using standard VC-dimension analysis techniques (Devroye
et al., 1996, Vapnik, 1982). We will show that, with high probability taken over the choice
of training set, this difference is small for every H € C. If this happens then no matter
which combined ranking is chosen by our algorithm, the training error of the combined
ranking will accurately estimate its generalization error. Another way of saying this is as
follows. Let Z denote the event that there exists an H € C such that £(H) and e(H) differ
by more than a small specified amount. Then, the probability (over the choice of training
set) of the event Z is very small. Formally, we will show that for every § > 0, there exists
a small € such that

1
Prgonpsimpp [3H €C : | = 3" [H(ws,y;) # 1]~ Buy [[H(z,y) £ 1]]| > ¢| <3 (16)

where the choice of € will be determined during the course of the proof.

Our approach will be to separate (16) into two probabilities, one over the choice of Sg
and the other over the choice of 57, and then to bound each of these using classification
generalization error theorems. In order to use these theorems, we will need to convert H
into a binary function. Define F': X x Y — {0,1} as a function which indicates whether or
not H misorders the pair (z,y), meaning F(x,y) = [H(x,y) # 1]. Although H is a function
on X x X, we only care about its performance on pairs (z,y) € X x Y, which is to say
that it incurs no penalty for its ordering of two instances from either X or Y. The quantity
inside the absolute value of (16) can then be rewritten as

— Z F(xi,y;) = Eay [F(2,y)]

= %ZF‘TMZ/] ZE xw
—ZE (i,)] = Euy [F(,y)]

— %Z ZF i, y5) — By [F(zi,y)] | + (17)

%Zm%wmmwmq- (18)

So if we prove that there exist ¢y and €1 such that €y + €1 = € and

1
Prg,~pp [IFEF e X |- > Fla,y;) — By [F(z,y)]| > e | <6/2, (19)

1
Prgywpp |3F € F, Iy €Y : po- ZF(m,,y) —E; [F(z,v)]

> 60] <5/2, (20)
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we will have shown (16), because with high probability, the summand of (18) will be less than
€1 for every x;, which implies that the average will be less than e;. Likewise, the quantity
inside the expectation of (18) will be less than ¢ for every y and so the expectation will be
less than ¢g.

We now prove (20) using standard classification results, and (19) follows by a symmetric
argument. Consider (20) for a fixed y, which means that F'(x,y) is a single argument binary-
valued function. Let F, be the set of all such functions F' for a fixed y. Then the choice
of I in (20) comes from |J, 7. A theorem of Vapnik (1982) applies to (20) and gives a
choice of ¢y that depends on the size m of the training set Sy, the error probability 6, and
the complexity d’ of |J, Fy, measured as its VC-dimension (for details, see Vapnik (1982)
or Devroye, Gyorfi, and Lugosi (1996)). Specifically, for any ¢ > 0,

PrSONDgl

EIFEU}"y : '%ZF(aEi,y)—Ew[F(m,y)} >eo(m,6,d')] <40,

where

co(m.6.d') = 2 \/ d/(In(2m/d) + 1) + n(9/5)

m

The parameters m and § are given; it remains to calculate d’, the VC-dimension of Uy Fy.
(We note that although we are using a classification result to bound (20), the probability
corresponds to a peculiar classification problem (trying to differentiate X from Y by picking
an I and one y € Y') that does not seem to have a natural interpretation.)

Let’s determine the form of the functions in (J, 7. For a fixed y € Y,

F(z,y) = [H(z,y) #1]

r T T
= ||sign (Z ahy(y) — Z atht(x)> 4 1”
- t=1 . t=1
= Zatht(l‘) - Zatht(y) > 0”
:t;l =1
= Zatht(l‘) —b Z O]]
LLt=1

where b = Zle athi(y) is constant because y is fixed. So the functions in J, 7, are a
subset of all possible thresholds of all linear combinations of T" weak rankings. Freund and
Schapire’s (1997) Theorem 8 bounds the VC-dimension of this class in terms of 7" and the
VC-dimension of the weak ranking class H. Applying their result, we have that if H has
VC-dimension d > 2, then d’ is at most

2(d+1)(T + 1) logy(e(T + 1))

where e is the base of the natural logarithm.

As the final step, repeating the same reasoning for (19) keeping x fixed, and putting it
all together, we have thus proved the main result of this section:
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Theorem 3 Let C be the set of all functions of the form given in Eq (15) where all the
hy’s belong to a class H of VC-dimension d. Let Sy and S1 be samples of size m and n,

respectively. Then with probability at least 1 — 0 over the choice of training sample, all
H € C satisfy

)

d'(In(2m/d’) + 1) + In(18/6) o \/d’(ln(2n/d’) +1) +1n(18/6)

() — () < 2/

m

where d' = 2(d 4 1)(T + 1) logy(e(T + 1)).

6. Experimental evaluation of RankBoost

In this section, we report experiments with RankBoost on two ranking problems. The first
is a simplified web meta-search task, the goal of which is to build a search strategy for
finding homepages of machine-learning researchers and universities. The second task is a
collaborative-filtering problem of making movie recommendations for a new user based on
the preferences of other users.

In each experiment, we divided the available data into training data and test data, ran
each algorithm on the training data, and evaluated the output ranking on the test data.
Details are given below.

6.1 Meta-search

We first present experiments on learning to combine the results of several web searches. This
problem exhibits many facets that require a general approach such as ours. For instance,
approaches that combine similarity scores are not applicable since the similarity scores of
web search engines often have different semantics or are unavailable.

6.1.1 DESCRIPTION OF TASK AND DATA SET

Most of the details of this dataset and how we mapped it into the general ranking framework
were described in Section 2.1.

Given this mapping of the ranking problem into our framework, we can immediately
apply RankBoost. Note that the feedback function for this problem is a sum of bipartite
feedback functions so the more efficient implementation described in Section 3.3 can be
used.

Under this mapping, each weak ranking is defined by a search template i (corresponding
to ranking feature f;), and a threshold value 6. Given a base query ¢ and a URL w, this
weak ranking outputs 1 or 0 if w is ranked above or below the threshold 6 on the list of
URL’s returned by the expanded query associated with search template ¢ applied to base
query q. As usual, the final ranking H is a weighted sum of the weak rankings.

For evaluation, we divided the data into training and test sets using four-fold cross-
validation. We created four partitions of the data, each one using 75% of the base queries
for training and 25% for testing. Of course, the learning algorithms had no access to the
test data during training.
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Figure 4: Performance of the four weak learners WeakLearn.{2,3,2.cum,3.cum} on the ML
dataset. Left: Train error Right: Test error

6.1.2 EXPERIMENTAL PARAMETERS AND EVALUATION

Since all search templates had access to the same set of documents, if a URL was not
returned in the top 30 documents by a search template, we interpreted this as ranking the
URL below all of the returned documents. Thus we set the parameter g4, the default value
for weak rankings, to be 0 (see Section 4).

Our implementation of RankBoost used a definition of ranking loss modified from the
original given in Section 2, Eq. (1):

rlossp(H) = Y D(wo,21) [H(z1) < H(o)] -

Z0o,T1

If the output ranking ranked as equal a pair (xg,z1) of instances that the feedback ranked
as unequal, we assigned the ranking an error of 1/2 instead of 1. This represents the fact
that if we used the ranking to produce an ordered list of documents, breaking ties randomly,
then its expected error on (z¢,x1) is 1/2, since the probability that x is listed above z is
equal to the probability that x; is listed above xy. The modified definition is

rlossp(H) = Y D(wo,21) [H(z1) < H(wo)l + 5 >, D(xo, 1) [H(21) = H(zo)] . (21)

0,71 0,71

RankBoost parameters. Since WeakLearn outputs binary weak rankings, we can set
the parameter a using either the second or third methods presented in Section 3.2. The
second method sets a as the minimum of Z, and the third method sets « to approximately
minimize Z. The third method can be implemented more easily and runs faster. We
implemented both methods, called WeakLearn.2 and WeakLearn.3, to determine if the
extra time required by the second method (almost ten times that of the third method on
the ML dataset) was made up for by a reduction in test error rate. We also implemented
weak learners that restricted their rankings to have positive cumulative weights in order to
test whether such rankings were helpful or harmful in reducing test error (as discussed at
the end of Section 4). We called these WeakLearn.2.cum and WeakLearn.3.cum.
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Top Top Top Top Top Top Avg
ML Domain 1 2 5 10 20 30  Rank
RankBoost 102 144 173 184 194 202 4.38
Best (Top 1) 117 137 154 167 177 181 6.80
Best (Top 10) 112 147 172 179 185 187 5.33
Best (Top 30) 95 129 159 178 187 191 5.68
University Domain
RankBoost 95 141 197 215 247 263 7.74
Best single query 112 144 198 221 238 247 8.17

Table 1: Comparison of the combined ranking and individual search templates. See text
for further explanation of the results.

To measure the accuracy of a weak learner on a given dataset, after each round of
boosting we plotted the train and test error of the combined ranking generated thus far.
We ran each weak learner for 1000 rounds of boosting on each of the four partitions of the
data and averaged the results. Figure 4 displays the plots of train error (left) and test error
(right) for the first 200 rounds of boosting on the ML dataset. (The slopes of the curves
did not change during the remaining 800 rounds.) The plots for the UNIV dataset were
similar.

WeakLearn.2 achieved the lowest train error, followed by WeakLearn.3, and finally
WeakLearn.2.cum and WeakLearn.3.cum, whose performance was nearly identical. How-
ever, WeakLearn.2.cum and WeakLearn.3.cum produced the lowest test error (again be-
having nearly identically) and resisted overfitting, unlike their counterparts. So we see
that restricting the weak rankings to have positive cumulative weights hampers training
performance but improves test performance. Also, when we subject the rankings to this
restriction, we see no difference between the second and third methods of setting . There-
fore, in our experiments we used WeakLearn.3.cum, the third method of setting a that
allows only positive cumulative ranking weights.

Evaluation. In order to determine a good number of boosting rounds, we first ran Rank-
Boost on each partition of the data and produced a graph of the average training error.
For the ML data set, the training error did not decrease significantly after 50 rounds of
boosting (see Fig. 4 (left)), so we used the final ranking built after 50 rounds. For the
UNIV data set, the training error did not decrease significantly after 40 rounds of boosting
(graph omitted), so we used the final ranking built after 40 rounds.

To evaluate the performance of the individual search templates in comparison to the
combined ranking output by RankBoost, we measured the number of queries for which the
correct document was in the top k ranked documents, for k£ = 1,2,5,10,20,30. We then
compared the performance of the combined ranking to that of the best search template for
each value of k. The results for the ML and UNIV domains are shown in Table 1. All
columns except the last give the number of base queries for which the correct homepage
received a rank greater than or equal to k. Bold figures give the maximum value over all
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of the search templates on the test data. Note that the best search template is determined
based on its performance on the test data, while RankBoost only has access to training
data.

For the ML data set, the combined ranking closely tracked the performance of the best
expert at every value of k, which is especially interesting since no single template was the
best for all values of k. For the UNIV data set, a single template was the best® for all
values of k, and the combined ranking performed almost as well as the best template for
k=1,2,...,10 and then outperformed the best template for k£ = 20, 30. Of course, having
found a single best template, there is no need to use RankBoost.

We also computed (an approximation to) average rank, i.e., the rank of the correct
homepage URL, averaged over all base queries in the test set. For this calculation, we
viewed each search template as assigning a rank of 1 through 30 to its returned URL’s,
rank 1 being the best. Since the correct URL was sometimes not ranked by a search
template, we artificially assigned a rank of 31 to every unranked document. For each base
query, RankBoost ranked every URL returned by every search template. Thus if the total
number of URL’s was larger than 30, RankBoost assigned to some instances ranks greater
than 30. To avoid an unfair comparison to the search templates, we limited the maximum
rank of RankBoost to 31. The last column of Table 1 gives average rank.

6.2 Movie recommendations

Our second set of experiments dealt with the movie-recommendation task described in the
introduction. The goal here is to produce for a given user a list of unseen movies ordered by
predicted preference. Unlike the meta-search task where the output ordering was evaluated
according to the relative rank of a single document (the correct homepage), in the movie task
the output ordering is compared to the correct ordering given by the user. Thus, the movie
task tests RankBoost on a more general ranking problem. However, performance measures
for comparing two ranked lists are not as clear cut; we defined four such measures for this
purpose. To evaluate the performance of RankBoost, we compared it to a nearest-neighbor
algorithm and a regression algorithm.

6.2.1 DESCRIPTION OF TASK AND DATA SET

For these experiments we used publicly available data® provided by the Digital Equipment
Corporation which ran its own EachMovie recommendation service for the eighteen months
between March 1996 and September 1997 and collected user preference data. Movie viewers
were able to assign a movie a score from the set R = {0.0,0.2,0.4,0.6,0.8,1.0}, 1.0 being
the best. We used the data of 61,625 viewers entering a total of 2,811,983 numeric ratings
for 1,628 different movies (films and videos).

Most of the mapping of this problem into our framework was described in Section 2.
For our experiments, we selected a subset C of the viewers to serve as ranking features:
each viewer in C defined an ordering of the set of movies that he or she viewed. The
feedback function ® was then defined as in Section 2 using the movie ratings of a single
target user. We used half of the movies viewed by the target user for the feedback function

5. The best search template for the UNIV domain was "NAME" PLACE.
6. From ‘http://www.research.digital.com/SRC/eachmovie/’.
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in training and the other half of the viewed movies for testing, as described below. We then
averaged all results over multiple runs with many different target users (details are given in
Section 6.2.5).

6.2.2 EXPERIMENTAL PARAMETERS

In the meta-search task we assumed that all search engines had access to all documents
and thus the absence of a document on a search engine’s list indicated low preference. This
assumption does not hold in the movie task as it is not clear what a viewer’s preference will
be on an unseen movie. Thus we did not set the parameter qq., allowing the weak learner to
choose it adaptively. As in the meta-search task, we used the modified definition of ranking
loss given in Eq. (21). We also used WeakLearn.3.cum because preliminary experiments
revealed that this weak learner achieved a lower test error rate than WeakLearn.3 and also
resisted overfitting. In these experiments, we set the number of rounds T to be 40 + N/10
where N is the number of features. This choice was based on performance on held-out data
which was not used in any of the other experiments.

6.2.3 ALGORITHMS FOR COMPARISON

We compared the performance of RankBoost on this data set to three other algorithms, a
regression algorithm, a nearest-neighbor algorithm, and a memory-based algorithm called
vector similarity.

Regression. We used a regression algorithm similar to the ones used by Hill et al. (1995).
The algorithm employs the assumption that the scores assigned a movie by a target user
Alice can be described as a linear combination of the scores assigned to that movie by
other movie viewers. Formally, let a be a row vector whose components are the scores Alice
assigned to movies (discarding unranked movies). Let C be a matrix containing the scores
of the other viewers for the subset of movies that Alice has ranked. Since some of the
viewers have not ranked movies that were ranked by Alice, we need to decide on a default
rank for these movies. For each viewer represented by a row in C, we set the score of the
viewer’s unranked movies to be the viewer’s average score over all movies. We next use
linear regression to find a vector w of minimum length that minimizes ||w C —a||. This can
be done using standard numerical techniques (we used the package available in Matlab).
Given w we can now predict Alice’s ratings of all the movies.

Nearest neighbor. Given a target user Alice with certain movie preferences, the nearest-
neighbor algorithm (NN) finds a movie viewer Bob whose preferences are most similar to
Alice’s and then uses Bob’s preferences to make recommendations for Alice. More specif-
ically, we find the ranking feature f; (corresponding to one of the other movie viewers)
that gives an ordering most similar to that of the target user as encoded by the feedback
function ®. The measure of similarity we use is the ranking loss of f; with respect to the
same initial distribution D that was constructed by RankBoost. Thus, in some sense, NN
can be viewed as a single weak ranking output after one round of RankBoost (although no
threshold of f; is performed).

As with regression, a problem with NN is that the neighbor it selects may not rank all
the movies ranked by the target user. To fix this, we modified the algorithm to associate
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with each feature f; a default score ¢4 € R which f; assigns to unranked movies. When
searching for the best feature, NN chooses qq4.; by calculating and then minimizing the
ranking loss (on the training set) for each possible value of qu.. If it is the case that this
viewer ranks all of the (training) movies seen by the target user, then NN sets gq. to the
average score over all movies that it ranked (including those not ranked by the target user).

Vector Similarity (VSIM). This algorithm was proposed by Breese, Heckerman and
Kadie (1998) and is based on the notion of similarity between vectors that is commonly
used in information retrieval. In the field of information retrieval, the similarity between two
documents is often measured by treating each document as a vector of term frequencies. The
similarity between two documents is defined to be the normalized inner-product formed by
the two frequency vectors representing the different documents (Salton and McGill, 1983).
Breese, Heckerman and Kadie adopted this formalism for the task of collaborative filtering
by viewing the rating of each viewer as a sparse vector over the reals. In their setting, the
users take the role of documents, movies take the role of the terms appearing in documents,
and viewers’ scores take the role of term frequencies. Let C; denote the scores of the ith
viewer. Then correlation between the jth viewer and the ith viewer is

C;-C;

Wij = T
I Cilloll Cji 1l

where both the inner product and the norms are computed over the subset of movies rated by
each viewer. To accommodate different scales, Breese, Heckerman and Kadie also compute
for each viewer i her average score, denoted C;. To predict the rating of a new viewer,
indexed k, we first compute the similarity coefficients wy, ; with each previous viewer i and
then assign a real-valued score Ck,j for each movie j as follows,

Ck,j = C_'k + aZwk,i(Cm — Cz) ,

where « is a normalizing factor which ensures that ), |wy ;| = 1. We use the abbreviation
VSIM when referring to this algorithm. VSIM and another correlation-based algorithm were
found to be the top performers in the experiments performed by Breese, Heckerman and
Kadie (1998) with the EachMovie dataset. Furthermore, in the experiments they described,
VSIM outperformed four other algorithms when the number of movies that were rated was
small (less than 5).

6.2.4 PERFORMANCE MEASURES

In order to evaluate and compare performance, we used four error measures: disagreement,
predicted-rank-of-top, coverage, and average precision. Disagreement compares the entire
predicted order to the entire correct order, whereas the other three measures are concerned
only with the predicted rank of those instances that should have received the top rank.

We assume that each of the algorithms described in the previous section produces a
real-valued function H that orders movies in the usual way: x; ranked higher than xq if
H(x1) > H(xg). The correct ordering of test movies, ¢, is also represented as a real-valued
function.
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For each of the following measures, we first give the definition when H is a total order,
meaning it assigns a unique score to each movie. When H is a partial order, as is the case
for some of the algorithms, we assume that ties are broken randomly when producing a list
of movies ordered by H. In this situation we calculate the expectation of the error measure
over the random choices to break the ties.

Disagreement. Disagreement is the fraction of distinct pairs of movies (in the test set)
that H misorders with respect to ¢. If N is the number of distinct pairs of movies ordered
by ¢, then the disagreement d is

. 1
disagreement = N Z [H(xzo) > H(z1)] .

z0,x1: c(zo)<c(x)

This is equivalent to the ranking loss of H (Eq. (1)) where c is used to construct the feedback
function. If H is a partial order, then its expected disagreement with respect to c is

E [disagreement| = % Z ([H(z0) > H(z1)] + 5 [H(z0) = H(z1)]) -

z0,21: c(xo)<c(z)

This is equivalent to Eq. (21) where c is used to construct the feedback function”.

Precision/recall measures Disagreement is one way of comparing two orderings, and
it is the function that both RankBoost and NN attempt to minimize. We should consider
evaluating the rankings of these algorithms using other measures as well, for a number of
reasons. One reason is to test whether RankBoost’s minimization of ranking loss produces
rankings that have high quality with respect to other measures. This can be evaluated also
by looking at the comparative performance on another measure of RankBoost and regres-
sion, since the latter doesn’t directly minimize disagreement. Another reason is motivated
by the application: people looking for movie recommendations will likely be more interested
in the top of the predicted ranking than the bottom. That is, they will want to know what
movies to go and see, not what movies to avoid at all costs.

For these reasons we considered three other error measures, which view the movie rec-
ommendation task as having bipartite feedback. According to these measures, the goal of
the movie task is to find movies that Alice will love. Thus any set of movies that she has
seen is partitioned in two: those which she assigned her highest score and those which she
assigned a lesser score. This is an example of a ranked-retrieval task in the field of informa-
tion retrieval, where only the movies to which Alice assigns her highest score are considered
relevant. As discussed in Section 3.3, the goal here is not to classify but to rank.

We refer to the movies to which Alice assigns her highest score as good movies. We
based our error measures on the precision measures used for that task. The precision of the
kth good movie appearing in a ranked list is defined as k divided by the number of movies
on the list up to and including this movie. For example, if all the good movies appear one
after another at the top of a list, then the precision of every good movie is 1.

7. This disagreement measure is proportional to another measure of two Linear orders, the Pearson r
correlation coefficient, that was found by Shardanand and Maes to be the best in their collaborative
filtering experiments (Shardanand and Maes, 1995)
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More formally, define rank(m), the rank of movie m appearing in the list ordered by
H, as the position of m in the list, e.g. first=1, second=2, etc. Suppose there are K good
movies (according to Alice), and denote their sequence on H’s list as {t;} . In other
words, H(t1) > --+ > H(tx). Then the precision of the first good movie is 1/rank(t;), and,
more generally, the precision of the kth good movie is k/rank(t;). Again, if all K good
movies appear one after another at the top of H’s list, meaning rank(¢y) = k for every k,
then the precision of every good movie is 1.

Average Precision (AP). Average precision, commonly used in the information re-
trieval community, measures how good H is at putting good movies high on its list. It is
defined as

K
Z rank (tx)

k:

If H is a partial order, then ¢; is a random variable, and therefore so is rank(¢y), and we
calculate expected average precision. Let N be the total number of movies ranked by H.
Then,

K N—K+k

Zk Z Pr [rank(t) —z]% .
i=k

The formula for Pr [rank(¢x) = ¢] is a ratio with binomial coefficients in the numerator and
denominator, and we defer its statement and derivation to Appendix A.

Predicted-rank-of-top (PROT). PROT is the precision of the first good movie on H’s
list and measures how good H is at ranking one good movie high on its list. It is

1

PROT = o

If H is a partial order, its expected PROT is
N-K+1

E[PROT]= > Prrank(t) =i = .
=1

—

Coverage. Coverage is the precision of the last good movie on H’s list (also known as
precision at recall 1), and it measures how good H is at ranking its lowest good movie.
Formally, it is

1

coverage = m .
If H is a partial order, its expected coverage is
al K
E [coverage] = ;{Pr [rank(tx) = 1] -
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Figure 5: Performance of algorithms as a function of the size of the features’ sets.

6.2.5 EXPERIMENTAL RESULTS

We now describe our experimental results. We ran a series of three tests, examining the
performance of the algorithms as we varied the number of features, the density of the
features, meaning the number of movies ranked by each movie viewer, and the density of
the feedback, meaning the number of movies ranked by each target user.

We first experimented with the number of features used for ranking. We selected two
disjoint random sets T and T’ of 2000 viewers each. Subsets of the viewers in T" were used
as feature sets, and each of the users in 77 was used as feedback. Specifically, we divided
T into six subsets T4,75,...,Tg of respective sizes 100, 200, 500, 750, 1000, 2000, such
that 77 C 13 C --- C Tp. Each T} served as a feature set for training on half of a target
user’s movies and testing on the other half, for each user in 7’. For each algorithm, we
calculated the four measures described above, averaged over the 2000 target users. We ran
the algorithms on five disjoint random splits of the data into feature and feedback sets, and
we averaged the results, which are shown in Figure 5.
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Figure 6: Performance of the algorithms on different feature densities.

RankBoost clearly outperformed regression and NN for all four performance measures.
RankBoost also outperformed VSIM when the feature set size was greater than 200. For
medium and large feature sizes, RankBoost achieved the lowest disagreement and the highest
AP, PROT, and coverage. Also, the slopes of the curves indicated that RankBoost was best
able to improve its performance as the number of features increased.

NN did well on disagreement, AP, and coverage, but on PROT it performed worse
than random guessing (whose PROT was 0.45). This suggests that, although NN places
good movies relatively high in its list (because of its good AP), it does not place a single
good movie near the top of its list (because of its poor PROT). An investigation of the
data revealed that almost always the nearest neighbor did not view all of the movies in
the test feedback and therefore NN assigned some movies a default score (as described in
Section 6.2.3). Sometimes the default score was high and placed the unseen movies at the
top of NN’s list, which can drive down the PROT if most of the unseen movies are not good
movies (according to the feedback).

RankBoost and NN directly tried to minimize disagreement whereas regression did not,
and its disagreement was little better than that of random guessing (whose disagreement
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Figure 7: Performance of algorithms on different feedback densities.

was 0.5). Regression did perform better than random guessing on PROT and coverage, but
on AP it was worse than random guessing (whose AP was 0.41). This suggests that most
of the good movies appear low on regression’s list even though the first good movie appears
near the top. Also, judging by the slopes of its performance curves, regression did not make
much use of the additional information provided by a larger number of features. We discuss
possible reasons for this poor performance at the end of this section.

The performance of VSIM was very close to RankBoost for feature sets of size 100
and 200. This performance is especially impressive considering the fact that RankBoost
attempts to minimize the number of disagreements while VSIM is a rather simple approach
based on correlations. A similar behavior for VSIM was observed by Breese, Heckerman
and Kadie (1998) in the experiments they performd with the EachMovie dataset. However,
VSIM does not seem to scale as well as RankBoost when the size of the feature set increases.
Like regression, it seems that VSIM did not make much use of the additional information
provided by a large number of features and, in fact, its performance degraded when moving
from feature sets of size 750 to size 1000. We defer further discussion of possible reasons
for this behavior of VSIM compared to RankBoost to the end of this section.
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In our next experiment, we explored the effect of the density of the features, the number
of movies ranked by each viewer. We partitioned the set of features into bins according
to their density. The bins were 10-20, 21-40, 41-60, 61-100, 101-1455, where 1455 was
the maximum number of movies ranked by a single viewer in the data set. We selected a
random set of 1000 features (viewers) from each bin to be evaluated on a disjoint random
set of 1000 feedback target users (of varying densities). We ran the algorithms on six such
random splits, calculated the averages of the four error measures on each split, and then
averaged them together. The results are shown in Figure 6. The z-coordinate of each point
is the average density of the features in a single bin; for example, 80 is the average density
of features whose density is in the range 61-100.

The relative performance of the algorithms was similar to that in Figure 5. RankBoost
was the winner again, and it was best able to improve its performance when presented with
the additional information provided by the denser features. As feature density increased,
NN’s performance on AP, disagreement, and coverage improved more significantly than
when simply the number of features increased (Figure 5). However, on PROT NN contin-
ued to perform worse than random guessing (whose PROT was 0.45). Furthermore, the
performance of NN degraded as feature density increased. Regression maintained the same
relative performance to random guessing as in the previous experiment, and its performance
was largely unaffected as feature density increased.

Here again VSIM comes up the second best and its performance is close to the per-
formance of RankBoost with respect to all four performance measures. Furthermore, like
RankBoost, VSIM seems to scale well as the feature density increases. The rate of increase
seems comparable to that of RankBoost for Coverage, AP, and PROT, and with a slightly
slower increase in the case of disagreements. Although the differences in the performance be-
tween RankBoost and VSIM are statistically significant, the advantage of RankBoost over
VSIM is far less pronounced than the overwhelmingly better performance of RankBoost
compared to NN and regression.

The previous two experiments varied the amount of information provided by the features;
in the next experiment, we varied the amount of information provided by the feedback. We
varied the feedback density, the number of movies ranked by the target user. We partitioned
the users into bins according to density in the same way as in the previous experiment. We
ran the algorithms on 1000 target users of each density, using half of the movies ranked by
each user for training and the other half for testing. We used a fixed randomly chosen set of
1000 features. We repeated this experiment on six random splits of the data and averaged
the results, which appear in Figure 7.

The most noticeable effect of increasing the feedback density is that it degrades the
performance of all four algorithms on coverage and AP and the performance of VSIM,
NN, and regression on PROT (RankBoost is able to improve PROT). Other than that,
the comparative performance of the algorithms to one another was similar to the results in
the previous experiments, with the exception that the differences between RankBoost and
VSIM, as a function of the feedback densities, are more pronounced.

Especially interesting is the good performance of VSIM when the feedback density is at
most 40. In this case, VSIM is the best performing algorithm with respect to disagreements,
AP, and PROT, and achieves practically the same coverage as RankBoost. However, as the
density of the feedback grows, the performance of VSIM deteriorates and for feedback
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Figure 8: Left: The performance of random guessing when the fraction of good movies is
varied (the number of movies is 60). Right: The performance of random guessing
when the number of movies ranked is varied (the fraction of good movies is 0.25).

densities of over 100 the performance of VSIM becomes mediocre and it is comparable
to NN with respect to all of the performance measures, with the exception of PROT.
In contrast, RankBoost consistently improves as the size of the feedback set grows. This
behavior of RankBoost is common in supervised learning algorithms which typically improve
proportionally to the amount of supervision they get.

At first, it appears counterintuitive that the algorithms should perform worse as the
number of movies ranked by the target user increases. One would expect that the algorithms
would do better with more training feedback. Indeed this is the case for the disagreement
measure (with the exception of regression and VSIM, as in the first set of experiments). This
might suggest a weakness of the precision-based measures: that they are sensitive to the
number of movies in the feedback. On the other hand, we observed that the performance
of random guessing also degrades as the feedback density increases, which suggests that
the ranking problem is intrinsically more difficult. This would certainly be the case if
the fraction of good movies in the feedback decreases as feedback density increases. We
discovered that both effects occur.

We first calculated the fraction of good movies in the feedback for each feedback density.
For densities of 10-20, 21-40, 41-60, 61-100, and over 100, the fractions were, respectively,
0.33, 0.26, 0.22, 0.20, 0.18. As this fraction decreases, the ranking problem becomes more
difficult. For example, the left plot of Figure 8 shows the performance of random guessing,
with respect to the three measures, as the fraction of good movies varies as %, %, i, % (the
number of movies ranked was 60).

However, consider the right plot of Figure 8, which shows the performance of random
guessing when the fraction of good movies is constant (0.25) and the number of movies
ranked is varied. Here the measured performance degrades, which is an effect of the mea-
sures, not the difficulty of the problem. That is, this is the effect of taking a training set
of data and making a (fixed) number of copies of each (movie, score) pair, which provides
no additional information or challenge to the algorithms described in Section 6.2.3. This
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sensitivity to the number of movies ranked is a weakness of these three precision-based
measures, since ideally we would like them to remain constant for problems of the same
difficulty.

6.2.6 DISCUSSION

Our experiments show that RankBoost clearly performed better than regression and nearest
neighbor on the movie recommendation task. It also performs better than VSIM when the
feature size or the feedback density is relatively large.

RankBoost’s approach of ordering based on relative comparisons performed much better
than regression which treats the movie scores as absolute numerical values. One reason for
regression’s poor performance may be overfitting: its solution is subject only to a mild
restriction (shortest length, as described in Section 6.2.3). Even so, it is not clear whether
this improvement of RankBoost over regression is due to using relative preferences or to
boosting or both. To try to separate these effects, we could test regression on relative
preferences by normalizing the scores of each movie viewer so that the distribution of scores
used by that viewer has the same mean and variance as the distribution of scores of every
other viewer.

RankBoost also performed better than the nearest-neighbor algorithm presented here.
Based on these experiments we could design a better nearest-neighbor algorithm, choos-
ing default ranks in a better way and, when choosing a nearest neighbor, perhaps taking
into account the number of movies ranked by the neighbor. It would also be worthwhile
to compare RankBoost to an algorithm which finds k& nearest neighbors to a target user
and averages their predictions. Such an experiment would differentiate between a straight-
forward search for and combination of similar users and boosting’s method of search and
combination. Averaging the prediction of the k nearest neighbors introduces a dependence
on absolute scores, so this proposed experiment would further test our hypothesis that
relative preferences are more informative.

In our experiments, VSIM was the algorithm that achieved the closest performance
to RankBoost, and for small-scale problems, it often achieved better performance than
RankBoost. However, as the complexity of the training data (i.e., feature size) or the
amount of supervision (feedback) increases, RankBoost’s performance gets a boost while
the performance of VSIM seems to asymptote or even degrade. A possible explanation is
that RankBoost, being a learning algorithm that attempts to minimize an objective function
designed for ranking, is able to build more complex hypotheses as the amount and variety
of training examples increase. VSIM, on the other hand, employs a fixed memory-based
correlation paradigm and thus exhibits less flexibility and adaptability as the number of
training examples grows. Put another way, since RankBoost builds a different ranking
function separately for each user, it has a higher potential to exploit information conveyed
by individual users who rated a large number of movies. We would also like to note that
it seems possible to take the best from each approach: RankBoost can use VSIM as one of
the possible weak ranking functions it can choose on each round. The end result would be
an algorithm that resorts to a simple memory-based correlation when the amount of data
is small and gradually shifts to discriminative approaches as the amount of training data
grows.
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7. Conclusion

Summary. The problem of combining preferences arises in several applications, including
combining the results of different search engines and collaborative-filtering tasks such as
making movie recommendations. One important property of these tasks is that the most
relevant information to be combined represents relative preferences rather than absolute
ratings. We have given both a formal framework and an efficient algorithm for the problem
of combining preferences, which our experiments indicate works well in practice.

Efficiency of algorithms. Our learning system consists of two algorithms: the boosting
algorithm RankBoost and the weak learner. The input to the system includes an instance
space X, n ranking features, and a feedback function of size |®| that ranks a subset of
the instances Xp C X. Given this input, RankBoost generally runs in O(|®|) time, and
a naive implementation of the weak learner we present runs in O(n|®|Xs) time. We have
shown two improvements in efficiency, as summarized in Theorem 2 of Section 4. If we use
binary weak rankings and we search for the best weak ranking using the third method in
Section 3.2, then we can implement the weak learner in time O(n|Xg|+ |®|). If we use a
binary feedback function, then we can implement RankBoost in time linear in the number
of instances in the feedback. If in addition we use binary weak rankings, we can implement
the weak learner in O(n|Xg|) time.

These two restriction are both natural and useful. Binary rankings are quite simple
and this makes them easy to design, analyze, and compute efficiently. Although a single
such ranking may have only weak predictive power, many of them can be combined via
boosting into a highly accurate prediction rule, as is indicated by our experiments. As for
restricting the feedback function to be binary, this often does not reduce the applicability
of the algorithm, since many applications come with binary feedback, such as those in
information retrieval.

Experimental results. In our experiments, we used the weak learner that outputs a
thresholded ranking feature as the weak ranking. Although these prediction rules have
limited power, RankBoost was nevertheless able to combine them into a highly accurate
prediction rule. In the meta-search task, RankBoost performed just as well as the best search
strategy for each error measure. In the movie-recommendation task, RankBoost consistently
outperformed a standard regression algorithm and a nearest-neighbor algorithm and was
consistently better than the vector similarity method in medium to large problem settings.

Our experiments also indicate that RankBoost is able to do well on data sets of varying
sizes. The meta-search task had a small number of ranking features (16 to 22), a large
instance space (10,000 URL’s) and large feedback (10,000 URL’s). The movie task had a
large number of ranking features (100 to 2000), a smaller instance space (1,628 movies),
and a range of feedback sizes (10-1455).

One important inherent feature of RankBoost, being a boosting algorithm, is its ability
to combine different approaches for ranking. While the task of combining general rank-
ing features given non-bipartite feedback can be rather involved, the boosting-for-ranking
framework that we introduced in this paper offers a principled and efficient algorithmic
infrastructure. Therefore, RankBoost can also be used as a tool for building a hybrid rank-
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ing system that combines different ranking algorithms, yielding a high precision and recall
ranking meta-algorithm.

Current directions. There are numerous directions for future work. We contend that
relative preferences can be more important than absolute scores. The results of our exper-
iments on the movie recommendation task support this: RankBoost significantly outper-
formed nearest neighbor and regression. To further differentiate between scores and ranks,
we proposed two experiments (Section 6.2.6): testing regression on relative preferences by
normalizing the scores of each movie viewer, and testing the averaged combination of &
nearest neighbors.

As we have pointed out before, many ranking problems have bipartite feedback and
therefore can also be viewed as binary classification problems. For such problems it would
be interesting to compare RankBoost to AdaBoost combined with a weak leaner for min-
imizing classification error. AdaBoost outputs a real-valued score for each instance which
is then thresholded to produce a classification. We could compare RankBoost’s ordering to
AdaBoost’s ordering of the instances by classification weight to see if minimizing ranking
loss is superior to minimizing classification error.

As for the RankBoost algorithm itself, the first method for setting o is the most general
and requires numerical search. Schapire and Singer (1999) suggest using general iterative
methods such as Newton-Raphson. Because such methods often have no proof of conver-
gence or can be numerically unstable, we would like to find a special purpose iterative
method with a proof of convergence. Of course, to be practical, the method would also
need to converge quickly.

Perhaps the most important practical research direction is to apply RankBoost to in-
formation retrieval (IR) problems, including text, speech, and image retrieval. These IR
problems are important today due to the vast amount of data available to people via the
WWW and large scale databases, and they are receiving attention from a variety of sci-
entific communities. In a recent paper (Iyer et al., 2000), two versions of RankBoost were
compared to traditional information retrieval approaches. The experiments in the paper
indicate that RankBoost can provide an alternative approach of combining term weights,
however, RankBoost’s performance greatly depends on the quality of the feedback that is
provided.

Various versions of RankBoost might turn out to be useful in learning problems that
at first sight do not seem to be related to ranking. For instance, Walker, Rambow and
Rogati (2001) recently used RankBoost successfully to train a sentence-generation system.
In other work, Collins (2000), describes experiments using the RankBoost for a natural-
language processing task, specifically, to re-rank the candidate parses produced by a prob-
abilistic parser. The paradigm suggested by Collins can be applied to other settings in
which the results of an approximate or exact search yield an ordered list of candidates with
the “correct” element appearing somewhere down the ordered list. This list can then be
re-ranked by applying RankBoost to a fresh set of features.

Finally, we would like to note that this work is part of a general research effort on learning
algorithms for ordinal data. We hope that this work will spark further interest in such
problems which are challenging and relatively unexplored. Indeed, recent work (Crammer
and Singer, 2001, 2002, Lebanon and Lafferty, 2002) on ranking problems indicate that

36



some of the techniques explored in this paper can be carried over to online learning of
ranking functions and exponential models for ranking, which makes a connection to work
in statistics.
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Appendix A. Performance measures for the movie task

For the movie recommendation task, we provided various measures of the performance of a
predicted ordering H of movies output by a ranking algorithm (Section 6.2.4). We assumed
that if there were ties between movies, meaning that H is a partial order, the ties would
be broken randomly when listing one item over an other. To analyze this performance,
we calculated the expectation over all ways to break ties, that is, over all total orders
that are consistent with H. This expectation involved the quantity Pr [rank(¢y) = i], the
probability, over all total orders consistent with H, that the kth good movie on H’s list
occurs at position ¢ on the list. Here we calculate this probability.

Let M be the set of all movies. Let R be the number of movies that definitely appear
before t;, on H’s list,

R=|{meM : H(m)> H(ty)}| .

Let r be the number of good movies that definitely appear before ¢y,
r=H{te{tr,....tk—1} © H(t) > H(tg)} -
Let @ be the number of movies tied with ¢,
Q=|{meM : H(m)=H(ty)}| .
Let ¢ be the number of good movies tied with ¢y,
q= |{t S {tl,... ,tK} : H(t) = H(tk)H .
Then,
i—R—1\ (Q—i+R
() (52)
0 . (22)
(5)
We prove (22) as follows. Let j = k — r. Then when ¢, is listed at position i, tj is the
jth good movie appearing within the list of ) tied movies. Define the random variable Y

to be the rank of t; within the list of tied movies. For example, if ¢ is the second movie
listed then Y; = 2. Then

Pr [rank(ty) = i] =

Prrank(ty) =il =Pr[R+Y, =i =Pr[Y; =1(] , (23)

where £ = i — R. So now we need to calculate the probability that, in a group of equally
scored movies, the jth good movie appears at position £.

This process can be modeled as sampling without replacement () times from an urn with
@ balls, ¢ colored green and Q—¢q colored red. (Balls of the same color are indistinguishable.)
The event Y; = £ means that the jth green ball was drawn on the /th draw. Looking at
the entire sequence of draws, this means that j — 1 green balls came up during draws
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1,...,£—1, the jth green ball was drawn on draw ¢, and ¢ — j green balls came up during
draws £ 4+ 1,...,Q. There are (fj) ways to arrange the drawings of the first j — 1 green

balls and (?__f) ways to arrange the drawings of the remaining ¢ — j green balls. The total

number of all possible sequences of draws is (?) Thus

-1\ (Q—t
prfy, = g = ] a) (24)

(5)

Substituting £ = ¢ — R from (23) into this equation gives (22), the desired result. =
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