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Abstract

This paper presents a new technique for achieving blind signal separation when given only a single
channel recording. The main concept is based on exploiting a priori sets of time-domain basis func-
tions learned by independent component analysis (ICA) to the separation of mixed source signals
observed in a single channel. The inherent time structure of sound sources is reflected in the ICA
basis functions, which encode the sources in a statistically efficient manner. We derive a learning
algorithm using a maximum likelihood approach given the observed single channel data and sets of
basis functions. For each time point we infer the source parameters and their contribution factors.
This inference is possible due to prior knowledge of the basis functions and the associated coeffi-
cient densities. A flexible model for density estimation allows accurate modeling of the observation
and our experimental results exhibit a high level of separation performance for simulated mixtures
as well as real environment recordings employing mixtures of two different sources.

Keywords: Computational auditory scene analysis (CASA), blind signal separation (BSS), inde-
pendent component analysis (ICA), generalized Gaussian distribution, sparse coding.

1. Introduction

In natural conversation a speech signal is typically perceived against a background of other sounds
carrying different characteristics. The human auditory system processes the acoustic mixture reach-
ing the ears to enable constituent sounds to be heard and recognized as distinct entities, even if
these sounds overlap in both spectral and temporal regions with the target speech. This remarkable
human speech perception is flexible and robust to various sound sources of different characteris-
tics, therefore spoken communication is possible in many situations even though competing sound
sources are present (Bregman, 1990). Researchers in signal processing and many other related fields
have strived for the realization of this human ability in machines; however, except in limited certain
applications, thus far they have failed to produce the desired outcomes.
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In order to formulate the problem, we assume that the observed signal yt is the summation of P
independent source signals

yt = λ1xt
1 +λ2xt

2 + . . .+λPxt
P , (1)

where xt
i is the t th observation of the ith source, and λi is the gain of each source, which is fixed over

time. Note that superscripts indicate sample indices of time-varying signals and subscripts identify
sources.1 The gain constants are affected by several factors, such as powers, locations, directions
and many other characteristics of the source generators as well as sensitivities of the sensors. It is
convenient to assume all the sources to have zero mean and unit variance. The goal is to recover
all xt

i given only a single sensor input yt . The problem is too ill-conditioned to be mathematically
tractable since the number of unknowns is PT +P given only T observations.

Various sophisticated methods have been proposed over the past few years in research areas
such as computational auditory scene analysis (CASA; Bregman, 1994, Brown and Cooke, 1994)
and independent component analysis (ICA; Comon, 1994, Bell and Sejnowski, 1995, Cardoso and
Laheld, 1996). CASA separation techniques are mostly based on splitting mixtures observed as a
single stream into different auditory streams by building an active scene analysis system for acoustic
events that occur simultaneously in the same spectro-temporal regions. The acoustic events are
distinguished according to rules inspired intuitively or empirically from the known characteristics of
the sources. Example proposals of CASA are auditory sound segregation models based on harmonic
structures of the sounds (Okuno et al., 1999, Wang and Brown, 1999), automatic tone modeling
(Kashino and Tanaka, 1993), and psycho-acoustic grouping rules (Ellis, 1994). Recently Roweis
(2001) presented a refiltering technique that estimates λi in Equation 1 as time-varying masking
filters that localize sound streams in a spectro-temporal region. In his work, sound sources are
supposedly disjoint in the spectrogram and a “mask” divides the mixed streams completely. These
approaches are, however, only applicable to certain limited environments due to the intuitive prior
knowledge of the sources such as harmonic modulations or temporal coherency of the acoustic
objects.

The use of multiple microphones, such as stereo microphones, binaural microphones, or micro-
phone arrays, may improve separation accuracy. ICA is a data driven method that makes good use of
multiple microphone inputs and relaxes the strong characteristic frequency structure assumptions.
The ICA algorithms estimate the inverse-translation-operator that maps observed mixtures to the
original sources. However, ICA algorithms perform best when the number of observed signals is
greater than or equal to the number of sources (Comon, 1994). Although some recent overcomplete
representations may relax this assumption (Lewicki and Sejnowski, 2000, Bofill and Zibulevsky,
2001), separating sources from a single channel observation remains problematic.

ICA has been shown to be highly effective in other aspects such as encoding image patches
(Bell and Sejnowski, 1997), natural sounds (Bell and Sejnowski, 1996, Abdallah and Plumbley,
2001), and speech signals (Lee and Jang, 2001). The notion of effectiveness adopted here is based
on the principle of redundancy reduction (Field, 1994), which states that a useful representation
is to transform the input in such a manner that reduces the redundancy due to complex statistical
dependencies among elements of the input stream. If the coefficients are statistically independent,
that is, p(xi,x j) = p(xi)p(x j), then the coefficients have a minimum of common information and are

1. This notation may be confused with nth power. However, this compact notation allows the source separation algorithm
given in Section 3 to be to presented in a more orderly fashion by expressing the long formula in one line. Note also
that superscripts denoting nth power only appear in Section 2.3.
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thus least redundant. In constrast, correlation-based transformations such as principal component
analysis (PCA) are based on dimensionality reduction. They search for the axis that has minimum
correlations, which does not always match the least redundant transformation. Given segments of
predefined length out of a time-ordered sequence of a sound source, ICA infers time-domain basis
filters and, at the same time, the output coefficients of the basis filters estimate the least redundant
representation. A number of notable research findings suggest that the probability density function
(pdf) of the input data is approximated either implicitly or explicitly during the ICA adaptation
processes (Pearlmutter and Parra, 1996, MacKay, 1996). “Infomax”, a well-known implicit ap-
proximation technique proposed by Bell and Sejnowski (1995), models the pdf at the output of the
ICA filter by a nonlinear squashing function, and adapts the parameters to maximize the likelihood
of the given data.

Our work is motivated by the pdf approximation property involved in the basis filters adapted by
ICA learning rules. The intuitive rationale behind the approach is to exploit the ICA basis filters to
the separation of mixed source signals observed in a single channel. The basis filters of the source
signals are learned a priori from a training data set and these basis filters are used to separate the
unknown test sound sources. The algorithm recovers the original auditory streams in a number of
gradient-ascent adaptation steps maximizing the log likelihood of the separated signals, computed
by the basis functions and the pdfs of their coefficients—the output of the ICA basis filters. We
make use of not only the ICA basis filters as strong prior information for the source characteristics,
but also their associated coefficient pdfs as an object function of the learning algorithm. The theo-
retical basis of the approach is “sparse coding” (Olshausen and Field, 1996), once termed “sparse
decomposition” (Zibulevsky and Pearlmutter, 2001). Sparsity in this case means that only a small
number of coefficients in the representation differ significantly from zero. Empirical observations
show that the coefficient histogram is extremely sparse, and the use of generalized Gaussian distri-
butions (Lewicki, 2002) yields a good approximation.

The remainder of this paper is organized as follows. Section 2 introduces two kinds of generative
models for the mixture and the sound sources. Section 3 describes the proposed signal separation
algorithm. Section 4 presents the experimental results for synthesized mixtures, and compares them
with Wiener filtering. Finally Section 5 summarizes our method in comparison to other methods,
and Section 6 draws conclusions.

2. Adapting Basis Functions and Model Parameters

The algorithm first involves the learning of the time-domain basis functions of the sound sources that
we are interested in separating. This corresponds to the prior information necessary to successfully
separate the signals. We assume two different types of generative models in the observed single
channel mixture as well as in the original sources. The first one is depicted in Figure 1-A. As
described in Equation 1, at every t ∈ [1,T ], the observed instance is assumed to be a weighted sum
of different sources. In our approach only the case of P = 2 is considered. This corresponds to the
situation defined in Section 1: two different signals are mixed and observed in a single sensor.

2.1 A Model for Signal Representation

For the individual source signals, we adopt a decomposition-based approach as another genera-
tive model. This approach has been formerly employed in analyzing natural sounds (Bell and Se-
jnowski, 1996, Abdallah and Plumbley, 2001), speech signals (Lee and Jang, 2001), and colored
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Figure 1: Generative models for the observed mixture and the original source signals. (A) The
observed single channel input of T samples long is assumed to be generated by a weighted
sum of two source signals of the same length: yt = λ1xt

1 + λ2xt
2. (B) Decomposition of

the individual source signals. The method is to chop xt
i into blocks of uniform length N

starting at t, represented as vectors xt
i = [xt

i xt+1
i . . . xt+N−1

i ]′, which is in turn assumed to
be generated by weighted linear superpositions of basis functions: xt

i = ∑k st
ikaik.

noise (Zibulevsky and Pearlmutter, 2001). A fixed-length segment drawn from a time-varying sig-
nal is expressed as a linear superposition of a number of elementary patterns, called basis functions,
with scalar multiples (Figure 1-B). Continuous samples of length N with N � T are chopped out of
a source, from t to t + N − 1, and the subsequent segment is denoted as an N-dimensional column
vector in a boldface letter, xt

i = [xt
i xt+1

i . . . xt+N−1
i ]′, attaching the lead-off sample index for the

superscript and representing the transpose operator with ′. The constructed column vector is then
expressed as a linear combination of the basis functions such that

xt
i =

M

∑
k=1

aikst
ik = Aist

i , (2)

where M is the number of basis functions, aik is the kth basis function of ith source denoted by an
N-dimensional column vector, st

ik is its coefficient (weight) and sti = [st
i1 st

i2 . . .st
iM]′. The right-hand

side is the matrix-vector notation. The second subscript k followed by the source index i in st
ik

represents the component number of the coefficient vector sti . We assume that M = N and A has full
rank so that the transforms between xt

i and st
i are reversible in both directions. The inverse of the

basis matrix, Wi = A−1
i , refers to the ICA basis filters that generate the coefficient vector: sti = Wixt

i .
The purpose of this decomposition is to model the multivariate distribution of xt

i in a statistically
efficient manner. The ICA learning algorithm searches for a linear transformation Wi that makes
the components as statistically independent as possible. Amari and Cardoso (1997) showed that the
solution is achieved when all the individual component pdfs, p(st

ik), are maximized, provided the
linear transformation is invertible:

W∗
i = argmax

Wi
∏

t
p(xt

i|Wi)

= argmax
Wi

∏
t

{

∏
k

p(st
ik)

}

· |det(Wi)| ,
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where det(·) is the matrix determinant operator, and the term |det(Wi)| gives the change in vol-
ume produced by the linear transformation (Pham and Garrat, 1997), constraining the solution W∗

i
to be a nonsingular matrix. Independence between the components and over time samples factor-
izes the joint probabilities of the coefficients into the product of marginal component pdf. Thus
the important issue is the degree to which the model distribution is matched to the true underlying
distribution p(st

ik). We do not impose a prior distribution on the source coefficients. Instead, we
are interested in inferring the distribution that results in maximally independent coefficients for the
sources. Therefore we use a generalized Gaussian prior (Lewicki, 2002) that provides an accurate
estimate for symmetric non-Gaussian distributions in modeling the underlying distribution of the
source coefficients. The generalized Gaussian prior, also known as exponential power distribution,
whose simplest form is p(s) ∝ exp(−|s|q), can describe Gaussian, platykurtic, and leptokurtic dis-
tributions by varying the exponent q. The optimal value of q for given data can be determined from
the maximum a posteriori value and provides a good fit for the symmetric distributions. In the fol-
lowing sections we present an ICA learning algorithm using a generalized Gaussian function as a
flexible prior that estimates the distributions of the sources.

2.2 Learning Basis Functions

In the generative sound model the key parameters are the basis filters. The ICA transformation is
performed by the basis filters, the rows of W. They change the coordinates of the original data so
that the output coefficients are statistically independent. Initially, we do not know the structure of
the basis filters, and therefore we adapt the filters using a generalized formulation of the ICA cost
function. First we briefly describe the ICA learning rule.

The goal of ICA is to adapt the filters by optimizing s so that the individual components sk are
statistically independent, and this adaptation process minimizes the mutual information between
sk. A learning algorithm can be derived using the information maximization principle (Bell and
Sejnowski, 1995) or the maximum likelihood estimation (MLE) method (Pearlmutter and Parra,
1996), which can be shown to be equivalent to estimating the density functions (Cardoso, 1997). In
our approach, we use the infomax learning rule with natural gradient extension and update the basis
functions by the following learning rule (Lee et al., 2000b):

∆W ∝
[

I−ϕ(s)s′
]

W , (3)

where I is the identity matrix, ϕ(s) = ∂ log p(s)/∂s and s′ denotes the matrix transpose of s. We
assume that W is square; that is, the number of sources is equal to the number of sensors. The
coefficient vector s can be replaced with any of sti in Equation 2. To learn the basis filter for the ith

source, only {st
i|t ∈ [1,T ]} are used. We omit the subscripts and the superscripts in this section for

compact notations. ∆W is the change of the basis functions that is added to W and will converge to
zero once the adaptation process is complete. Calculating ϕ(s) requires a multivariate density model
for p(s), which factorizes to component pdf: p(s) = ∏N

k p(sk). The parametric density estimate
p(sk) plays an essential role in the success of the learning rule. Pham and Garrat (1997) stated that
local convergence is assured if p(sk) is an estimate of the true source density. Note that the global
shape of p(sk) was fixed in previous work (Olshausen and Field, 1996, Hyv̈arinen, 1999, Lee et al.,
2000a).
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Figure 2: Examples of the actual coefficient distributions and the estimated values of the exponent
parameters of the exponential power distributions. The distributions generally have more
sharpened summits and longer tails than a Gaussian distribution, and would be classified
as super-Gaussian. Generalized Gaussian density functions provide good matches by
varying exponents as shown in the equation. From left to right, the exponent decreases,
and the distributions become more super-Gaussian.

2.3 Generalized Gaussian Distributions

The success of the ICA learning algorithm for our purpose depends highly on how closely the
ICA density model captures the true source coefficient density. The better the density estimation,
the better the basis features in turn are responsible for describing the statistical structure. The
generalized Gaussian distribution models a family of density functions that is peaked and symmetric
at the mean, with a varying degree of normality in the following general form (Lewicki, 2002, Box
and Tiao, 1973):

pg(s|θ) =
ω(q)

σ
exp

[

−c(q)

∣

∣

∣

∣

s−µ
σ

∣

∣

∣

∣

q]

, θ = {µ,σ,q}

where µ = E[s], σ =
√

E[(s−µ)2], c(q) =
[

Γ[3/q]
Γ[1/q]

]q/2
, and ω(q) = Γ[3/q]1/2

(2/q)Γ[1/q]3/2 . The exponent q

regulates the deviation from normality. The Gaussian, Laplacian, and strong Laplacian—speech
signal—distributions are modeled by putting q = 2, q = 1, and q < 1 respectively. The q parameter
is optimized by finding the maximum a posteriori value from the data. See work by Box and Tiao
(1973) and Lee and Lewicki (2000) for detailed algorithms for q estimation. Each scalar component
of the score function in Equation 3 can be computed by using the parametric univariate pdf pg(s|θ)
for the source coefficient s with suitable generalized Gaussian parameters:

ϕ(s) =
∂ log pg(s)

∂s
= − cq

σq |s−µ|q−1sign(s−µ) . (4)

Gradient ascent adaptation is applied in order to attain the maximal log likelihood. The detailed
derivations of the learning algorithm can be found in the original papers (Box and Tiao, 1973, Lee
and Lewicki, 2000).

In Figure 2, the coefficient histogram of real data reveals that the distribution has a highly sharp-
ened point at the peak around zero and has heavy and long tails; there is only a small percentage of
informative quantities (non-zero coefficients) in the tails and most of the data values are around zero,
that is, the data is sparsely distributed. From a coding perspective this implies that we can encode
and decode the data with only a small percentage of the coefficients. For modeling the densities
of the source coefficients neither Laplacian nor less kurtotic, logistic functions, are adequate for
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speech bases. The generalized Gaussian parameter set θik approximates pg(st
ik)—the distribution of

the kth filter output of the ith source.2 The basis filters wik, rows of Wi, and the individual parameter
set θik for the distribution of the filter output are obtained beforehand by the generalized Gaussian
ICA learning algorithm presented by Lee and Lewicki (2000), and used as prior information for the
proposed source separation algorithm.

3. Maximum Likelihood Source Inference

Pearlmutter and Parra (1996) showed that the likelihood of the basis filters for a set of training
data are maximized by ICA learning algorithm. Suppose we know what kind of sound sources
have been mixed and we were given the sets of basis filters from a training set. Could we infer
the learning data? The answer is generally “no” when N < T and no other information is given.
In our problem of single channel signal separation, half of the solution is already given by the
constraint yt = λ1xt

1 +λ2xt
2, where xt

i constitutes the basis learning data xt
i (Figure 1-B). Essentially,

the goal of the source inferring algorithm of this paper is to complement the remaining half with the
statistical information given by a set of basis filters Wi and coefficient density parameters θik. If the
parameters are given, we can perform maximum a posteriori (MAP) estimation by optimizing the
data likelihood computed by the model parameters.

The separation algorithm has two major features: it is adaptive and should perform all relevant
adaptation on a single sample basis, which means that the solution is achieved by altering a set of
unknowns gradually from an arbitrary initial values to a certain goal, and the number of unknowns to
be estimated equals the number of samples. In Section 3.1 we formulate a stochastic gradient ascent
adaptation algorithm for the problem. In Section 3.2 we derive detailed adaptation formulas for the
source signals, which is done by the generalized Gaussian expansion of the coefficient pdf. Section
3.3 explains how to update the scaling factors λi. Finally Section 3.4 gives a step-by-step description
of the proposed separation algorithm in terms of the derived learning rules. The evaluation of the
derived separation algorithm and practical issues in actual situations are discussed in Section 4.

3.1 Formulation of Separation Algorithm

If we have probabilistic models for xt
1 and xt

2 by the sets of basis filters W1 and W2, and if two
source signals are statistically independent, we can formulate the single channel signal separation
by the following constrained maximization problem:3

{

xt
1
∗
,xt

2
∗∣
∣ t = 1, . . . ,T

}

= arg max
{xt

1,x
t
2}

p(x1
1,x

2
1, . . . ,x

T
1 |W1) · p(x1

2,x
2
2, . . . ,x

T
2 |W2) ,

s.t. yt = λ1xt
1 +λ2xt

2

where xt
i is a sampled value of the ith source at time t, and T is the length of each source signal.

Separation of two source signals from a mixture can be regarded as a mapping from yt to {xt
1,x

t
2}.

Since the number of parameters is 2T given only T observations, it is mathematically intractable to

2. In the remainder of the paper, we will drop the parameter set θik of a generalized Gaussian pdf pg(st
ik|θik). When we

refer to a generalized Gaussian pdf pg(st
ik), we assume that it is conditioned on a set of parameters θik = {µik,σik,qik},

where the subscripts {i,k} imply that every source coefficient distribution has its own set of parameters.
3. The pdf p(x1

i , . . . ,x
T
i |Wi) should be also conditioned on a set of generalized Gaussian parameters {θik}. We will drop

the parameter set in the remainder of the paper and implicitly assume its existence in the pdfs whenever the basis
filter Wi is conditioned or the generalized Gaussian pdf symbol pg appears.
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evaluate true values of the source signals. Instead, the proposed algorithm tries to find the estimates
of the sources to maximize the posterior probability given the basis filters W1 and W2. In an
ordinary ICA, the learning algorithm optimizes data likelihood by altering a set of basis filters. The
target of the proposed separation method is identical, but the values to be altered are the data, not
the basis filters.

The initial constraint, yt = λ1xt
1 +λ2xt

2, reduces the number of the unknowns to T , according to
the following alternative formulation:

{

xt
1
∗∣
∣ t = 1, . . . ,T

}

= argmax
{xt

1}
p(x1

1,x
2
1, . . . ,x

T
1 |W1) · p(x1

2,x
2
2, . . . ,x

T
2 |W2) , (5)

where xt
2 = (yt −λ1xt

1)/λ2 .

Due to a large amount of probabilistic dependence along the time samples of the source signals,
evaluating p(x1

i ,x
2
i , . . . ,x

T
i |Wi) is not a simple matter. However, if we assume that the dependence

does not exceed N samples, such that xt1
i and xt2

i are statistically independent when |t1 − t2| > N,
the probability of the whole signal is approximated by the product of the probability of all possible
windows of length N,

p(x1
i ,x

2
i , . . . ,x

T
i |Wi) ≈ p(x1

i , . . . ,x
N
i |Wi)p(x2

i , . . . ,x
N+1
i |Wi) · · · p(xTN

i , . . . ,xT
i |Wi)

=
TN

∏
τ=1

p(xτ
i |Wi) , (6)

where TN = T −N +1 and xτ
i = [xτ

i xτ+1
i . . . xτ+N−1

i ]′ as defined in Section 2.1.4

Now we focus on evaluating the multivariate pdf p(xτ
i |Wi). When we pass xτ

i through a set
of linear basis filters Wi, a set of random variables, {sτ

ik = wikxτ
i |k = 1, . . . ,N}, where k is a filter

number, emerge at the output. By virtue of the ICA learning algorithm, the probabilistic depen-
dence between the output random variables is minimized; hence we approximate p(xτ

i |Wi) to the
multiplication of the univariate pdfs of the output variables:

p(xτ
i |Wi) ≈ |det(Wi)| ·

N

∏
k=1

pg(s
τ
ik) , (7)

where pg(·) is the generalized Gaussian pdf introduced in Section 2.3. The term |det(Wi)| gives
the change in volume produced by the linear transformation (Pham and Garrat, 1997). We define
the object function L of the separation problem as the joint log probability of the two source sig-
nals given the basis filters, which is approximated to the sum of the log probabilities of the output
variables based on Equations 6 and 7:

L def
= log p(x1

1,x
2
1, . . . ,x

T
1 |W1) · p(x1

2,x
2
2, . . . ,x

T
2 |W2)

≈ log
TN

∏
τ=1

p(xτ
1|W1) · p(xτ

2|W2)

≈ log
TN

∏
τ=1

{

|det(W1)|
N

∏
k=1

pg(s
τ
1k) · |det(W2)|

N

∏
k=1

pg(s
τ
2k)

}

4. We use different timing indices t and τ, for t th sample of a signal and for the column vector of continuous samples of
length N starting from τ, respectively.
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∝
TN

∑
τ=1

N

∑
k=1

[log pg(s
τ
1k)+ log pg(s

τ
2k)] . (8)

In the last expression, |det(W1)| and |det(W2)| vanish since their values are constant over the
change of xt

i . To find an optimized value of xt1 at ∀t ∈ {1, . . . ,T}, we perform a gradient ascent
search based on the adaptation formula derived by differentiating L with respect to xt

1:

∂L
∂xt

1
=

TN

∑
τ=1

N

∑
k=1

[

∂ log pg(sτ
1k)

∂xt
1

+
∂ log pg(sτ

2k)

∂xt
1

]

=
TN

∑
τ=1

N

∑
k=1

[

∂ log pg(sτ
1k)

∂sτ
1k

∂sτ
1k

∂xt
1

+
∂ log pg(sτ

2k)

∂sτ
2k

∂sτ
2k

∂xt
2

∂xt
2

∂xt
1

]

, (9)

where the three different derivative terms inside the summation have the following meanings

• ∂ log pg(sτ
ik)

∂sτ
ik

: stochastic gradient ascent for the kth filter output.

• ∂sτ
ik

∂xt
i
: adjustment in change from kth filter output to source i.

• ∂xt
2

∂xt
1
: adjustment in change from source 2 to source 1.

In the following section we evaluate the above three terms, and present the actual adaptation proce-
dures considering the constraint, yt = λ1xt

1 +λ2xt
2.

3.2 Deriving Adaptation Formulas

The stochastic gradient ascent for the kth filter output of the ith source is

∂ log pg(sτ
ik)

∂sτ
ik

= ϕ(sτ
ik), τ ∈ {1, . . . ,TN} , (10)

where ϕ(·) is the component score function of the generalized Gaussian pdf defined in Equation 4.
The derivative term ∂sτ

ik/∂xt
i is the adjustment from source coefficients to the original time domain.

Because xt
i can be appeared at any of the N possible positions of the input vector xτ

i whose output
is sτ

ik, the adjustment is determined by t and τ. Figure 3 provides a conceptual explanation of the
adjustment mapping. Each wik takes windows of N continuous samples starting from the τth sample
out of the ith source signal, xτ

i = [xτ
i . . . xτ+N−1

i ]′, and produces the output coefficient sτik. Each
sample of the source participates in the generation of N different inputs, and henceforth in the
generation of N different output coefficients for each filter. The following matrix-vector expression
of the basis filtering highlights positions of a sample xti in all the possible input windows:

[

st−N+1
ik st−N+2

i · · · st
ik

]

= wik ·
[

xt−N+1
i xt−N+2

i · · · xt
i

]

=











wik1

wik2
...

wikN











′

·















xt−N+1
i xt−N+2

i · · · xt
i

xt−N+2
i · · · xt

i xt+1
i

... xt
i

. . .
...

xt
i xt+1

i · · · xt+N−1
i















,
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Figure 3: The participation of a sample in the source signal to the generation of each output co-
efficient. The input xti is a vector composed of N continuous samples ranging from t to
t + N − 1 in the ith source. The output coefficient stik is obtained by passing xt

i through
wik. The middle of the figure shows that there exist N different possible input covers
over a sample, which subsequently participate in the generation of N different output
coefficients per filter.

where the scalar wikn is the nth component of wik. The indices of the windows containing xt
i range

from t −N + 1 to t. We introduce an offset variable n ∈ [1,N] so that st−n+1
ik may cover the range

[t −N + 1, t]. Then the partial derivative of the output at time t − n + 1 with respect to the source
signal at time t becomes a simple scalar value as

∂st−n+1
ik

∂xt
i

=
∂
(

∑N
τ=1 wikτ · xt−n+τ

i

)

∂xt
i

= wikn . (11)

The summation from τ = 1 to TN in Equation 9 is reduced to the summation over only N relevant
output coefficients, by using the offset variable n and Equations 10 and 11,

∂L
∂xt

1
=

TN

∑
τ=1

N

∑
k=1

[

∂ log pg(sτ
1k)

∂sτ
1k

∂sτ
1k

∂xt
1

+
∂ log pg(sτ

2k)

∂sτ
2k

∂sτ
2k

∂xt
2

∂xt
2

∂xt
1

]

=
N

∑
n=1

N

∑
k=1

[

ϕ(stn
1k)w1kn +ϕ(stn

2k)w2kn ·
∂xt

2

∂xt
1

]

, (12)

where tn = t −n+1. The first multiplier inside the summation, ϕ(stnik), is interpreted as a stochastic
gradient ascent that gives the direction and the amount of the change at the output of the basis filter,
st

ik = wikxt
i . The second term wikn accounts for the change produced by the filter between the input

xt
i and the output stn

ik. The summation implies that the source signal is decomposed to N independent
components.

The last derivative term inside the summation of Equation 12 defines the interactions between
the two source signals, determined by the constraint yt = λ1xt

1 +λ2xt
2. At every time t every source

10
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signal can be expressed by the counterpart, xt
2 = (yt −λ1xt

1)/λ2 and xt
1 = (yt −λ2xt

2)/λ1. We repre-
sent the relationships between the sources by the following two equivalent differential equations:

∂xt
2

∂xt
1

= −λ1

λ2
⇔ ∂xt

1

∂xt
2

= −λ2

λ1
.

We evaluate the final learning rule for xt1 as

∂L
∂xt

1
=

N

∑
n=1

N

∑
k=1

[

ϕ(stn
1k)w1kn +ϕ(stn

2k)w2kn ·
(

−λ1

λ2

)]

=
N

∑
k=1

N

∑
n=1

[

ϕ(stn
1k)w1kn −

λ1

λ2
·ϕ(stn

2k)w2kn

]

. (13)

The second term inside the final summation can be interpreted as a stochastic gradient ascent for xt2
scaled by −λ1/λ2. The denominator λ2 normalizes the gradient, and the numerator λ1 scales it to
be added to xt

1. The minus sign implies that adjusting xt
2 affects xt

1 in the opposite direction. Similar
reasoning leads to the rule for the second source:

∂L
∂xt

2
=

N

∑
k=1

N

∑
n=1

[

−λ2

λ1
·ϕ(stn

1k)w1kn +ϕ(stn
2k)w2kn

]

. (14)

Updating the sources directly using these learning rules might lead to a violation of the initial
constraint. To avoid the violation, the values of the source signals after adaptation must always
satisfy

yt = λ1(x
t
1 +∆xt

1)+λ2(x
t
2 +∆xt

2)

⇔ λ1∆xt
1 +λ2∆xt

2 = 0 .

In the actual application of the adaptation rules, we scale Equations 13 and 14 appropriately and
express the final learning rules as

∆xt
1 = η

N

∑
k=1

N

∑
n=1

[

λ2

λ1
·ϕ(stn

1k)w1kn −ϕ(stn
2k)w2kn

]

,

∆xt
2 = η

N

∑
k=1

N

∑
n=1

[

−ϕ(stn
1k)w1kn +

λ1

λ2
·ϕ(stn

2k)w2kn

]

, (15)

where η is a learning gain. The whole dataflow of the proposed method is summarized in four steps
in Figure 4. In step A, the source signals are decomposed into N statistically independent codes.
The decomposition is done by a set of the given ICA filters, sti = Wixt

i . In step B, the stochastic
gradient ascent for each filter output code is computed from the derivative of the log likelihood
of the code (Equation 10). In step C, the computed gradient is transformed to the source domain
according to Equation 11. All the filter output codes are regarded as being independent, so all the
computations are performed independently. In step D, we add up all the gradients and modify them
to satisfy the initial constraint according to Equation 15. The four steps comprise one iteration of
the adaptation of each sample. The solution is achieved after repeating this iteration on the source
signal xt

i at every time t to a convergence from certain initial values.
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Figure 4: The overall structure and the data flow of the proposed method. In the beginning, we are
given single channel data yt , and we have the estimates of the source signals, x̂t

i , at every
adaptation step. (A) At each time-point, the current estimates of the source signals are
passed through a set of basis filters Wi, generating N sparse codes st

ik that are statistically
independent. (B) The stochastic gradient for each code is computed from the derivative of
the log likelihood of each individual code. (C) The gradient for each code is transformed
to the domain of source signal. (D) The individual gradients are combined and modified
to satisfy the given constraints, and added to the current estimates of the source signals.

3.3 Updating Scaling Factors

Updating the contribution factors λi can be accomplished by finding the maximum a posteriori
values. To simplify the inferring steps, we force the sum of the factors to be constant, such that
λ1 +λ2 = 1. The value of λ2 is completely dependent on the value of λ1, so we need to consider λ1

only. Given the current estimates of the sources xt
i , the posterior probability of λ1 is

p(λ1|x1
1, . . . ,x

T
1 , x1

2, . . . ,x
T
2 ) ∝ p(x1

1, . . . ,x
T
1 )p(x1

2, . . . ,x
T
2 )pλ(λ1),

where pλ(·) is the prior density function of λ. Performing a log operation on the above equation
yields

log p(x1
1, . . . ,x

T
1 )p(x1

2, . . . ,x
T
2 )pλ(λ1) ∼= L + log pλ(λ1) ,

where L is the object function defined in Equation 8. If we assume λ1 to be uniformly distributed
in the range [0,1], pλ(·) is considered as a constant, and vanishes in

λ∗
1 = argmax

λ1

{L + log pλ(λ1)}

= argmax
λ1

L .
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We differentiate L with respect to λ1, and substitute λ2 = 1−λ1:

∂L
∂λ1

=
TN

∑
τ=1

N

∑
k=1

[

∂ log pg(sτ
1k)

∂λ1
+

∂ log pg(sτ
2k)

∂λ1

]

=
TN

∑
τ=1

N

∑
k=1

[

ϕ(sτ
1k)

∂sτ
1k

∂λ1
+ϕ(sτ

2k)
∂sτ

2k

∂λ2
· ∂λ2

∂λ1

]

=
TN

∑
τ=1

N

∑
k=1

[

ϕ(sτ
1k)

∂sτ
1k

∂λ1
−ϕ(sτ

2k)
∂sτ

2k

∂λ2

]

.

From the constraint yt = λ1xt
1 + λ2xt

2, we might deduce that the value of λixt
i is unaffected by the

change of either λi or xt
i , for all i ∈ {1,2}, t ∈ [1,T ]. Because sτ

ik is the output of xt
i , λisτ

ik is also
unaffected by λi or sτ

ik. So the partial derivative of sτ
ik with respect to λi becomes

∂sτ
ik

∂λi
= λis

τ
ik ·

∂
∂λi

(

1
λi

)

= −sτ
ik

λi
.

The stochastic gradient ascent for λ1 is then

∂L
∂λ1

=
TN

∑
τ=1

N

∑
k=1

[

−ϕ(sτ
1k)

sτ
1k

λ1
+ϕ(sτ

2k)
sτ

2k

λ2

]

. (16)

In order to satisfy the constraint λ1 ∈ [0,1], we perform the update by

λ(new)
1 = hλ

(

λ(old)
1 +ηλ ·

∂L
∂λ1

)

, (17)

where ηλ is a learning gain for λ1 and the limiting function hλ(·) is

hλ(d) =







ε if d < ε
1− ε if d > 1− ε

d otherwise
,

where ε ∈ [0,1] is a positive real constant. In our implementation ηλ is determined empirically, and
and ε is set to less than 10−3.

3.4 Iterative Source Separation Algorithm and Time Complexity Analysis

Using the adaptation formulas derived in the preceding sections, the optimization of Equation 6 can
be accomplished by a simple iterative algorithm with the following form:

Algorithm: SINGLE CHANNEL SOURCE SEPARATION

Inputs
Observations: {yt | t = 1, . . . ,T}
Model parameters: W1, W2, {θ1k,θ2k|k = 1, . . . ,N}

13
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Outputs5

Source signal estimates: { x̂t
1, x̂

t
2| t = 1, . . . ,T}

Gain constants: λ̂1, λ̂2

Procedures

1. Take some initial values for the outputs.
For example, x̂t

1 ⇐ yt , x̂t
2 ⇐ yt , ∀t ∈ [1,T ], λ̂1 ⇐ 0.5, λ̂2 ⇐ 0.5.

2. For all i ∈ [1,2], t ∈ [1,T −N +1], and k ∈ [1,N],

(a) Compute ŝt
ik = wikx̂t

i where x̂t
i = [x̂t

i x̂t+1
i . . . x̂t+N−1

i ]′

(b) Compute ϕ(ŝt
ik) according to Equation 4 using the generalized Gaussian

parameters θik.

3. Update T samples of the source signal estimates at the same time according to
Equation 15, to be precise

x̂t
1 ⇐ x̂t

1 +η
N

∑
k=1

N

∑
n=1

[

λ̂2

λ̂1
·ϕ(ŝtn

1k)w1kn −ϕ(ŝtn
2k)w2kn

]

,

x̂t
2 ⇐ x̂t

2 +η
N

∑
k=1

N

∑
n=1

[

−ϕ(ŝtn
1k)w1kn +

λ̂1

λ̂2
·ϕ(ŝtn

2k)w2kn

]

.

4. Update scaling factors according to Equations 16 and 17,

λ̂(new)
1 ⇐ hλ

(

λ̂(old)
1 +ηλ ·

TN

∑
τ=1

N

∑
k=1

[

−ϕ(ŝτ
1k)

ŝτ
1k

λ1
+ϕ(ŝτ

2k)
ŝτ

2k

λ2

]

)

λ̂(new)
2 ⇐ 1− λ̂(new)

1 .

5. Repeat steps from 2 to 4 until convergence.

The computational overhead of steps 2a and 3 dominates the time complexity of the algorithm.
In step 2a, N multiplications are required to compute 2N(T −N + 1) output coefficients. In step
3, 2N2 terms are summed up to evaluate the gradient for each sample. The time complexity of the
algorithm for one iteration is therefore O(N2T ) if N � T .

4. Evaluations

We now present some examples of single channel separation of artificial mixtures using speech
signals and music signals. The separation performances with the basis filters learned by ICA are
compared to those with other conventional bases—Fourier, fixed wavelet function, and data-driven
principal component analysis (PCA) basis filters. To assess the limits of our method, we compared
our method to Wiener filtering with real spectrograms. We then present the separation results of
noise and speech recorded in a real environment.
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Figure 5: Simulation system setup. (A) Training phase: two sets of training data are used to obtain
the basis filters and the generalized Gaussian parameters. (B) Testing phase: two source
signals x1 and x2 are mixed into a monaural signal y. The proposed signal separation algo-
rithm recovers the original source signals given the sets of the basis filters and generalized
Gaussian pdf parameters.

4.1 Simulation Setup

We have tested the performance of the proposed method on single channel mixtures of two different
sound types. The simulation system setup is illustrated in Figure 5. The simulation is divided into
two phases. In the first phase, we prepare training data, and run the ICA learning algorithm to obtain
basis filters wik, and generalized Gaussian parameters (θik) for modeling coefficient (stik) pdfs. The
basis filters and pdf parameters are estimated separately for both source 1 and source 2. In the
testing phase, two source signals xt

1 and xt
2, which are not included in the training data sets, are

mixed into a single channel mixture yt , and we apply the proposed separation algorithm and recover
the original sources.

We adopted four different sound types for our simulation experiment. They were monaural
signals of rock and jazz music, male and female speech. We used different sets of sound signals for
learning basis functions and for generating the mixtures. For the mixture generation, two sentences
of the target speakers “mcpm0” and “fdaw0”, one for each speaker, were selected from the TIMIT
speech database. The training sets were designed to have 21 sentences for each gender, 3 each
from 7 randomly chosen males and 7 randomly chosen females. The utterances of the 2 target
speakers were not included in the training set. Rock music was mainly composed of guitar and
drum sounds, and jazz was generated by a wind instrument. Vocal parts of both music sounds were
excluded. Half of the music sound was used for training, half for generating mixtures. All signals
were downsampled to 8kHz, from original 44.1kHz (music) and 16kHz (speech). The training data

5. Variables withˆare the estimates of the true values and will be altered by the adaptation formulas. Inputs are fixed, so
noˆis attached.
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(a)�Rock�music (b)�Jazz�music

(c)�Male�speech (d)�Female�speech

Figure 6: Waveforms of four sound sources, from training sets. Audio files for the source signals
are available at http://speech.kaist.ac.kr/˜jangbal/ch1bss/.
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Figure 7: Average powerspectra of the 4 sound sources. Frequency scale ranges in 0∼4kHz (x-
axis), since all the signals are sampled at 8kHz. The powerspectra are averaged and
represented in the y-axis.

were segmented in 64 samples (8ms) starting at every sample. Audio files for all the experiments
are accessible at http://speech.kaist.ac.kr/˜jangbal/ch1bss/.

Figure 6 displays the waveforms of four sound sources used for training—learning basis filters
and estimating generalized Gaussian model parameters. We used different data for the separation
experiments. Figure 7 compares the four sources by the average spectra. Each covers all the fre-
quency bands, although they are different in amplitude. One might expect that simple filtering or
masking cannot separate the mixed sources clearly.
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Rock

Jazz

Male

Female

Figure 8: Basis filters learned by ICA. Only 7 basis filters were chosen out of complete sets of 64.
The full set of basis filters is available at http://speech.kaist.ac.kr/˜jangbal/-
ch1bss/. They are obtained by the generalized Gaussian ICA learning algorithm de-
scribed in Section 2.2.

4.2 Learned Basis Filters

Subsets of the learned basis filters (wik) of the four sound types are presented in Figure 8. The
adaptation of the generalized Gaussian ICA learning started from a 64×64 square identity matrix,
and the gradients of the basis functions were computed on a block of 1000 waveform segments.
The parameter qik for each pg(st

ik) was updated every 10 gradient steps. The learned basis filters are
generally represented by the superposition of sinusoids of different magnitude and some of them
reside only in confined ranges in the time domain. Speech basis filters are oriented and localized in
both time and frequency domains, bearing a resemblance to Gabor wavelets (Gaussian-modulated
sinusoids). More analysis on the difference between the male and female basis filters can be found
in work by Lee and Jang (2001). Jazz basis filters are mostly stationary, but frequently show non-
stationary behaviors in terms of amplitude changes in the time axis. Rock basis filters are less
stationary and the “drum beats” of the rock music are characterized by abrupt changes in amplitude.

To show the advantage of achieving higher-order probabilistic independence over first-order
independence (decorrelation), we performed comparative experiments with the basis filters obtained
by PCA, which removes correlations between the output coefficients. Decorrelation is defined as
transforming a zero mean vector x with a matrix W, so that Wx has an identity covariance matrix.
The PCA basis filters are orthogonal and can be obtained from the eigenvectors of the covariance
matrix, Wp = D− 1

2 ET , where E is a matrix with columns as eigenvectors of the E[xxT ]. Figure 9
shows examples of PCA basis filters for each of the four sound sources. The bases are different from
each other since the covariance matrices are from different sets of training data, but the differences
are not as significant as those arising in the ICA bases. For speech bases, the PCA basis filters are
much more stable in amplitudes and cover the whole time range like the Fourier basis, although the
ICA basis filters are localized in time and similar to Gabor wavelets.

In contrast to the data-driven ICA and PCA bases, we also performed experiments with two
kinds of basis filters that were fixed over all the sound sources: Fourier and wavelet basis. Speech
basis filters learned by ICA behave like Gabor wavelets, and the other data-driven basis filters,
except some of the rock basis filters, have similar behaviors to pure sinusoids. Therefore it is
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Rock
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Figure 9: Basis filters obtained by PCA. Only 7 basis filters were chosen out of complete sets of
64. They are obtained by eigenvalue decomposition on the covariance matrix computed
from the same training data as used in learning ICA basis filters.

valuable to assess the effectiveness of the real Fourier and the real Gabor wavelet filters to the
proposed separation method. In Equation 2 we assumed that the basis filters are real-valued, and
hence we adopted a discrete cosine transform (DCT) basis, which gives only real coefficients:

s(k) =
N

∑
n=1

x(n)cos
π(k−1)

2N
(2n−1) ,

where k ∈ [1,N] is an index indicating center frequency of the basis filter. A real-valued 1-D Gabor
wavelet is a planar sinusoid with a Gaussian envelope, defined by Loy (2002)

w(x) =
1√

2πσ2
exp

(

−(x−µ)2

2σ2

)

· cos(ωx)

where µ and σ respectively determines the position and the width of the Gaussian envelope, and ω
is the frequency of the sinusoid. The values of σ and ω are gradually increased as the frequency
grows for the set of all the filters to span the whole time-frequency space as it can be seen in the
ordinary wavelet basis. Aside from scale, only the ratio between wavelength and the width of the
Gaussian envelope can make two Gabor wavelets differ.

Figure 10 shows some examples of DCT and Gabor wavelet bases. DCT basis filters are spread
over the time axis and are completely stationary, that is, each of the DCT filters is composed of a
single sinusoid of unique frequency. Gabor wavelets are also stationary but reside only in confined
ranges in the time domain. In Figures 8 and 9, ICA and PCA basis filters exhibit less regularity.
PCA basis filters and Fourier basis filters show similar characteristics, and the ICA basis filters of
the two speech signals and the Gabor wavelets also show great resemblance.

4.3 Separation Results of Simulated Mixtures

We generated a synthesized mixture by selecting two sources out of the four and simply adding
them. The proposed separation algorithm in Section 3.4 was applied to recover the original sources
from a single channel mixture. The source signal estimates were initialized to the values of mixture
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DCT

Gabor
Wavelet

Figure 10: DCT basis filters (first row) and Gabor wavelet basis filters (second row). Only 7 basis
filters were chosen out of complete sets of 64. The same set of basis filters are used for
all the four sound sources.

signal: x̂t
1 = x̂t

2 = yt . The initial λ̂i were both 0.5 to satisfy λ̂1 + λ̂2 = 1. All the samples of the
current source estimates were simultaneously updated at each iteration, and the scaling factors were
updated at every 10 iterations. The separation converged roughly after 100 iterations, depending on
the learning rate and other various system parameters. The procedures of the separation algorithm—
traversing all the data and computing gradients—are similar to those of the basis learning algorithm,
so their time complexities are likewise of the same order. The measured separation time on a 1.0
GHz Pentium PC was roughly 10 minutes for an 8 seconds long mixture.

The similarity between the original source signals and the estimated sources is measured by
signal-to-noise ratio (SNR), which is defined by

snrs(ŝ) [dB] = 10log10
∑t s2

∑t(s− ŝ)2 ,

where s is the original source and ŝ its estimate. To qualify a separation result we use the sum of
the SNRs of the two recovered source signals: snrx1(x̂1)+ snrx2(x̂2). Table 1 reports SNR results for
the four different bases. In terms of average SNR, the two data-driven bases performed better than

Table 1: SNR results of the proposed method. (R, J, M, F) stand for rock, jazz music, male, and
female speech. ‘mix’ column lists the symbols of the sources that are mixed to y, and the
values in the other columns are the SNR sums, snrx1(x̂1)+ snrx2(x̂2), measured in dB. The
first line of each column indicates the used method to obtain the basis filters. “GW” stands
for Gabor wavelet. Audio files for all the results are accessible at http://speech.-
kaist.ac.kr/˜jangbal/ch1bss/.

mix DCT GW PCA ICA

R + J 0.7 1.3 6.9 13.0
R + M 3.0 2.1 4.7 8.9
R + F 3.0 1.8 5.8 8.8
J + M 7.2 5.8 9.3 10.3
J + F 8.1 5.9 10.9 10.4
M + F 4.8 3.3 4.9 5.9
Average 4.5 3.4 7.1 9.6
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Figure 11: Separation results of jazz music and male speech. In vertical order: original sources (x1

and x2), mixed signal (x1 + x2), and the recovered signals.

the two fixed bases, and the ICA basis displayed the best performance. Moreover, the ICA basis
guaranteed a certain degree of SNR performance for all the cases, whereas the performances of the
two fixed bases and PCA basis varied greatly according to the mixed sound sources. The SNR of
jazz and female mixture separation for the PCA basis was better than for the ICA basis, although
the other mixtures were badly separated. DCT and Gabor wavelet basis showed very good SNRs
for the mixtures of jazz music compared to the other mixtures. The likely explanation for this is
that jazz music is very close to stationary, and as a result PCA and ICA induce jazz music basis
filters of similar characteristics (Figures 8 and 9), and those basis filters resemble DCT basis filters.
Although Gabor wavelet filters are localized in time, they are also from sinusoids, so they represent
jazz music well in comparison with the other source signals. Generally, mixtures containing jazz
music were recovered comparatively cleanly, and the male-female mixture was the least recovered.
With regard to rock music mixtures, the SNR differences between ICA basis and the other bases
were much larger than those of other mixtures. This is because the drum beats (abrupt changes in
amplitude) are expressed well only in the ICA basis filters.

Figure 11 illustrates the waveforms of the original sources and the recovered results for the
mixture of jazz music and male speech, and Figure 12 shows for the mixture of male and female
speech. Their SNR sums were 10.3 and 5.9. The separation of speech-speech mixture was much
poorer than those of music-speech mixtures. From the experimental results, we conclude that the
demixing performance highly relies on the basis functions. The estimates of the source signals,
mixed and observed in a single channel, are projected on each of the bases sets, and the sources are
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Figure 12: Separation results of male and female speech signals.

isolated by iteratively approaching the maximally probable projections. Although it is difficult to
define a similarity between two sets of basis filters in a probabilistic sense, minimizing differences
in the projecting directions of the basis filters is crucial for the success of the separation algorithm.
Based on the learned basis functions shown in Figure 8, there is seemingly too much overlap in the
signal space between two speakers for our algorithm to ever work for mixtures of speech. ICA found
sets of bases that explain the class of the music signals well, but performed poorly in explaining
the class of the speech signals. Speech basis functions vary in amplitudes frequently in the time
domain, and the coefficient distributions are extremely sparse. These characteristics are caused by
the nonstationary nature of the speech signal. In contrast, as can be seen in Figure 8, the amplitudes
of the music signals are comparatively stable, and the basis functions cover a longer range in the
time axis. The coefficient distributions are less sparse than those of speech basis functions, which
is analogous to earlier findings, such as in Bell and Sejnowski (1995).

4.4 Comparison to Wiener Filtering

It is very difficult to compare a separation method with other CASA techniques; their approaches
are vastly different in many ways such that an optimal tuning of their parameters would be beyond
the scope of this paper. Instead, in order to assess the separability of our method, we performed
experiments that show how close the separation performance of the proposed algorithm approaches
the theoretical “limit”.

Hopgood and Rayner (1999) proved that a stationary signal—a finite bandwidth signal in the
Fourier domain—can be described by a set of autocorrelation functions, in which only second-order
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statistics are considered. In that case, least square estimates of the source signals mixed in a single
channel can be obtained by a linear time invariant (LTI) Wiener filter, and an optimal separation
under stationarity assumptions is achieved when the Wiener filter is derived from the autocorrela-
tions of the original sources. Although Wiener filtering has the disadvantage that the estimation
criterion is fixed and depends on the stationarity assumptions, Hopgood and Rayner (1999) stated
that time-varying Wiener filter formulation enables separation of nonstationary sources:

Wi(ω, t) =
X̂i(ω, t)

X̂1(ω, t)+ X̂2(ω, t)
,

where X̂i(ω, t) is the estimate of the powerspectum of source i at frequency ω and time t. When
true source signals are available, Wiener filtering can be regarded as a theoretical upperbound of the
frequency-domain techniques. Parra and Spence (2000) also stated that second-order statistics at
multiple times capture the higher-order statistics of nonstationary signals, which supports that time-
varying Wiener filters provide statistical independence of mixed source signals. The higher-order
statistical structures of the sound sources are also captured by the ICA basis filters; therefore we
compared the performances of the proposed method and the time-varying Wiener filtering.

The construction of the time-varying Wiener filter requires the powerspectra of true source sig-
nals. We use the powerspectra of the original sources in the mixture when computing Wiener filters,
whereas the basis filters used in the proposed method are learned from training data sets that are
not used in the mixture generation. The Wiener filter approach in this case can be regarded as a
separation upperbound. The filters were computed every block of 0.5, 1.0, 2.0, and 3.0 sec. Their

Table 2: Comparison of the proposed method with Wiener filtering. ‘mix’ column lists the symbols
of the sources that are mixed to the input. (R, J, M, F) stand for rock, jazz music, male, and
female speech. “Wiener” columns are the evaluated SNRs grouped by the block lengths
(in seconds), and the filters are computed from the average powerspectrum of each block.
The last column lists the SNRs of the proposed method, and the last row is the average.
Note that the Wiener filters are from testing data that are actually mixed into input mixture,
however the basis filters of the proposed method are from the training data that are different
from testing data. The comparison is to show how close to an optimal solution the proposed
method is. The performance of the proposed method was closest to Wiener filtering at the
block length 1.0s. Audio files for all the results are accessible at http://speech.kaist.-
ac.kr/˜jangbal/ch1bss/.

mix Wiener proposed
0.5s 1.0s 2.0s 3.0s

R + J 11.1 10.3 9.4 9.1 13.0
R + M 8.7 8.1 7.1 7.3 8.9
R + F 10.1 8.9 8.2 7.3 8.8
J + M 13.5 11.9 10.0 10.5 10.3
J + F 14.1 11.0 9.4 8.4 10.4
M + F 9.9 8.5 7.8 6.1 5.9

Average 11.2 9.8 8.6 8.1 9.6
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Figure 13: Separation result of real recording. Input signal is at the top of the figure, below are the
recovered male speech and the noise.

performances are measured by SNRs and compared to the proposed method in Table 2. In terms
of average SNR, our blind results were comparable in SNR with results obtained when the Wiener
filters were computed every 1.0 sec.

4.5 Experiments with Real Recordings

We have tested the performance of the proposed method on recordings in a real environment. Data
were recorded in a diffuse sound room. Four speakers were employed, one in each corner of the
sound room. A signal played through these speakers produces a uniform sound field throughout
the room. The recorded signals were composed of a male speech utterance on the background of
very loud noise. The level of noise was so high that even human listeners could hardly recognize
what was spoken. The estimated SNR was about −8 dB. The focus of this experiment is to recover
human speech in real recordings, to assess the performance of the proposed separation algorithm in
a real environment.

The basis functions of general TIMIT male speakers (Figure 8) are used for the recorded male
speaker. Since we do not know exactly the characteristics of the noise source, we assumed two
different types of well-known noisy signals: Gaussian white noise and pink noise. White noise
has a uniform spectrogram all over frequency axis as well as over time axis. Pink noise is similar
but the power decreases exponentially as the frequency increases. The spectrogram of the pink
noise resembles the noisy recording in our case. (The noise sources, their basis functions and
spectrograms, the recorded sound, and the separated results are available at the provided website:
http://speech.kaist.ac.kr/˜jangbal/ch1bss/.) The algorithm did not work with the white
noise, but it successfully recovered the original sources with the pink noise; the waveforms are
displayed in Figure 13. Although a “perfect separation” was not attained, it should be noted that
the input was too noisy and we did not have the true basis functions. To achieve better separation in
real environments, it is necessary to have a large pool of bases for various kinds of natural sounds
and to find the most characterizing basis for a generic problem.
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5. Discussions

This section investigates a number of issues: comparison to other methods, separability, and more
detailed interpretations of experimental results. Future research issues such as dealing with more
than two source signals are also discussed at the end of the section.

5.1 Comparison to other Separation Methods

Traditional approaches to signal separation are classified as either spectral techniques or time-
domain nonlinear filtering methods. Spectral techniques assume that source signals are disjoint
in the spectrogram, which frequently result in audible distortions of the signal in the regions where
the assumption mismatches. Roweis (2001) presented a refiltering technique which estimates time-
varying masking filters that localize sound streams in a spectro-temporal region. In his work sound
sources are supposedly disjoint in the spectrogram and there exists a “mask” that divides the mixed
multiple streams completely. A somewhat similar technique is proposed by Rickard, Balan, and
Rosca (2001). They did not try to obtain the “exact” mask but an estimate by a ML-based gradient
search. However, being based on the strong assumption in the spectral domain, these methods also
suffer from the overlapped spectrogram.

To overcome the limit of the spectral methods, a number of time-domain filtering techniques
have been introduced. They are based on splitting the whole signal space into several disjoint and
orthogonal subspaces that suppress overlaps. The criteria employed by the former time-domain
methods mostly involve second-order statistics: least square estimation (Balan et al., 1999), mini-
mum mean square estimation (Wan and Nelson, 1997), and Wiener filtering derived from the auto-
correlation functions (Hopgood and Rayner, 1999). The use of AR (autoregressive) models on the
sources has been successful. Balan et al. (1999) assume the source signals are AR(p) processes,
and they are inferred from a monaural input by a least square estimation method. Wan and Nelson
(1997) used AR Kalman filters to enhance the noisy speech signals, where the filters were obtained
from neural networks trained on the specific noise. These methods performed well with input signals
well-suited to the AR models, for example speech signals. However that is also a major drawback to
applying them to the real applications. Moreover they consider second-order statistics only, which
restricts the separable cases to orthogonal subspaces (Hopgood and Rayner, 1999).

Our method is also classified as a time-domain method but avoids these strong assumptions
by virtue of higher-order statistics. There is no longer orthogonality constraint of the subspaces,
as the basis functions obtained by the ICA algorithm are not restricted to being orthogonal. The
constraints are dictated by the ICA algorithm that forces the basis functions to result in an efficient
representation, that is, the linearly independent source coefficients; both the basis functions and
their corresponding pdfs are key to obtaining a faithful MAP based inference algorithm. The higher-
order statistics of the source signal described by a prior set of basis functions capture the inherent
statistical structures.

Another notable advantage is that the proposed method automatically generates the prior infor-
mation. While the other single channel separation methods also require the prior information, their
methods to characterize the source signals are dependent on the developer’s intuitive knowledge,
such as harmonic structures or empirical psycho-acoustics. In contrast, our method exploits ICA for
the automation of characterizing source signals. The basis functions can be generated whenever ap-
propriate learning data are available, which may not be identical to the separation data. The training
data and the test data are different in our experiments and the mixtures were successfully separated.
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5.2 Comparison to Multichannel Signal Separation

The proposed method requires the basis functions of the mixed source signals. In order to expand its
applications to real world problems, a “dictionary” of bases for various kinds of natural sounds and
finding the most characterizing basis in the dictionary for a generic case are necessary conditions
to achieve good separation performance. These requirements make it more difficult to apply the
proposed method to a real world problem than the conventional BSS techniques, which neither
make assumptions nor require information about the source signals. However BSS suffers from the
necessity of multiple channel observations, at least 2 channel observations are required, while the
proposed method deals with single channel observations. The role of the basis functions is in some
sense a substitute for extra-channel input.

5.3 Separability

The problem stated here is one of finding sets of bases that explain one class of signal well. The
estimates of the source signals, mixed and observed in a single channel, are projected on each of the
bases sets, and sources are isolated by iteratively approaching the maximally probable projections.
Although it is difficult to define a similarity between two sets of basis filters in a probabilistic sense,
minimizing differences in the projecting directions of the basis filters is crucial for the success of the
separation algorithm. Based on the learned basis functions, it seems that there is too much overlap
in signal space between two speakers for our algorithm to ever work for mixtures of speech. One
way around this obstacle would be to do the separation in some feature space where there is both
better class separation, and the possibility of transformation back to signal space. Future work will
be to find more distinguishable subspaces, and develop better criteria for learning the source signals.
The current process of training the bases is non-discriminative. It would seem advantageous to train
the sets of bases discriminatively. This would bring the separation results closer to the theoretical
limitation.

5.4 More than Two Sources

The method can be extended to the case when P > 2. We should decompose the whole problem
into P = 2 subproblems, because the proposed algorithm is defined only in that case. One possible
example is a sequential extraction of the sources: if there is a basis that characterizes a generic
sound, that is, which subsumes all kinds of sound sources, then we use this basis and the basis
of the target sound that we are interested in extracting. The separation results are expected to be
the target source and the mixture of the remaining P− 1 sources. Repeating this extraction P− 1
times yields the final results. Another example is merging bases: if there is a method to merge a
number of bases and we have all the individual bases, we can construct a basis for Q sources and
the other for the remaining P−Q sources. Then we can split the mixture into two submixtures.
Likewise repeating the split yields the final separation. In summary, the case P > 2 can be handled
but additional research such as building a generic basis or merging different bases is required.

6. Summary

We presented a technique for single channel source separation utilizing the time-domain ICA basis
functions. Instead of traditional prior knowledge of the sources, we exploited the statistical struc-
tures of the sources that are inherently captured by the basis and its coefficients from a training
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set. The algorithm recovers original sound streams through gradient-ascent adaptation steps pur-
suing the maximum likelihood estimate, computed by the parameters of the basis filters and the
generalized Gaussian distributions of the filter coefficients. With the separation results of the real
recordings as well as simulated mixtures, we demonstrated that the proposed method is applicable
to real world problems such as blind source separation, denoising, and restoration of corrupted or
lost data.

Our current research includes the extension of this framework to perform model comparisons
to estimate the optimal set of basis functions to use given a dictionary of basis functions. This
is achieved by applying a variational Bayes method to compare different basis function models to
select the most likely source. This method also allows us to cope with other unknown parameters
such the as the number of sources. Future work will address the optimization of the learning rules
towards real-time processing and the evaluation of this methodology with speech recognition tasks
in noisy environments, such as the AURORA database.
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