
Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00

Fusion of Domain Knowledge with Data for Structural

Learning in Object Oriented Domains

Helge Langseth∗
hl@cs.auc.dk

Thomas D. Nielsen tdn@cs.auc.dk

Department of Computer Science, Aalborg University

Fredrik Bajers Vej 7E, DK-9220 Aalborg Ø, Denmark

Editor: Richard Dybowski

Abstract

When constructing a Bayesian network, it can be advantageous to employ structural learn-
ing algorithms to combine knowledge captured in databases with prior information provided
by domain experts. Unfortunately, conventional learning algorithms do not easily incor-
porate prior information, if this information is too vague to be encoded as properties that
are local to families of variables. For instance, conventional algorithms do not exploit prior
information about repetitive structures, which are often found in object oriented domains
such as computer networks, large pedigrees and genetic analysis.

In this paper we propose a method for doing structural learning in object oriented
domains. It is demonstrated that this method is more efficient than conventional algo-
rithms in such domains, and it is argued that the method supports a natural approach for
expressing and incorporating prior information provided by domain experts.

Keywords: Bayesian networks, structural learning, object orientation, knowledge fusion

1. Introduction

The Bayesian network (BN) framework (Pearl, 1988; Jensen, 1996, 2001) has established
itself as a powerful tool in many areas of artificial intelligence. However, eliciting a BN from
a domain expert can be a laborious and time consuming process. Thus, methods for learning
the structure of a BN from data have received much attention during the last years. For
an overview see Buntine (1996) and Krause (1998). Current learning methods have been
successfully applied in learning the structure of BNs based on databases. Unfortunately,
though, only to a small extent do these methods incorporate prior information provided
by domain experts. Prior information is typically encoded by specifying a prior BN hence,
this information is restricted to the occurrence/absence of edges between specific pairs of
variables.

In domains that can appropriately be described using an object oriented language (Ma-
honey and Laskey, 1996; Mathiasen et al., 2000) we typically find repetitive substructures
or substructures that can naturally be ordered in a superclass–subclass hierarchy. For such
domains, the expert is usually able to provide information about these properties. How-

∗. Current address: Department of Mathematical Sciences, Norwegian University of Science and Technol-
ogy, N-7491 Trondheim, Norway. helgel@math.ntnu.no.

c©2000 Helge Langseth and Thomas D. Nielsen.

Langseth and Nielsen

ever, this information is not easily exploited by current learning methods due to the practice
mentioned above.

Recently, object oriented versions of the BN framework (termed OOBNs) have been pro-
posed in the literature, see for example Mahoney and Laskey (1996), Laskey and Mahoney
(1997), Koller and Pfeffer (1997), and Bangsø and Wuillemin (2000b). Although these ob-
ject oriented frameworks relieve some of the problems when modelling large domains, it may
still prove difficult to elicit the parameters and the structure of the model. Langseth and
Bangsø (2001) describe a method to efficiently learn the parameters in an object oriented
domain model, but the problem of specifying the structure still remains.

In this paper we propose a method for doing structural learning in an object oriented
domain based on the OOBN framework. We argue that OOBNs supply a natural frame-
work for encoding prior information about the general structure of the domain. Moreover,
we show how this type of prior information can be exploited during structural learning.
Empirical results demonstrate that the proposed learning algorithm is more efficient than
conventional learning algorithms in object oriented domains.

2. Object Oriented Bayesian Networks

Using small and “easy-to-read” pieces as building blocks to create a complex model is an
often applied technique when constructing large Bayesian networks. For instance, Prad-
han et al. (1994) introduce the concept of sub-networks, which can be viewed and edited
separately, and frameworks for modelling object oriented domains have been proposed by
Mahoney and Laskey (1996), Laskey and Mahoney (1997), Koller and Pfeffer (1997), and
Bangsø and Wuillemin (2000b).

In what follows the framework of Bangsø and Wuillemin (2000b) will be described, as it
forms the formal basis for the proposed learning method. Note that we limit the description
to those parts of the framework that are relevant for the learning algorithm. Further details
can be found in the papers by Bangsø and Wuillemin (2000a,b).

2.1 The OOBN Framework

Consider a farm with two milk cows and two meat cows, and assume that we are interested
in modelling the environment’s effect on the milk and meat production of these cows.1

Following the object oriented idea (Mathiasen et al., 2000), we construct a Generic cow
class that describes the general properties common to all cows (see Figure 1): Specifically,
as we are interested in the milk and meat production, we let Milk and Meat be output nodes
of the class (depicted by shaded ellipses). That is to say, nodes from a class usable outside
the instantiations of the class. Assuming that both the mother of a cow and the food a
cow eats influence its milk and meat production, we let Mother and Food be input nodes
(depicted by dashed ellipses) of the class; an input node is a reference to a node defined
outside the scope of the instantiations of the class. Nodes that are neither input nodes nor
output nodes are termed normal nodes. Note that the input nodes and output nodes form
the interface between an instantiation and the context in which the instantiation exists. In
the remainder of this paper we assume that all nodes are discrete.

1. A milk cow primarily produces milk and a meat cow primarily produces meat.

2

Knowledge Fusion for Structural Learning in OO Domains

A class may be instantiated several times with different nodes having influence on the
different instantiations through the input nodes hence, only the state space (the states and
their ordering) of the input nodes is known at the time of specification2 (for example, the
cows might have different mothers). To avoid ambiguity when referring to a node in a
specific instantiation, the name of the node will sometimes be prefixed by the name of the
instantiation (that is, Instantiation-name.Node-name).

Food

bolism
Meta-

Mother

Milk Meat

Generic cow

Figure 1: General properties common to all cows are described using the class Generic
cow. The arrows are links as in normal BNs. The dashed ellipses are input
nodes, and the shaded ellipses are output nodes.

In order to model the different properties of milk cows and meat cows, we introduce
the two classes Milk cow and Meat cow (see Figure 2). These two cow specifications
are subclasses of the Generic cow class (hence the “IS A Generic cow” in the top left
corner of each of the class specifications). In a general setting, a class S can be a subclass
of another class C if S contains at least the same set of nodes as C. This ensures that
an instantiation of S can be used anywhere in the OOBN instead of an instantiation of
C (e.g., an instantiation of Milk cow can be used instead of an instantiation of Generic
cow). Each node in a subclass inherits the conditional probability table (CPT) of the
corresponding node in its superclass unless the parent sets differ, or the modeler explicitly
overwrites the CPT. The sub–superclass relation is transitive but not anti-symmetric, so
to avoid cycles in the class hierarchy it is required that a subclass of a class cannot be a
superclass of that class as well. Furthermore, multiple inheritance is not allowed, so the
structure of the class hierarchy will be a tree or a collection of disjoint trees (called a forest).

Finally, to model the four cows in the live-stock we construct a class Stock that en-
capsulates the corresponding instantiations. In Figure 3 the boxes represent instantiations.
For example, Cow1 is an instantiation of the class Meat cow, which is indicated by
Cow1:Meat cow inside the Cow1 instantiation. Note that only input nodes and out-
put nodes are visible, as they are the only part of an instantiation which directly interact
with the encapsulating context (in this case the Stock class). This does not impose any
constraints on which variables may be observed, it is merely a design technique to easier
maintain large domain models. The double arrows are reference links. A reference link

2. This is also referred to as strong type-checking, see Bangsø and Wuillemin (2000a) for details.

3

Langseth and Nielsen

Food

Meta-

mind

Music

bolism
State of

Mother

Milk cow IS A Generic cow

MeatMilk

Mother

mind

State of

Weather

Meta-
bolism

Food

Meat cow IS A Generic cow

MeatMilk

a) The Milk cow specification b) The Meat cow specification

Figure 2: a) A refined specification of a Milk cow. b) A refined specification of a Meat
cow.

indicates that the leaf of the link is a reference (or pointer) to the root of that link.3 For
instance, the input node Mother of Cow1 is a reference to the node Daisy. This means
that whenever the node Mother is used inside the instantiation Cow1, the node Daisy will
be the node actually used (for instance during inference).

MathildaWeatherFood

Cow1:Meat cow

Food WeatherMother

Cow3:Milk cow

FoodMother Mother

Cow4:Milk cow

MusicFood MotherFood Weather Music

MusicDaisy

Stock

Cow2:Meat cow

MeatMilk Milk Meat Milk Meat Milk Meat

Figure 3: The Stock class with two instantiations of the Milk cow class and two instan-
tiations of the Meat cow class. Note that some input nodes are not referencing
any nodes.

If there is more than one instantiation of a class (for example, Cow1 and Cow2 in
Figure 3), the OOBN framework gives rise to the OO assumption (Langseth and Bangsø,
2001). This assumption states that the CPTs of one instantiation of a class are identical to
the corresponding CPTs of any other instantiation of that class (meaning that the domains
of the CPTs are compatible and that the table entries are identical).

As the subclasses in a class hierarchy may have a larger set of nodes than their super-
classes, the input set of a subclass S might be larger than the input set of its superclass
C. Thus, if an instantiation of S is used instead of an instantiation of C, the extra input

3. To avoid confusion with the normal links in the model we do not use the terms “parent” and “child”
when referring to reference links.

4

Knowledge Fusion for Structural Learning in OO Domains

nodes will not be referencing any nodes. To ensure that these nodes are associated with
potentials, the notion of a default potential is introduced: A default potential is a proba-
bility distribution over the states of an input node that is used when the input node is not
referencing any node. Note that a default potential can also be used when no reference link
is specified, even if this is not a consequence of subclassing. As an example we have that
not all the Mother nodes in Figure 3 reference a node, but because of the default potential
all nodes are still associated with a CPT. It is also worth noticing that the structure of
references is always a tree or a forest; cycles of reference links are not possible (Bangsø and
Wuillemin, 2000a).

Finally, inference can be performed by translating the OOBN into a multiply-sectioned
Bayesian network (Xiang et al., 1993; Xiang and Jensen, 1999), see Bangsø and Wuillemin
(2000a) for details on this translation. Alternatively, we can construct the underlying BN
of the OOBN: The underlying BN of an instantiation I, BNI, is the (conventional) BN
that corresponds to I including all encapsulated instantiations. There is exactly one such
underlying BN for a given instantiation, and it can be constructed using the following
algorithm (Langseth and Bangsø, 2001):

Algorithm 1 (Underlying BN)

1. Let BNI be the empty graph.

2. Add a node to BNI for all input nodes, output nodes and normal nodes in I.

3. Add a node to BNI for each input node, output node and normal node of the in-
stantiations encapsulated in I, and prefix the name of the instantiation to the node
name (Instantiation-name.Node-name). Do the same for instantiations contained
in these instantiations, and so on.

4. Add a link for each normal link in I, and repeat this for all instantiations as above.

5. For each reference tree, merge all the nodes into one node. This node is given all the
parents and children (according to the normal links) of the nodes in the reference tree
as its family. Note that only the root of the tree can have parents, as all other nodes
are references to this node.

An input node that does not reference another node will become a normal node equipped
with a default potential. This can also be seen in Figure 4 which depicts the underlying
BN of an instantiation of the Stock-class (Figure 3).

Cow4.

mind
State of

Cow1. Cow2. Cow3. Cow4.

Mother
Cow4.Cow2.

Meat MilkMilkMilkMilk

Cow1. Cow1.

Meat

Cow2. Cow3.Cow2. Cow3.

Meat

Mother
Weather

State of

FoodDaisy Mathilda Music

Cow4. Cow4.

Meat

Metabolism

Cow1.

mind
Metabolism Metabolism Metabolism

State of
Cow2.

mind
State of

Cow3.

mind

Figure 4: The underlying BN for the OOBN depicted in Figure 3.

5

Langseth and Nielsen

Note that nodes associated with default potentials (Cow2.Mother and Cow4.Mother)
can be marginalized out as they have no effect in the underlying BN. It is also worth
emphasizing that an OOBN is just a compact representation of a (unique) BN that satisfies
the OO assumption, namely the underlying BN (this can also immediately be seen from
Algorithm 1).

2.2 The Insurance Network

In order to emphasize the possible use of encapsulating classes, we give an OOBN represen-
tation of the insurance network by Binder et al. (1997). The insurance network, depicted
in Figure 5, is taken from The BN repository (Friedman et al., 1997b). The network, which
consists of 27 nodes, is designed for classifying car insurance applications based on the
expected claim cost. This information is captured in the nodes PropCost (Property cost),
ILiCost (Liability cost) and MedCost (Medical cost).

SocioEcon

GoodStudent RiskAversion

VehicleYear MakeModel

AntiTheft HomeBase

OtherCar

Age

DrivingSkill

SeniorTrain

MedCost

DrivQuality DrivHistRuggedAuto AntilockCarValue Airbag

Accident

ThisCarDam OtherCarCost ILiCost

ThisCarCost

Cushioning

Mileage

PropCost

Theft

Figure 5: The insurance network, used for classifying car insurance applications.

The corresponding OOBN representation of this network is based on six classes (Insur-
ance, Theft, Accident, Car, Car owner and Driver), which can be seen as describing
different (abstract) entities in the domain. These classes are designed such that they adhere
to the design principle of high internal coupling and low external coupling, see for example
Mahoney and Laskey (1996) and Mathiasen et al. (2000).

For instance, the class Car describes the properties associated with a car (specific for
this domain). The nodes Cushioning, Mileage, CarValue, RuggedAuto and Antilock are the
only nodes “used” outside the class hence, they occur as output nodes whereas Vehicle
year and Make model are input nodes and Airbag is a normal node (see also the encapsu-

6

Knowledge Fusion for Structural Learning in OO Domains

lated instantiation C:Car in Figure 6). As another example, consider the class Driver,
which models the driving characteristics of a car owner. In the insurance context, driving
characteristics are an integral part of the notion of a car owner and (by the above men-
tioned design principle) an instantiation of Driver is therefore encapsulated in the class
CarOwner. The class Insurance encapsulates the corresponding instantiations of the
other classes. Figure 6 depicts the final OOBN model in form of the Insurance class. Note
that only the interfaces of the encapsulated instantiations are shown.

ThisCarDam

CarCost
Other-

D:Driver

Insurance

C:CarT:Theft

CO:CarOwner

SocioEcon SocioEcon Age

HomeBase

AntiTheft

DrivQuality

DrivQuality

MakeModelVehicleYear

RiskAversion

Mileage

A:Accident

AccidentCarValue

MileageCushioning

DrivQuality

AntilockAntilock

VehicleYear MakeModel

AgeAge

HomeBase

AntiTheft

CarValueTheft

MedCost PropCostThisCarCost

RuggedAuto

ILiCost

Figure 6: An OOBN representation of the insurance network. Notice that only the in-
terfaces of the encapsulated instantiations are shown. Note also that we use a
slightly non-standard graphical presentation for visualization purposes.

The Insurance-class is constructed so that the underlying BN of an instantiation of
that class corresponds to the BN given in Figure 5. In this respect it is worth noticing the
active use of reference links. For example, there are two CarValue-nodes in the OOBN:
C.CarValue is defined in C:Car, but as C.CarValue is a parent of T.Theft (confer also the
underlying BN in Figure 5), it is imported into T:Theft using an input node (which is named
T.CarValue). The reference link between these two nodes shows that it is the same random
variable that is used in both situations. That is, T.CarValue is a reference to C.CarValue.
This is required since CarValue is defined outside the scope of the instantiations of the
Theft-class.

2.3 OOBNs and Dynamic Bayesian Networks

An important set of Bayesian networks is dynamic Bayesian networks (DBNs), which model
the stochastic evolution of a set of random variables over time, see for example Kjærulff

7

Langseth and Nielsen

(1992). Traditionally, a DBN specification consists of i) a BN over the variables at t = 0,
and ii) a transition BN over the variables at t = 0 and t = 1. These two networks can
alternatively be described using OOBN classes, where the time-dependence is encoded by
self-references between nodes; a self-reference is a reference between a node and an input
node in the same class.4 More precisely, when using the OOBN framework for modelling
DBNs we construct two classes: One class representing the time-slice at t = 0, and another
class whose instantiations correspond to the time-slices at t > 0. The dependence relation
between a time-slice and the previous time-slice is then represented using self-references
within the class specification, see also Bangsø and Wuillemin (2000b). Note that using
OOBN classes for modelling time-slices also supports the introduction of encapsulated in-
stantiations within the time slices.

3. Structural Learning

In what follows we review the basis for performing structural learning. The notation will,
whenever possible, follow that of Cooper and Herskovits (1991) and Heckerman et al. (1995).

Consider a Bayesian network BN = (BS , ΘBS
) over a set of discrete variables {X1, X2,

. . . , Xn}, where BS is the graphical structure and ΘBS
is the quantitative information. To

describe BS , the qualitative aspects of BN , we will use the following notation: ri is the
number of states for variable Xi, qi =

∏
Xl∈Πi

rl is the number of configurations over the
parents for Xi in BS (denoted by Πi), and Πi = j denotes the event that Πi takes on its
j’th configuration. For the quantitative properties, we use θijk = P (Xi = k|Πi = j, ξ) (we
assume θijk > 0), where ξ is the prior knowledge. For ease of exposition we define

Θij = ∪ri

k=1θijk; Θi = ∪qi

j=1Θij ; ΘBS
= ∪n

i=1Θi .

Note that ∀i, j :
∑ri

k=1 θijk = 1. Finally, we let D = {D1, . . . ,DN} denote a database of N
cases, where each case is a configuration x over the variables X = (X1, . . . , Xn).

The task is now to find a structure BS that best describes the observed data, or in a more
abstract formulation, to find the parameter space ΩBS

that best restricts the parameters
used to describe the family of probability distributions FΩBS

= {f(x |Θ) : Θ ∈ ΩBS
}. For

example, let Ω′ be the parameter space required to describe all probability distributions
compatible with the complete graph for two binary variables X1 and X2 (see Figure 7a).
With the above notation, Ω′ is defined so that (θ1, θ21, θ22) ∈ Ω′. For the empty graph
in Figure 7b, the parameter space Ω′′ ⊂ Ω′ corresponds to the parameter space Ω′ where
θ21 = θ22 hence, Ω′′ is a hyperplane in Ω′. Learning the structure BS is therefore equivalent
to finding the parameter space ΩBS

that best describes the data; when learning the structure
of a BN there is an injective mapping from the BN structure, BS , to the associated parameter
space ΩBS

. However, as we shall see in Section 5, when we focus on learning OOBNs this
is no longer true as some aspects (the OO-assumption) of an OOBN are not reflected in
the underlying graphical structure. In that case it may be beneficial to think of structural
learning as learning a parameter space Ω.

4. Self-references differ from reference links as the root of a self-reference is defined inside the instantiation,
whereas the root of a reference link is defined outside the scope of the instantiation.

8

Knowledge Fusion for Structural Learning in OO Domains

X1 X2 X1 X2

a) Complete graph b) Empty graph

Figure 7: The two BN model structures for the domain X = (X1, X2).

3.1 The BD Metric

A Bayesian approach for measuring the quality of a BN structure BS , is its posterior
probability given the database:

P (BS |D, ξ) = c · P (BS |ξ)P (D|BS , ξ),

where c = 1/(
∑

B P (B|ξ)P (D|B, ξ)). The normalization constant c does not depend on
BS , thus P (D, BS |ξ) = P (BS |ξ)P (D|BS , ξ) is usually used as the network score. Note that
the main computational problem is the calculation of the marginal likelihood:

P (D|BS , ξ) =

∫

ΘBS

P (D|BS , ΘBS
, ξ)P (ΘBS

|BS , ξ)dΘBS
, (1)

since the integral is over all possible parameters (conditional probabilities) ΘBS
hence, over

all possible BNs that encode at least the same conditional independence relations as the
structure BS .

Cooper and Herskovits (1991) showed that this probability can be computed in closed
form based on the following five assumptions: 1) the database D is a multinomial sample
from some Bayesian network BG with parameters ΘBG

, 2) the cases in the database D
are independent given the BN model, 3) the database is complete, that is, there does not
exist a case in D with missing values, 4) for any two configurations over the parents for
a variable Xi, the parameters for the conditional probability distributions associated with
Xi are marginally independent (Θij ⊥⊥ Θij′ for j 6= j′), and 5) the prior distribution of
the parameters in every Bayesian network BS has a Dirichlet distribution.5 That is to say,
there exist numbers (virtual counts) N ′

ijk > 0 such that

P (Θij |BS , ξ) =
Γ(

∑ri

k=1 N ′
ijk)∏ri

k=1 Γ(N ′
ijk)

ri∏

k=1

θ
N ′

ijk
−1

ijk , (2)

where Γ is the Gamma function satisfying Γ(x + 1) = xΓ(x). Note that the virtual counts
can be seen as pseudo counts similar to the sufficient statistics derived from the database.
An implicit assumption by Cooper and Herskovits (1991) is parameter modularity: The
densities of the parameters Θij depend only on the structure of the BN that is local to
variable Xi.

Now, let Nijk be the sufficient statistics given by Nijk =
∑N

l=1 γ(Xi = k,Πi = j : Dl),
where γ(Xi = k,Πi = j : Dl) takes on the value 1 if (Xi = k,Πi = j) occurs in case Dl,

5. Cooper and Herskovits (1991) actually assume a uniform distribution, which is a special case of the
Dirichlet distribution; the correctness of this generalization was proven by Cooper and Herskovits (1992).

9

Langseth and Nielsen

and 0 otherwise. From assumption 1, 2 and 3 we then have

P (D|BS , ΘBS
, ξ) =

n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk

ijk . (3)

Substituting Equation 3 into Equation 1 gives

P (D|BS , ξ) =

∫

ΘBS

n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk

ijk P (ΘBS
|BS , ξ)dΘBS

,

and by assumptions 4 and 5 we get

P (D|BS , ξ) =
n∏

i=1

qi∏

j=1

∫

Θij

ri∏

k=1

θ
Nijk

ijk

[
Γ(

∑ri

k=1 N ′
ijk)∏ri

k=1 Γ(N ′
ijk)

ri∏

k=1

θ
N ′

ijk
−1

ijk

]
dΘij

=

n∏

i=1

qi∏

j=1

Γ(
∑ri

k=1 N ′
ijk)∏ri

k=1 Γ(N ′
ijk)

∫

Θij

ri∏

k=1

θ
Nijk+N ′

ijk
−1

ijk dΘij .

The expression
∏ri

k=1 θ
Nijk+N ′

ijk
−1

ijk corresponds to the last term of the Dirichlet distribution
for the parameters Θij having counts Nijk + N ′

ijk. Since this is a probability distribution
over the parameters, the value of the integral can be read directly from Equation 2 (the
integral over all parameters evaluates to 1) and we get

P (D, BS |ξ) = P (BS |ξ)
n∏

i=1

qi∏

j=1

Γ(N ′
ij)

Γ(Nij + N ′
ij)

ri∏

k=1

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

, (4)

where Nij =
∑ri

k=1 Nijk and N ′
ij =

∑ri

k=1 N ′
ijk. This metric is known as the BD metric

(Bayesian metric with Dirichlet priors), and it was first derived by Cooper and Herskovits
(1992). Unfortunately it requires the specification of the virtual counts N ′

ijk for all variable–
parent configurations and for all values i, j and k.

3.2 The BDe Metric

One drawback of the BD metric is that networks, which are likelihood equivalent, need not
be given the same score.6 Note that data cannot be used to discriminate between such
networks. Another shortcoming of the BD metric is that it does not provide an easy way
of specifying prior information concerning network structure and parameters. To overcome
these problems, Heckerman et al. (1995) describe the BDe metric (Bayesian metric with
Dirichlet priors and equivalence) that gives the same score to likelihood equivalent networks.
Hence, the metric is based on the concept of sets of likelihood equivalent network structures,
where all members in a set are given the same score.

The BDe metric also provides a simple way of identifying the virtual counts N ′
ijk (in

Equation 4) by having the user specify a prior Bayesian network Bp for X and an equivalent
sample size N ′:

N ′
ijk = P (Xi = k,Πi = j|Bp, ξ) · N

′. (5)

6. Two networks are said to be likelihood equivalent if they encode the same assertions about conditional
independence.

10

Knowledge Fusion for Structural Learning in OO Domains

Note that Heckerman et al. (1995) actually condition on a complete network BSc consistent
with Bp; conditioning on BSc allows Heckerman et al. (1995) to show that the Dirichlet
assumption (Assumption 5) is not required. Finally, to evaluate Equation 4 we also need
to define a prior probability P (BS |ξ) for the network structures. Different prior probabil-
ities have been proposed in the literature, most of which obey the structural modularity
assumption:

P (BS |ξ) ∝
n∏

i=1

ρ(Xi, Πi).

That is, the prior probability decomposes into a product with one term for each family in
the network. From this assumption Equation 4 can be expressed as

P (D, BS |ξ) ∝
n∏

i=1

ρ(Xi, Πi) · score(Xi, Πi,D),

where

score(Xi, Πi,D) =

qi∏

j=1

Γ(N ′
ij)

Γ(Nij + N ′
ij)

ri∏

k=1

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

.

Hence, when comparing two network structures we only need to consider the (local)
scores and priors for the families for which they differ.

3.3 Learning from Incomplete Data

In real world problems we rarely have access to a complete database hence, assumption 3 of
the BD metric (and the BDe metric) is likely to be violated. This implies that the param-
eters for a model become dependent, and known closed-form expressions cannot be used
to calculate the marginal likelihood of the data. In such situations, a common approach is
to apply asymptotic approximations such as the Laplace approximation, (see, for example,
Ripley, 1996), the Bayesian Information Criterion (Schwarz, 1978), the Minimum Descrip-
tion Length (Rissanen, 1987) or the Cheeseman-Stutz approximation (Cheeseman and Stutz,
1996), see also Chichering and Heckerman (1997) for a discussion. These approximations
assume that the posterior over the parameters is peaked, and the maximum a posteriori
(MAP) parameters are used when approximating the integral in Equation 1. Thus, in order
to apply these approximations we need to find the MAP parameters, for example by using
the expectation-maximization (EM) algorithm (Dempster et al., 1977; Green, 1990), before
we can calculate the score of a model. Thus, for each candidate model we may need to
invest a considerable amount of time in order to evaluate the model.

As an alternative, Friedman (1998) describes the Structural EM (SEM) algorithm which
basically “fills in” the missing values before searching the joint space of network structures
and parameters (we therefore avoid the computational expensive step of calculating the
MAP parameters for each candidate model). The validity of the SEM algorithm is based
on the assumption that the data is missing at random (Little and Rubin, 1987), which is

11

Langseth and Nielsen

also assumed in the remainder of this paper. Informally, this means that the pattern of
missingness may only depend on the values of the observed variables.7

The SEM algorithm maximizes P (D, BS |ξ), but instead of maximizing this score directly
it maximizes the expected score. Let o be the set of observations from the database D, and
let h be the set of unobserved entries in D. The general algorithm can then be outlined as:

Algorithm 2 (SEM)

Loop for n = 0, 1, . . . until convergence

1) Compute the posterior P (ΘBn
S
|Bn

S , o).

2) E-step: For each BS, compute:

Q(BS : Bn
S) = Eh[log P (h, o, BS)|Bn

S , o]

=
∑

h

P (h|o, Bn
S) log P (h, o, BS).

3) M-step: Choose Bn+1
S ← BS that maximizes Q(BS : Bn

S).

4) If Q(Bn
S : Bn

S) = Q(Bn+1
S : Bn

S) then
Return Bn

S .

In the E-step, the algorithm completes the database by “filling-in” the unobserved entries
based on the observations o, the current best model Bn

S , and the posterior over the parame-
ters for Bn

S (calculated in step 1). From the completed database the best candidate model is
then selected in the M-step, which ensures that Q(Bl+1

S :Bl
S) − Q(Bl

S :Bl
S) ≥ 0. Friedman

(1998) proves that by increasing the expected score at each iteration we always obtain a
better network in terms of its marginal score (this result also implies that the algorithm
converges).

By exploiting linearity of expectation in the E-step, Friedman (1998) shows that the
expected score decomposes as if the data were complete. That is, local changes to the
model does not require that the entire model is reevaluated. In our context this yields (for
notational convenience we assume that the structural prior,

∏n
i=1 ρ(Xi, Πi), is normalized):

Eh[log P (h, o, BS)|Bn
S , o] =

n∑

i=1

Eh[log Fi(Ni··(h, o), BS)|Bn
S , o], (6)

where Ni··(h, o) specifies the collection Nijk according to (h, o), for all j and k, and
Fi(Ni··(h, o), BS) = ρ(Xi, Πi)score(Xi, Πi, h, o). Note that if

∏n
i=1 ρ(Xi, Πi) is not nor-

malized we simply subtract log(c), where c is the normalization constant. That is to say,
normalization of the prior distribution is not required. Friedman (1998) also examines an
approximation for Eh[log Fi(Ni··(h, o), BS)|Bn

S , o]:

Eh[log Fi(Ni··(h, o), BS)|Bn
S , o] ≈ log Fi(Eh[Ni··(h, o)|Bn

S , o], BS). (7)

7. An active research area within the learning community is the discovery of hidden variables. These types
of variables are never observed (Spirtes et al., 1993; Friedman et al., 1998; Elidan et al., 2000; Elidan
and Friedman, 2001), however, hidden variables will not be considered further in this paper.

12

Knowledge Fusion for Structural Learning in OO Domains

The approximation is exact if log Fi is linear in its arguments. This is, however, not the case
when using the BD or BDe metric.8 Finally, the term Eh[Ni··(h, o)|Bn

S , o] can be computed
as

∀j, k : Eh[Nijk(h, o)|Bn
S , o] =

N∑

l=1

P (Xi = k,Πi = j|Dl, B
n
S).

3.4 Learning Dynamic Bayesian Networks

Friedman et al. (1998) describe an algorithm for learning DBNs from both complete and
incomplete data. The methods proposed by Friedman et al. (1998) extend both the Bayesian
Information Criterion (BIC) and the BDe score for learning DBNs from complete data.
When lifting the assumption that the database is complete, Friedman et al. (1998) extend
the SEM algorithm accordingly.

Friedman et al. (1998) define a DBN by partitioning the variables into time-slices s.t.
the variables which occur at time t are denoted X[t]. Thus, a DBN with l time-slices
consists of the variables X[0]∪X[1]∪ · · · ∪X[l]. It is assumed that the DBN is Markovian
that is, P (X[t + 1]|X[0], . . . ,X[t]) = P (X[t + 1]|X[t]). By also assuming that the DBN is
stationary (the CPTs associated with the variables in X[t] are independent of t, for t > 0),
a DBN can be completely described by two parts: i) An initial network, B0, that specifies
a distribution over X[0] and ii) a transition network, B→, over the variables X[0] ∪ X[1].

In the context of DBNs, the database is assumed to consist of N cases, where the m’th
case specifies a configuration over the variables X[0]∪X[1]∪ · · · ∪X[l]. Now, consider the
situation where the database is complete and let θ0

ij′k and θ→ijk be defined as in Section 3.1

for B0 and B→, respectively; we use j′ and j to indicate that the parents for Xi may
be different in B0 and B→. Additionally, let the sufficient statistics be given by N0

ij′k =
∑N

m=1 γ(Xi[0] = k,Πi = j′ : Dm) and N→
ijk =

∑l
t=1

∑N
m=1 γ(Xi[t] = k,Πi = j : Dm).

By derivations similar to those of the BD metric, the following closed form expression for
P (D, (B0, B→)|ξ) is obtained:

P (D, (B0, B→)|ξ) = P ((B0, B→)|ξ)

·

n∏

i=1

q′i∏

j′=1

Γ(N
′0
ij′)

Γ(N0
ij′ + N

′0
ij′)

ri∏

k=1

Γ(N0
ij′k + N

′0
ij′k)

Γ(N
′0
ij′k)

·

n∏

i=1

qi∏

j=1

Γ(N
′→
ij)

Γ(N→
ij + N

′→
ij)

ri∏

k=1

Γ(N→
ijk + N

′→
ijk)

Γ(N
′→
ijk)

 .

Note that when maximizing this expression we can consider the terms independently as-
suming that P (B0, B→|ξ) = P (B0|ξ) · P (B→|ξ).

Friedman et al. (1998) overcome the problem of specifying the virtual counts for the
candidate network structures by advocating the method of Heckerman et al. (1995). That
is, given a prior DBN Bp = (B0

p , B→
p) and two equivalent sample sizes for B0

p and B→
p , the

virtual counts are found as in Equation 5.

8. Friedman (1998) shows that the error of the linear approximation vanishes as the size of the database
approaches infinity.

13

Langseth and Nielsen

4. Specifying Prior Information

When learning a Bayesian network, the prior information about the domain is represented
by i) a prior distribution over the discrete space of all candidate structures, and ii) a prior
distribution over the continuous space of probability parameters for each model. In Section
3.2 we briefly described a prior for the probability parameters, and in this section we will
focus on the use of prior information regarding the structure of BNs and OOBNs.

4.1 Structural Priors in BNs

The use of structural priors when learning BNs has received only little attention in the
learning community. The most obvious reason is that in most cases the effect of the prior
is dominated by the likelihood term, even for relatively small databases. One exception,
however, is when some of the network structures are given zero probability a priori, in which
case the data cannot change that belief.

Common to most (if not all) structural priors proposed in the literature is that they
obey the structural modularity assumption (see Section 3.2):

P (BS | ξ) ∝

n∏

i=1

ρ(Xi, Πi) .

That is, the prior decomposes into a product with one term for each family in the network
structure. This assumption ensures that during structure search (given complete data – or
data “completed” by the SEM algorithm) we can compare two candidate structures by only
considering the local scores and priors for the families for which they differ.

Because of their relatively small influence upon the selected model, structural priors
are most often used to encode ignorance, and in some cases to restrict model complexity.
Examples include the uniform prior ρ(Xi, Πi) = 1 (Cooper and Herskovits, 1991), and

ρ(Xi, Πi) =

(
n − 1
|Πi |

)−1

used by Friedman and Koller (2003). Another prior which is frequently used is ρ(Xi, Πi)
= κδi (Heckerman et al., 1995), where 0 < κ ≤ 1 and

δi = | {Πi(BS) ∪ Πi(Bp)} \ {Πi(BS) ∩ Πi(Bp)} |

denotes the number of parents for Xi that differs in the prior model Bp and the candidate
structure BS . Thus, each such parent is penalized by a constant κ. The flexibility of this
prior can easily be extended by setting

δi =
∑

j 6=i

(ω+
ij δ+

ij + ω−
ij δ−ij) , (8)

where δ+
ij is 1 if there is an edge from Xj to Xi in the candidate structure but not in the prior

model, and 0 otherwise; δ−ij is 1 if there is an edge from Xj to Xi in the prior model, but not

in BS , and 0 otherwise. (ω+
ij , ω

−
ij) ∈ R

+ ×R
+ is a pair of weights that indicates how certain

14

Knowledge Fusion for Structural Learning in OO Domains

the domain expert is about the occurrence/absence of a specific edge: Complete ignorance is
encoded by ω+

ij = 0, whereas certainty is encoded by ω+
ij = ∞, and similarly for ω−

ij . When

ω+
ij = ω−

ij = 1, ∀ i, j, the prior reduces to that of Heckerman et al. (1995). Note that since
both the prior model as well as each candidate model are restricted to be directed acyclic
graphs it is not possible to give these weights a straightforward probabilistic interpretation;
the occurrence of one edge is in general dependent on the occurrence of the other edges in
the network structure. Finally, we note that this prior has a potential drawback since it

in principle requires the elicitation of the 2n · (n − 1) weights ω
(·)
ij , where n is the number

of variables in the domain. In practical usage, however, one can use an elicitation scheme
where these weights are grouped according to the values 0, 1 or ζ (where ζ À 0 is used to
model almost certainty), see below.

4.2 Structural Priors in OOBNs

In this section we consider the additional sources of prior information available when learn-
ing in object oriented domains. We will argue that the OOBN framework is a natural
language for specifying prior information. As we shall see, the underlying object oriented
modelling assumptions naturally lead to zero prior probabilities for large parts of the model
space.

4.2.1 The OO assumption

Langseth and Bangsø (2001) claim that for OOBN learning to be meaningful one should
assume that the domain is in fact object oriented (such that the OO assumption is fulfilled).
As an example, consider the special case of learning DBNs. In this situation the OO
assumption states that the CPT associated with a variable Xi[tk] (tk > 0) is identical to
the CPT associated with any other variable Xi[t`] (t` > 0). That is, the CPTs associated
with the variables in X[t] are independent of t for t > 0. Hence, when learning DBNs,
the OO assumption corresponds to the assumption that the domain is stationary, which is
for instance assumed by Friedman et al. (1998). If the DBN is not stationary, one cannot
define the evolving model X[t] (t > 0) as identical instantiations of a class, and according
to Langseth and Bangsø (2001) it is not necessarily reasonable to use an object oriented
domain specification in this case.

Note that the effect of making the OO assumption is that all models that violate this
assumption are given zero probability a priori. Note also that the OO assumption cannot
be modelled using a conventional BN as a prior model, if this model should obey structural
modularity; the structural part of the OO assumption is not local to one family in the
graph.

4.2.2 Relations among variables

When modelling object oriented domains, the domain expert is usually able to group the
variables into substructures with high internal coupling and low external coupling. These
substructures naturally correspond to instantiations in an OOBN. Moreover, analogously
to the grouping of similar substructures into categories, instantiations of the same type are
grouped into classes (Mahoney and Laskey, 1996; Mathiasen et al., 2000). For instance,

15

Langseth and Nielsen

a set of substructures may correspond to the same type of physical object or they may
describe a set of entities that occur at the same instant of time.

Such types of prior information can be represented by a (partial) OOBN specification
(that is, a prior model). The a priori specification of an OOBN contains a list of class
specifications and a grouping of the nodes into instantiations that are classified according
to the classes. This prior OOBN model can then be used as in the case of conventional
prior models, and we can in principle use any of the definitions of ρ(Xi, Πi) outlined above.

When specifying the relations among the variables, it may be difficult for the domain
expert to indicate the presence or absence of edges between specific nodes in the model.
If, for example, two variables X and Y in an instantiation I are strongly correlated, the
domain expert may be uncertain whether another node Z in the encapsulating context of
I should be the parent of X or Y (even though he believes that Z should influence at least
one of them). In the OOBN framework, this prior information can be encoded by specifying
the interface between the instantiation I and its encapsulating context. For instance, the
domain expert can indicate which instantiations are allowed (and more importantly, denied)
to reference a particular node (see Figure 8). Specifically, the domain expert could be asked
questions like “Do you think it is possible that a variable Z directly influences any of the
variables in instantiation I?”

Z

X Y

W

I:C

Figure 8: The figure depicts a possible way to describe knowledge about the structure of
the domain. It shows an instantiation I and some of its encapsulating context
(note that this is not strictly speaking an OOBN).

The use of such prior models is also supported by Equation 8, since edges that are not
considered possible a priori are penalized strongly (ω+

ij = ζ À 0). On the other hand, the
interface of an instantiation defines edges from a single node to a group of nodes hence,
missing reference links cannot be penalized (as the prior specification at the class level
should obey structural modularity), and we therefore use ω−

ij = 0. As an example, see
Figure 8, where we assume that the instantiation I consists of the two nodes X and Y ,
and that (a priori) only Z is regarded as a possible node to be referenced from I. From
the discussion above, it follows that a candidate network where no node is referenced from
I will not be penalized by this prior, because ω−

XZ = ω−
Y Z = 0. If we were to use a prior

that penalizes the “missing” link between Z and the instantiation I, then this prior would
have to encode that the probability for a link between Z and X depends on the existence
of a link between Z and Y (the prior only penalizes a link missing between Z and X if
there is no link from Z to Y). This violates structural modularity, which says that the prior
should factorize into a product of terms, where each term only depends on one family in

16

Knowledge Fusion for Structural Learning in OO Domains

the graph, see Section 3.2. On the other hand, if a candidate model is designed so that
another node, say W , is referenced from I, it will be given a lower a priori belief (because
ω+

XW = ω+
Y W = ζ). Note that the OOBN framework is not required to model this vague

prior information; it is merely a straight forward usage of Equation 8. However, to elicit
such information it turns out to be useful to have grouped the nodes into what corresponds
to instantiations, and then focus on the interfaces of these (working in the framework of
OOBNs).

To verify the ease of determining the interfaces a priori we conducted an experiment
amongst our co-workers: The task was to identify the interfaces of the instantiations in
the object oriented version of the insurance domain, see Section 2.2. The test-persons were
familiar with the OOBN framework, but they had not seen the insurance network before.
Initially they were given the object oriented version of the insurance network, where each
node was allocated to one of the instantiations (with all edges removed). The task was
then to identify the interface of all instantiations in the domain, simply by indicating which
nodes inside an instantiation Ii could (possibly) be referenced from an instantiation Ij . The
test-persons had no other information about the domain, except for what they were able to
deduce from the names of the nodes. They where guided through the knowledge acquisition
by questions of the type “Is it possible that a person’s Age can directly influence any of the
nodes in the instantiation of the Driver-class (RiskAversion, SeniorTrain, DrivingSkill,
DrivQuality or DrivHist)?” The result of the experiment was that out of the 702 edges that
can be included in the model, only 253 were marked possible. All the 52 edges actually in
the model were considered legal. The elicitation of this information took about 10 minutes;
this result at least suggests that the approach is promising.

5. Learning in OOBNs

In this section we describe a method for learning in object oriented domains, casted as the
problem of finding the maximum a posteriori OOBN structure given a database D.

The basic idea of the object oriented learning method resembles that of Langseth and
Bangsø (2001) who exploit the OO assumption when learning the parameters in an OOBN.
Specifically, based on this assumption, Langseth and Bangsø (2001) propose to learn at the
class level of the OOBN instead of in the underlying BN; cases from the instantiations of
a class are considered (virtual) cases of that class.9 Langseth and Bangsø (2001) give both
theoretical as well as empirical evidence that this learning method is superior to conventional
parameter learning in object oriented domains.

5.1 Structural OO learning

The goal of our learning algorithm is to find a good estimate of the unknown underlying sta-
tistical distribution function. That is, we focus on the task of density estimation (Silverman,
1986). Note that if focus had been on, for example, causal discovery (Heckerman, 1995a),
classification (Friedman et al., 1997a), or generating a model that was able to predict well

9. Note that this approach can be seen as a generalization of the method for parameter learning in DBNs,
see West and Harrison (1997).

17

Langseth and Nielsen

according to a predefined query distribution (Greiner et al., 1997), the learning method
would have been slightly different (the general approach, however, would still apply).

The proposed method is tightly connected to the SEM-algorithm, described in Section
3.3. The main differences concern structure search and the calculation of the expected score
of a network structure. When doing structure search we restrict the space of candidate
structures by employing the search operations in the class specifications instead of in the
underlying BN. This has the advantages that i) the current best model is always guaranteed
to be an OOBN, and ii) the learning procedure will in general require fewer steps than
conventional learning because the search space is smaller.

The difference in the calculation of the expected score of an OOBN structure compared
to a BN structure is a consequence of the OO assumption: Since we assume all instantiations
of a given class to be identical, we treat cases from the instantiations of a given class as
(virtual) cases of that class. Note that this approach can be seen as a generalization of the
learning method for DBNs, described in Section 3.4, where all cases from the time-slices
for t > 0 are used for calculating the sufficient statistics for the transition network. Before
giving a formal definition of the expected score of an OOBN structure we introduce the
following notation (for now we shall assume that all input sets are empty): Let BCm be
an OOBN for class Cm, and let {i : Xi ∈ C`} be the set of nodes defined in class C`.
Let I define the set of instantiations, let T(I) be the class of instantiation I ∈ I, and let
{I : T(I) = C`} be the set of instantiations of class C` (recall that we use I.X to denote
node X in instantiation I).

The sufficient statistics NC`

ijk for a class C`, given a complete database, is then given by

NC`

ijk =
∑

I:T(I)=C`

N∑

t=1

γ(I.Xi = k, I.Πi = j : Dt). (9)

Based on the sufficient statistics for a class we can, under assumptions similar to those of
Cooper and Herskovits (1991), derive the score for a node Xi in class C` as

O-score(Xi, Πi, N
C`

i·· (D),C`) =

qi∏

j=1

Γ(N ′
ij)

Γ(NC`

ij + N ′
ij)

ri∏

k=1

Γ(NC`

ijk + N ′
ijk)

Γ(N ′
ijk)

, (10)

where N
C`

i·· (D) specifies the collection NC`

ijk according to D, and NC`

ij =
∑ri

k=1 NC`

ijk .
Finally, we can define the BDe score for an OOBN BS as

P (D, BS | ξ) ∝
∏

C`∈C

∏

i:Xi∈C`

ρ(Xi, Πi,C`) · O-score(Xi, Πi, N
C`

i·· (D),C`) , (11)

where C is the set of all classes, and ρ(Xi, Πi,C`) is a function of the prior specification of
C`, such that

P (BS |ξ) ∝
∏

C`∈C

∏

i:Xi∈C`

ρ(Xi, Πi,C`).

In the situation with missing data we apply a modified version of the SEM algorithm.
Recall that the SEM algorithm requires the calculation of

Q(BS : Bn
S) = Eh[log P (o, h, BS) |Bn

S , o],

18

Knowledge Fusion for Structural Learning in OO Domains

where o and h denote the observed and unobserved entries in D, respectively, and Bn
S is

the current best model. In accordance with Equation 6 and Equation 11 we have (again we
assume that the prior distribution is normalized)

Eh[log P (o, h, BS) |Bn
S , o] =

∑

C`∈C

∑

i:Xi∈C`

Eh[log Fi,C`
(NC`

i·· (h, o), BS)|Bn
S , o] (12)

where

Fi,C`
(NC`

i·· (h, o), BS) = ρ(Xi, Πi,C`) · O-score(Xi, Πi, N
C`

i·· (h, o),C`).

Now, analogously to the SEM algorithm we advocate the approximation proposed in Equa-
tion 7 hence, for an OOBN we approximate

Eh[log Fi,C`
(NC`

i·· (h, o), BS)|Bn
S , o] ≈ log Fi,C`

(Eh[NC`

i·· (h, o)|Bn
S , o], BS).

Finally, the expected counts Eh[NC`

i·· (h, o)|Bn
S , o] for node Xi in class C` is given by

∀j, k : Eh[NC`

ijk(h, o)|Bn
S , o] =

∑

I:T(I)=C`

N∑

t=1

P (I.Xi = k, I.Πi = j |Dt, B
n
S).

Now, both Q(BS : Bn
S) and the posterior P (D, BS | ξ) factorize over the variables (and

therefore also over the classes). Hence, in order to compare two candidate structures which
only differ w.r.t. the edge Xi → Xj we only need to re-calculate the score (Equation 10)
and ρ(Xj , Πj ,C`) for node Xj in the class C` where Xj is defined. Note that this property
also supports the proposed search procedure which is employed at the class level.

Unfortunately, this type of locality to a class is violated when the input sets are non-
empty (this is for instance the case with the two instantiations of the class Milk Cow that
are embedded in the Stock class). The problem occurs when new input nodes are added
to a class interface, since the search for a “good” set of parents is not necessarily local
to a class when the interface is not given. Recall that the actual nodes included through
the interface of an instantiation is not defined in the class specification, but locally in each
instantiation. This may result in a serious computational overhead when determining the
interface since we require that the OO assumption is satisfied. As an example, assume that
the node X in instantiation Ii is assigned an input node Y ′ as parent, and assume that Y ′

references the node Y . Then, due to the OO assumption, the algorithm should find a node
Z that has the same influence on Ij .X as Y has on Ii.X, for all instantiations Ij where
T(Ij) = T(Ii). The search for Z must cover all nodes in the encapsulating context of Ij .
Note that Z may be non-existent in which case the default potential for the input node
should be used. The complexity of finding the best candidate interface for all instantiations
is exponential in the number of instantiations, and we risk using a non-negligible amount
of time to evaluate network structures with low score. For example if Y ′ (or more precisely
the node Y referenced by Y ′) is actually not needed as a parent for Ii.X.

To overcome this computational difficulty we propose the following algorithm, which is
inspired by the SEM algorithm (Algorithm 2). Basically, the algorithm iteratively learns
a) the interfaces of the instantiations by keeping the structure inside the instantiations

19

Langseth and Nielsen

fixed according to the classes (Step i and ii), and b) learns the structure inside each class
based on the candidate interfaces found in the previous steps (Step iii). Observe that Step
3 corresponds to the E-step in the SEM algorithm and that Step 4 corresponds to the
M-step.

Algorithm 3 (OO–SEM)

a) Let B0
S be the prior OOBN model.

b) Loop for n = 0, 1, . . . until convergence

1) Compute the posterior P (ΘBn
S
|Bn

S , o), see Langseth and Bangsø (2001) and Green
(1990).

2) Set Bn,0
S ← Bn

S .

3) For i = 0, 1, . . .

i) Let BS be the model which is obtained from Bn,i
S by employing either none or

exactly one of the operations add-edge and remove-edge, for each instantia-
tion I; each edge involved must have a node in both I and in the encapsulating
context of I (directed into I). The OO assumption is disregarded.10

ii) For each node X , which is a child of an input node Y ′ (found in step (i))
in instantiation Ij, determine if Ik.X has an input node as parent with the
same state space as Y ′, for all k 6= j where T(Ik) = T(Ij). If this is the
case, use the BDe score to determine if they should be assigned the same
CPT (due to the OO assumption); otherwise introduce default potentials to
ensure that they have the same CPTs.11 Let B′

S be the resulting network.

iii) For each class C` in B′
S employ the operations add-edge or remove-edge

w.r.t. the nodes in the class (excluding the input set) based on the candidate
interface found in step (ii). Note that edges from instantiations encapsulated
in C` into nodes defined in C` are also considered in this step.12 Let B′′

S be
the resulting OOBN.

iv) Set Bn,i+1
S ← B′′

S.

4) Choose Bn+1
S ← Bn,i

S that maximizes Q(Bn,i
S : Bn

S) (Equation 12).

5) If Q(Bn
S : Bn

S) = Q(Bn+1
S : Bn

S) then
Return Bn

S .

Note that in Step (ii) it may seem counterintuitive to compare CPTs using the BDe score,
however, observe that this step is actually used to restrict the parameter space and the
BDe score is therefore appropriate, cf. the discussion in Section 3. Moreover, it should

10. The number of operations is bounded by the product of the number of nodes in I and the number of nodes
in the encapsulating context, but only the terms local to the involved families need to be re-calculated.

11. The CPTs are estimated by setting θ̂
C`

ijk =
(
N

C`

ijk + N ′

ijk

)
/

(
N

C`

ij + N ′

ij

)
, where N

C`

ijk is the expected

sufficient statistics calculated according to Equation 9. Note that introducing default potentials have no
effect on the underlying BN (they can just be marginalized out).

12. An example of this situation is illustrated in Figure 6, where an instantiation of Driver is encapsulated in
the class CarOwner. Observe that only the terms local to the involved families need to be re-calculated.

20

Knowledge Fusion for Structural Learning in OO Domains

be noticed that we use strong type-checking in Step (ii), which ensures that the algorithm
generates a legal OOBN as defined by Bangsø and Wuillemin (2000b). If we should learn an
OOBN consistent with the definition of for example Koller and Pfeffer (1997), then stronger
restrictions on the input sets would apply.

In case of a complete database, the outer loop is simply evaluated once; evaluating the
network structures using Q(BS : Bn

S) is identical to using the BDe score for OOBNs in this
case.

Theorem 1 Let D be a complete database of size N generated by an OOBN model with
structure B∗

S. If N → ∞, then the structure BS returned by Algorithm 3 is likelihood
equivalent to B∗

S.

Proof Notice that the space of OOBN structures is finite, and that each OOBN structure
can be visited by the inner loop of Algorithm 3. Note also that the greedy approach in step
(ii) is asymptotically correct as the associated search space is uni-modal (as N → ∞) and
the operations are transitive. From these observations the proof is straightforward as the
BDe score is asymptotically correct, see Heckerman (1995b) and Geiger et al. (1996).

Notice that the theorem above only holds when the database is complete. When the
database is incomplete we have the following corollary.

Corollary 2 Let B0
S , B1

S , . . . be the sequence of structures investigated by Algorithm 3, and
let D be a database. Then limn→∞ P (o, Bn

S) exists, and it is a local maximum of P (o, BS)
when regarded as a function of BS.

Proof Follows immediately from Friedman (1998, Theorem 3.1 and Theorem 3.2) by ob-
serving that a) the space of OOBN structures is finite and the variables in the domain have
discrete state spaces, and b) in Steps (i − iii) we are always sure to increase the expected
score of the candidate model.

Observe that in order to complete the operational specification of Algorithm 3, we
need a search algorithm, for instance simulated annealing, for investigating the candidate
structures (Step (i) and Step (iii) constitute the choice points). Note also that in order
to maximize the score in Step (ii) we would in principle need to investigate the set of all
subsets of instantiations and nodes (which have an input node as parent). To avoid this
computational problem we instead consider the instantiations and nodes pairwise (randomly
chosen). This still ensures that the expected score increases in each iteration hence, the
algorithm will converge even though we apply hill-climbing in Step (ii), see also Corollary 2.

Finally it should be emphasized that the main computational problem of Algorithm
3 is in establishing the interfaces of the instantiations hence, we propose to elicit prior
information based on specific enquiries about the interfaces. For instance, the domain expert
can be asked to specify the nodes each instantiation is allowed to reference; as argued in
Section 4.2 this is easily elicitated in an object oriented domain. Prior information of the
form “Daisy is to Cow1 as Mathilda is to Cow3”, related to the type-construct of Koller
and Pfeffer (1997), can be exploited.

21

Langseth and Nielsen

5.2 Type Uncertainty

So far we have assumed that the domain expert is able to unambiguously classify each
instantiation to a specific class. Unfortunately, however, this may not be realistic in real-
world applications. Not being able to classify an instantiation is an example of what is
called type uncertainty by Pfeffer (2000); the expert is uncertain about the type (or class in
our terminology) of an instantiation. However, even though we may be unable to determine
whether, for instance, Cow1 is a Milk cow or a Meat cow, see Section 2, we would still
like to employ the learning algorithm using all available data.

When subject to type uncertainty the main problem is as follows. Consider the situation
where we have two instantiations Ii and Ij whose classes are uncertain. Assume that both
Ii and Ij are a priori classified as being instantiations of Ck, and assume that the data from
Ii and Ij are somewhat different. If the data from Ii is initially used for learning in Ck, then
the class specification for Ck is updated and the probability of Ij being an instantiation
of Ck may therefore change. Thus, the probability of Ij belonging to Ck is dependent on
the classification of Ii. An immediate approach to overcome this problem is brute force,
where we consider all possible combinations of allocating the uncertain instantiations to
the classes. However, this method is computationally very hard, and is not suited for
practical purposes if the number of combinations of instantiations and classes is large. The

complexity is O
(
|C||I |

)
.

In what follows we propose an alternative algorithm for handling type uncertainty. We
shall assume that the domain expert encodes his prior beliefs about the classification of
the instantiations I as a distribution over the classes C (this also allows us to restrict
our search in the class tree to specific subtrees, if the domain expert encodes his prior
belief in that way). Recall that the main problem with type uncertainty is that learn-
ing can only be performed locally in a class specification if all instantiations are allocated
to a class (with certainty). This observation forms the basis for the following algorithm,
which iteratively classifies the instantiations based on the MAP distribution over the clas-
sifications of the instantiations. Note that since the learned model is dependent on the
classification of the uncertain instantiations, the algorithm maximizes the joint probabil-
ity P (D, BS(T), T), where T = T(I); we use the notation BS(T) to indicate that the
learned model is a function of the classifications. This probability can be computed as
P (D, BS(T), T) = P (D|BS(T), T) P (BS(T) | T)P (T) where BS(T) is a model consistent
with the classification T . In the following we will let T̂ denote the current estimate of the
classification T(I). Furthermore, we use T̂ I ← C` to denote that the estimate of T(I) is
set to C`, and we use T̂ −I to denote the estimate of T(I \ {I}).

Algorithm 4 (Type Uncertainty)

a) Initialization: Find the classification with maximum probability according to the
prior distribution over the classifications P (T(I)), and classify the instantiations ac-

cordingly. Let T̂
0

be this initial classification.

b) Loop for n = 0, 1, . . . until convergence

1) T̂
′
← T̂

n
.

22

Knowledge Fusion for Structural Learning in OO Domains

2) For each uncertain instantiation I:

i) For each classification C of I s.t. P (T(I) = C) > 0:

A) Classify I as an instantiation of class C: T̂
′

I ← C.

B) Learn the OOBN B′
S(T̂

′
) for the current classification of all instanti-

ations (Algorithm 3).13 Calculate the joint probability of the data, the

model B′
S(T̂

′
) and T̂

′
:

f(C) ← P
(
D, B′

S(T̂
′
), T̂

′
)
.

ii) Classify I to the class maximizing the joint probability

P (D, B′
S(T̂

′
), T̂

′
) by keeping the classifications T(I \ {I}) fixed:

T̂
′

I ← arg maxC:P (T(I)=C)>0 f(C).

3) Let T̂
n+1

← T̂
′
and let Bn+1

S be the model found according to the classification

T̂
n+1

.

4) If P
(
D, Bn+1

S (T̂
n+1

), T̂
n+1

)
= P

(
D, Bn

S(T̂
n
), T̂

n
)

then

Return Bn
S(T̂

n
).

The algorithm attempts to maximize the joint probability P (D, BS(T), T) by iteratively

maximizing 1) P (D, BS(T̂
n
), T̂

n
) over the models BS with the current classification T̂

n

(Step B), and 2) P (D, Bn
S(T̂

n

−I,T(I)), (T̂
n

−I,T(I))) over T(I) given the classification T̂
n

−I

(Step ii). This also implies that the algorithm converges to a (local) maximum.

6. Empirical Study

In this section we describe a set of empirical tests that have been conducted to verify the
proposed learning method. First, Algorithm 3 was employed to learn the OOBN model of
the insurance domain. This was done to identify the effect of prior information that is not
easily exploited when the domain is not regarded as object oriented. Secondly, Algorithm
3 was employed on the stock domain to consider the effect of the OO assumption, and
Algorithm 4 was used to verify the method for type uncertainty calculations. Finally,
Algorithm 3 was tested w.r.t. predictive accuracy in the insurance domain.

6.1 Setup of the Empirical Study

The goal of the empirical study was to evaluate whether or not the proposed learning
methods generate good estimates of the unknown statistical distribution. Let f(x|Θ) be
the unknown gold standard distribution; x is a configuration of the domain and Θ are the
parameters. f̂N (x|Φ̂N) (or simply f̂N) will be used to denote the approximation of f(x|Θ)
based on N cases from the database.

Since an estimated model may have other edges than the gold standard model, the
learned CPTs of Φ̂N may have other domains than the CPTs of Θ. Hence a global measure
for the difference between the gold standard model and the estimated model is required. In

13. Note that only those parts of the domain that have been changed by the classification of I need to be
re-learned.

23

Langseth and Nielsen

the tests performed, we have measured this difference by using the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) between the gold standard model and the estimated
model. The KL divergence is defined as

D
(

f || f̂N

)
=

∑

x

f(x|Θ) log

[
f(x|Θ)

f̂N (x|Φ̂N)

]
.

There are many arguments for using this particular measurement for calculating the
quality of the approximation (see Cover and Thomas, 1991). One of them is the fact that
the KL divergence bound the maximum error in the assessed probability for a particular
event A, (Whittaker, 1990, Proposition 4.3.7):

sup
A

∣∣∣∣∣
∑

x∈A

f(x |Θ) −
∑

x∈A

f̂N (x|Φ̂N)

∣∣∣∣∣ ≤
√

1

2
· D

(
f || f̂N

)
.

Similar result for the maximal error of the estimated conditional distribution is derived by
van Engelen (1997). These results have made the KL divergence the “distance measure”14

of choice in Bayesian network learning, see for example Pearl (1988), Lam and Bacchus
(1994), Heckerman et al. (1995), Friedman and Yakhini (1996), Dasgupta (1997), Friedman
(1998), and Cowell et al. (1999).

The learning method was tested by randomly generating a database of size N from the
gold standard model, where 25% of the data was missing completely at random15 (Little
and Rubin, 1987; Heitjan and Basu, 1996). Note that the proposed algorithms actually only
depend on the assumption that the data is missing at random. It is also worth emphasizing
that all nodes in the underlying BN are observable in our tests (recall that input nodes
are not part of the underlying BN as these nodes are merged with the referenced nodes,
see Algorithm 1). The database was used as input to the structural learning algorithms.
This was repeated a total of 50 times, with N varying from 100 to 10.000. In our tests we
used Algorithm 3 with a maximum of 10 iterations (approximate convergence was typically
reached in 4–5 iterations). In each iteration a simulated annealing with parameters T0 = 50,
α = 100, β = 100, γ = 0.75 and δ = 220 (see Heckerman et al., 1995, for notation) was
performed. We refer the interested reader to Myers et al. (1999) for additional discussion
on stochastic search algorithms for learning Bayesian networks.

Observe that in the tests we do not consider the issue of running time. However, even
though the proposed algorithms might seem more complex than the SEM algorithm (due
to the nested iterations) the search space is in fact smaller. From Robinson (1973) we have
that the number of DAGs over n nodes can be expressed by the recursive formula

G(n) =
n∑

s=1

(−1)s+1 ·

(
n
s

)
· 2s·(n−s) · G(n − s),

where G(0) = 1. Thus, the BN search space for the OMD example consists of approximately
1095 different DAGs, whereas the number of OOBN models for this example is not more

14. The KL divergence is not a distance measure in the mathematical sense, as D (f || g) = D (g || f) does
not hold in general. The term here is used in the everyday-meaning of the phrase.

15. Informally, missing completely at random means that the observability of a variable does not depend on
the value of any other variable (neither missing nor observed).

24

Knowledge Fusion for Structural Learning in OO Domains

0
1
2
3
4
5
6
7
8
9

10

2000 4000 6000 8000 10000

K
L

Size of training set

OO priors
Conventional priors

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2000 4000 6000 8000 10000

K
L

Size of training set

OO priors
Conventional priors

a) Insurance domain b) Stock domain

Figure 9: The KL divergence of the gold standard model vs. the generated models for
the two cases “Conventional priors” (ρ(Xi, Πi(BS)) = 1/65|Πi(BS) |) and “OO
priors”, where parts of the search-space violating the prior information regarding
the interfaces were disregarded.

than 1022. This reduction in the search space should therefore (depending on the search
algorithm) either produce a better result when using the same amount of time or require
fewer steps as compared to the ordinary SEM algorithm.

6.2 The Empirical Results

Consider again the OOBN version of the insurance network described in Section 2.2, and
recall the small experiment we performed in our research group to elicit object oriented
prior information in this domain (described in Section 4.2). The goal of the experiment
was to find edges in the OOBN we could disregard a priori. The result was that out of the
702 edges that can be included in the network structure, only 253 were marked possible,
including all the 52 edges actually in the network structure. Based on this experiment, we
employed the algorithm to examine to what extent this prior information could benefit the
search algorithm.

The empirical results for the insurance domain is given in Figure 9a. The object oriented
prior information regarding the interfaces was coded as absolutely certain (ω+

ij = ∞ if an
edge Xi → Xj required a larger interface than given by the prior information). As expected,
the KL divergence decreases with the level of information available to the learning algorithm,
such that the results based on the “OO priors” is superior to the ones based on “conventional
priors” (that is, the standard SEM algorithm) for smaller databases. The results seem to
be at the same level for large databases, say N > 8.000.

The second test was conducted to analyze the effect of making the OO assumption,
and was based on the stock domain. This domain consists of 2 instantiations of the Meat
cow class and 2 instantiations of the class Milk cow, and it was expected that knowing
that pairs of cows were identical would increase the learning speed; the results in Figure 9b

25

Langseth and Nielsen

clearly show this effect.16 Note that learning of DBNs (see Section 3.4) is simply a special
case of OOBN learning, since any DBN can be modelled by the usage of two OOBN classes
(see Sections 2 and 4.2). Hence, the results by Friedman et al. (1998) can be regarded as
the effect of the OO assumption in that special case.

A test was also performed to verify the type uncertainty algorithm. The test was
based on the stock domain, and we assumed that the domain expert was ignorant about
the classification of Cow1. We employed Algorithm 4 to this problem, and the results
are shown in Figure 10, together with the results when consistently choosing the wrong
classification (Milk Cow) and when consistently choosing the correct classification (Meat
Cow) averaged over five runs. The results are fairly promising, as the algorithm was able
to build a model which is comparable to the correct classification. Note that this problem
was made fairly difficult, as can be seen from the difference in the KL divergence between
the correct and the wrong classifications in Figure 10; the domain used by Langseth and
Bangsø (2001) has been modified to make the differences between the classes sufficiently
small for the problem to be challenging.17

0

0.5

1

1.5

2

2.5

3

3.5

4

2000 4000 6000 8000 10000

K
L

Size of training set

Type Uncertainty classification
Correct classification
Wrong classification

Figure 10: The KL divergence of the gold standard model vs. the generated models for
the three cases “Type uncertainty classification” (Algorithm 4), the results of
“Correct classification” and “Wrong classification”.

Finally, a test was performed to compare the predictive performance of networks learned
using Algorithm 3 and the SEM algorithm (Algorithm 2). We generated two databases from
the insurance network. The databases consisted of 2000 and 8000 cases, respectively, and
25% of the data was missing completely at random. For this specific situation we tried to
predict the expected cost of insurance, corresponding to the sum of the expected costs as
indicated by the variables ILiCost, MedCost and PropCost (we assumed that the utility was
linear w.r.t. the monetary values). The expected costs in the learned networks was then
compared to the expected cost in the gold standard network. This was done 25.000 times
in each network. The test-scenarios were sampled without missing values, but some of the

16. A related result was obtained by Friedman and Goldszmidt (1996).
17. When we used the domain as defined by Langseth and Bangsø (2001) we were able to classify the

instantiation correctly for databases as small as N = 10 observations.

26

Knowledge Fusion for Structural Learning in OO Domains

variables were subsequently removed. Specifically, we removed the variables RiskAversion,
Mileage, DrivingSkill, DrivQuality, Theft, Accident, Cushioning, ThisCarDam, OtherCar-
Cost, ThisCarCost, ILiCost, MedCost and PropCost. The results of the test is shown is
Table 1, which specifies the relative absolute error of the predictions.

2000 cases, Algorithm 2 with uniform priors 0.49
2000 cases, Algorithm 3 with “OO priors” 0.24
8000 cases, Algorithm 2 with uniform priors 0.29
8000 cases, Algorithm 3 with “OO priors” 0.22

Table 1: The table shows the relative absolute error of the predictions for networks learned
using the OO-SEM algorithm and the traditional SEM algorithm.

The results show that the predictive performance of networks learned using Algorithm 3
is superior to networks learned using the SEM algorithm for databases of 2000 cases.18

Similar to the results using the KL divergence, we see that for 8000 cases the predictive
performance of the two networks are almost the same.

7. Conclusion

In this paper we have proposed a method for doing structural learning in object oriented
domains. The learning algorithm is based on the OOBN framework by Bangsø and Wuil-
lemin (2000b), and has been implemented using a tailor-made version of the Structural EM
algorithm by Friedman (1998). The proposed learning algorithm exploits an intuitive way
of expressing prior information in object oriented domains, and it was shown to be more
efficient than conventional learning algorithms in this setting.

Although the proposed learning algorithm is set in the framework of Bayesian model
selection we conjecture that the general idea of learning in the class specifications, instead
of in the underlying BN, has a broader applicability. For instance, we expect the overall
approach to be applicable when learning OOBNs using constraint-based methods (Spirtes
et al., 1993; Steck and Tresp, 1996).

A related area of work is the framework of probabilistic relational models (PRMs) (Getoor
et al., 2001). A PRM specifies a probability model for classes of objects that can then be
used in multiple contexts. Getoor et al. (2001) describe how these models can be learned
from relational databases: as opposed to OOBNs the focus is on learning a PRM for a
specific context, instead of learning subnetworks (classes) that can be applied in different
contexts. Somewhat similar to the proposed algorithms, Getoor et al. (2001) also performs
learning at the class level, but avoids the problem of identifying the “input sets” as the
context is known, see also Taskar et al. (2001).

18. Note that due to this particular setup of the tests, it is not reasonable to argue about the general
predictive performance of the learned networks.

27

Langseth and Nielsen

Acknowledgments

We would like to thank our colleagues at the Decision Support Systems group, Aalborg
University, for interesting discussions and helpful comments. In particular, Olav Bangsø
participated in the outset of this work (Bangsø et al., 2001). We would also like to thank
Hugin Expert (www.hugin.com) for giving us access to the Hugin Decision Engine, which
forms the basis for our implementation. Finally, we would like to thank the anonymous
reviewers for constructive comments and suggestions for improving the paper.

References

Olav Bangsø, Helge Langseth, and Thomas D. Nielsen. Structural learning in object oriented
domains. In Proceedings of the Fourteenth International Florida Artificial Intelligence
Research Society Conference, pages 340–344. AAAI Press, 2001.

Olav Bangsø and Pierre-Henri Wuillemin. Object oriented Bayesian networks. A framework
for topdown specification of large Bayesian networks with repetitive structures. Techni-
cal report CIT-87.2-00-obphw1, Department of Computer Science, Aalborg University,
2000a.

Olav Bangsø and Pierre-Henri Wuillemin. Top-down construction and repetitive struc-
tures representation in Bayesian networks. In Proceedings of the Thirteenth International
Florida Artificial Intelligence Research Society Conference, pages 282–286. AAAI Press,
2000b.

John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic
networks with hidden variables. Machine Learning, 29(2–3):213–244, 1997.

Wray L. Buntine. A guide to the literature on learning probabilistic networks from data.
IEEE Transactions on Knowledge and Data Engineering, 8:195–210, 1996.

Peter Cheeseman and John Stutz. Bayesian classification (AutoClass): Theory and re-
sults. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors, Advances in knowledge discovery and data mining, pages 153–180.
AAAI/MIT Press, 1996. ISBN 0-262-56097-6.

David M. Chichering and David Heckerman. Efficient approximations for the marginal
likelihood of Bayesian networks with hidden variables. Machine Learning, 29(2–3):181–
212, 1997.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for constructing Bayesian
belief networks from databases. In Proceedings of the Seventh Conference on Uncertainty
in Artificial Intelligence, pages 86–94. Morgan Kaufmann Publishers, 1991.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of prob-
abilistic networks from data. Machine Learning, 9:309–347, 1992.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York,
1991. ISBN 0-471-06259-6.

28

Knowledge Fusion for Structural Learning in OO Domains

Robert G. Cowell, A. Phillip Dawid, Steffen L. Lauritzen, and David J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Statistics for Engineering and Information
Sciences. Springer Verlag, New York, 1999. ISBN 0-387-98767-3.

Sanjoy Dasgupta. The sample complexity of learning fixed-structure Bayesian networks.
Machine Learning, 29(2–3):165–180, 1997.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series
B, 39:1–38, 1977.

Gal Elidan and Nir Friedman. Learning the dimensionality of hidden variables. In Pro-
ceedings of the Seventeenth Conference on Uncertainty of Artificial Intelligence, pages
144–151. Morgan Kaufmann Publishers, 2001.

Gal Elidan, Noam Lotner, Nir Friedman, and Daphne Koller. Discovering hidden variables:
A structure-based approach. In Advances in Neural Information Processing Systems 13,
pages 479–485. MIT Press, 2000.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine
Learning, 29(2–3):131–163, 1997a.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic rela-
tional models. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1300–1309. Morgan Kaufmann Publishers, 1999.

Nir Friedman, Moises Goldszmidt, David Heckerman, and Stuart Russell. Challenge: Where
is the impact of Bayesian networks in learning? In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers, 1997b.
URL: http://www.cs.huji.ac.il/labs/compbio/Repository/.

Nir Friedman and Moises Goldszmidt. Learning Bayesian networks with local structure.
In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages
252–262. Morgan Kaufmann Publishers, 1996.

Nir Friedman and Daphne Koller. Being Bayesian about network structure: A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50(1–2):99–125,
2003.

Nir Friedman, Kevin P. Murphy, and Stuart Russell. Learning the structure of dynamic
probabilistic networks. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, pages 139–147. Morgan Kaufmann Publishers, 1998.

Nir Friedman and Zohar Yakhini. On the sample complexity of learning Bayesian networks.
In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages
274–282. Morgan Kaufmann Publishers, 1996.

Nir Friedman. The Bayesian structural EM algorithm. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, pages 129–138. Morgan Kaufmann
Publishers, 1998.

29

Langseth and Nielsen

Dan Geiger, David Heckerman, and Christopher Meek. Asymptotic model selection with
hidden variables. In Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence, pages 283–290. Morgan Kaufmann Publishers, 1996.

Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational
models. In Saso Dzeroski and Nada Lavrac, editors, Relational Data Mining, pages 307–
338. Springer Verlag, Berlin, Germany, 2001. ISBN 3-540-42289-7. See also (Friedman
et al., 1999).

Peter J. Green. On use of the EM algorithm for penalized likelihood estimation. Journal
of the Royal Statistical Society, Series B, 52(3):443–452, 1990.

Russell Greiner, Adam J. Grove, and Dale Schuurmans. Learning Bayesian nets that per-
form well. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial In-
telligence, pages 198–207. Morgan Kaufmann Publishers, 1997.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20(3):197–243,
1995.

David Heckerman. A Bayesian approach to learning causal networks. Technical Report
MSR-TR-95-04, Microsoft Research, 1995a.

David Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-
TR-95-06, Microsoft Research, 1995b.

Daniel F. Heitjan and Srabashi Basu. Distinguishing “Missing At Random” and “Missing
Completely At Random”. The American Statistician, 50(3):207–213, 1996.

Finn V. Jensen. An introduction to Bayesian networks. UCL Press, London, UK, 1996.
ISBN 1-857-28332-5.

Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, New York, 2001.
ISBN 0-387-95259-4.

Uffe Kjærulff. A computational scheme for reasoning in dynamic probabilistic networks.
In Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, pages
121–129. Morgan Kaufmann Publishers, 1992.

Daphne Koller and Avi Pfeffer. Object-oriented Bayesian networks. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 302–313. Morgan
Kaufmann Publishers, 1997.

Paul J. Krause. Learning probabilistic networks. The Knowledge Engineering Review, 13
(4):321–351, 1998.

Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22:79–86, 1951.

Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence, 10(4):269–293, 1994.

30

Knowledge Fusion for Structural Learning in OO Domains

Helge Langseth and Olav Bangsø. Parameter learning in object oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence, 31(1/4):221–243, 2001.

Kathryn B. Laskey and Suzanne M. Mahoney. Network fragments: Representing knowledge
for constructing probabilistic models. In Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence, pages 334–341. Morgan Kaufmann Publishers, 1997.

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. John
Wiley & Sons, New York, 1987. ISBN: 0-471-80254-9.

Suzanne M. Mahoney and Kathryn B. Laskey. Network engineering for complex belief net-
works. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence,
pages 389–396. Morgan Kaufmann Publishers, 1996.

Lars Mathiasen, Andreas Munk-Nielsen, Peter A. Nielsen, and Jan Stage. Object-oriented
analysis & design. Marko Publishing ApS, Aalborg, Denmark, 2000. ISBN 8-777-51150-6.

James W. Myers, Kathryn B. Laskey, and Tod S. Levitt. Learning Bayesian networks
from incomplete data with stochastic search algorithms. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pages 476–485. Morgan Kaufmann
Publishers, 1999.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Mateo, CA., 1988. ISBN 0-934-61373-7.

Avrom J. Pfeffer. Probabilistic Reasoning for Complex Systems. Ph.D. thesis, Stanford
University, 2000.

Malcolm Pradhan, Gregory Provan, Blackford Middleton, and Max Henrion. Knowledge en-
gineering for large belief networks. In Proceedings of the Tenth Conference on Uncertainty
in Artificial Intelligence, pages 484–490. Morgan Kaufmann Publishers, 1994.

Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge, UK, 1996. ISBN 0-521-46086-7.

Jorma Rissanen. Stochastic complexity (with discussion). Journal of the Royal Statistical
Society, Series B, 49(3):223–239 and 253–265, 1987.

Robert W. Robinson. Counting labeled acyclic digraphs. In Frank Harary, editor, New
directions in the theory of graphs, pages 239–273. Academic Press, New York, 1973.

Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464,
1978.

Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Monographs
on statistics and applied probability. Chapman and Hall, London, UK, 1986. ISBN 0-
412-24620-1.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search.
Springer Verlag, New York, 1993. ISBN 0-387-97979-4.

31

Langseth and Nielsen

Harald Steck and Volker Tresp. Bayesian belief networks for data mining. In Proceedings
of the 2. Workshop on Data Mining und Data Warehousing als Grundlage moderner
entscheidungsunterstützender Systeme, pages 145–154, University of Magdeburg, Ger-
many, 1996. ISBN 3-929-75726-5.

Benjamin Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering
in relational data. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, pages 870–876. Morgan Kaufmann Publishers, 2001.

Robert A. van Engelen. Approximating Bayesian belief networks by arc removal. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(8):916–920, 1997.

Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models. Springer Verlag,
New York, 2nd edition, 1997. ISBN 0-387-94725-6.

Joe Whittaker. Graphical models in applied multivariate statistics. Wiley, Chichester, 1990.
ISBN 0-471-91750-8.

Yang Xiang and Finn V. Jensen. Inference in multiply sectioned Bayesian networks with
extended Shafer-Shenoy and lazy propagation. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, pages 680–687. Morgan Kaufmann Publishers,
1999.

Yang Xiang, David Poole, and Michael P. Beddoes. Multiply sectioned Bayesian networks
and junction forests for large knowledge-based systems. Computational Intelligence, 9(2):
171–220, 1993.

32

