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Abstract

In this paper we consider the generalization accuracy of classification methods based on the itera-
tive use of linear classifiers. The resulting classifiers, which we call threshold decision lists act as
follows. Some points of the data set to be classified are given a particular classification according
to a linear threshold function (or hyperplane). These are then removed from consideration, and the
procedure is iterated until all points are classified. Geometrically, we can imagine that at each stage,
points of the same classification are successively chopped off from the data set by a hyperplane. We
analyse theoretically the generalization properties of data classification techniques that are based
on the use of threshold decision lists and on the special subclass of multilevel threshold functions.
We present bounds on the generalization error in a standard probabilistic learning framework. The
primary focus in this paper is on obtaining generalization error bounds that depend on the levels of
separation—or margins—achieved by the successive linear classifiers. We also improve and extend
previously published theoretical bounds on the generalization ability of perceptron decision trees.

Keywords: Threshold decision lists, generalization error, large margin bounds, growth function,
covering numbers, perceptron decision trees

1. Introduction

This paper concerns the use of threshold decision lists for classifying data into two classes. The use
of such methods has a natural geometrical interpretation and can be appropriate for an iterative or
sequential approach to data classification, in which some points of the data set are given a partic-
ular classification, according to a linear threshold function (or hyperplane), are then removed from
consideration, and the procedure iterated until all points are classified. We analyse theoretically the
generalization properties of data classification techniques that are based on the use of threshold de-
cision lists and the subclass of multilevel threshold functions. This analysis is carried out within the
framework of the probabilistic PAC model of learning and its variants (see Valiant, 1984; Vapnik,
1998; Anthony and Biggs, 1992; Anthony and Bartlett, 1999; Blumer et al., 1989).

1.1 Outline of the Paper

Probabilistic approaches to the theory of machine learning can provide bounds on the ‘generaliza-
tion error’ of classifiers. Such results give probabilistic guarantees on the future performance of a
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classifier trained on a large random training set. This paper takes three main approaches to bounding
the generalization error of threshold decision lists.

First, in the “classical’ approach to the PAC model, we present results on generalization that are
obtained through bounding the growth function of these classes.

Secondly, we obtain bounds on the generalization error of threshold decision lists that depend
on the levels of separation—or margins—achieved by the successive linear classifiers. We use
techniques inspired by Shawe-Taylor and Cristianini (1998) and Bennett et al. (2000), and also give
generalization bounds for perceptron decision trees, improving upon and extending previous such
results from Shawe-Taylor and Cristianini (1998) and Bennett et al. (2000).

Thirdly, we focus specifically on the special subclass comprising the multilevel threshold func-
tions. Here, a different and more specialized analysis results in generalization error bounds that are
better than those that follow from the general results on threshold decision lists.

The rest of this section introduces the classes of threshold decision lists and multilevel threshold
functions, and discusses related work. Section 2 discusses the definitions of generalization error.
In Section 3, we derive bounds on the growth function and use these to bound the generalization
error. Section 4 discusses the important idea of large-margin classification as it applies to threshold
decision lists. Here, we give generalization error bounds that depend on the sizes of the margins and
we also indicate some improved bounds for perceptron decision trees. Section 5 discusses the more
specific margin-based analysis for multilevel threshold functions. Section 6 concludes the paper and
suggests some possible directions for future work.

1.2 Threshold Decision Lists

Suppose that F is any set of functions from R" to {0, 1}, for some fixed n € N. A function f : R" —
{0,1} is a decision list based on F if it can be evaluated as follows, for some k € N, some functions
f1, f2,..., fk € F,some cy,Cy,...,ck € {0,1}, and ally € R": if f1(y) =1, then f(y) = cy; if not, we
evaluate fo(y), and if fo(y) = 1, then f(y) = c,; otherwise we evaluate f3(y), and so on. If y fails to
satisfy any f; then f(y) is given the default value 0. We can regard a decision list based on F as a
finite sequence

f= (fl,Cl), (fz,Cz),..., (fr,Cr),

such that fi € F and ¢; € {0,1} for 1 <i <r. The values of f are defined by f(y) = c; where
j=min{i: fi(y) = 1}, or 0 if there are no j such that f;(y) = 1. We call each f; a test, and the pair
(fi,ci) a term of the decision list. Decision lists were introduced by Rivest (1987), in the context of
learning Boolean functions (and where the tests were conjunctions of literals).
A functiont : R" — {0,1} is a threshold function if there are w € R" and 6 € R such that
[ 1 if(wx)>8
tx) _{ 0 if (w,x) <8,

where (w,X) is the standard inner product of w and x. Thus, t(x) = sgn({(w,x) —8), where sgn(z) =1
if z>0and sgn(z) = 0if z < 0. Given such w and 6, we say that t is represented by [w, 6] and we
write t < [w,B]. The vector w is known as the weight vector, and 6 is known as the threshold.
Geometrically, a threshold function is defined by a hyperplane: all points lying to one side of the
plane and on the plane are given the value 1, and all points on the other side are given the value 0.
Threshold decision lists are decision lists in which the tests are threshold functions. These have
also been called neural decision lists by Marchand and Golea (1993) and linear decision lists by
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Turan and Vatan (1997). Formally, a threshold decision list

f= (tlacl)a (tZaCZ)" ) (thcl')

has each tj : R" — {0,1} of the form t;(x) = sgn({wi,x) — 6;) for some w; € R" and 6; € R. The
value of f ony e R"is f(y) =c; if j=min{i:ti(y) = 1} exists, or 0 otherwise (that is, if there are
no j such thattj(y) = 1).

There is a natural geometrical interpretation of the use of threshold decision lists. Suppose
we are given some data points in R", each one of which is labeled 0 or 1. It is unlikely that the
positive and negative points can be separated by a hyperplane. However, we could use a hyperplane
to separate off a set of points all of the same classification (either all are positive points or all are
negative points). These points can then be removed from consideration and the procedure iterated
until no points remain. This procedure is similar in nature to one of Jeroslow (1975), but at each
stage in his procedure, only positive examples may be ‘chopped off’ (not positive or negative).

If we consider threshold decision lists in which the hyperplanes are parallel, we obtain a special
subclass, known as the multilevel threshold functions. A k-level threshold function f is one that
is representable by a threshold decision list of length k in which the test hyperplanes are parallel
to each other. Any such function is defined by k parallel hyperplanes, which divide R" into k + 1
regions. The function assigns points in the same region the same value, either 0 or 1. Without any
loss, we may suppose that the classifications assigned to points in neighboring regions are different
(for, otherwise, at least one of the planes is redundant); thus, the classifications alternate as we
traverse the regions in the direction of the normal vector common to the hyperplanes.

1.3 Related Work

The chopping procedure described above suggests that the use of threshold decision lists is fairly
natural, if an iterative approach is to be taken to pattern classification. Other iterative approaches—
which proceed by classifying some points, removing these from consideration, and proceeding
recursively—have been taken, using different types of base classifier. For example, Magasarian’s
multisurface method (Mangasarian, 1968) finds, at each stage, two parallel hyperplanes (as close
together as possible) such that the points not enclosed between the two planes all have the same
classification. It then removes these points and repeats. This method may be regarded as construct-
ing a decision list in which the set of base functions F are the indicator functions of the complements
of regions enclosed between two parallel hyperplanes.

The focus of this paper is generalization error rather than learning algorithms. The “‘chopping
procedure’ as we have described it is a useful device to help us see that threshold decision lists have
a fairly natural geometric interpretation. However, the algorithmic practicalities of implementing
such a procedure have been investigated by Marchand and Golea (1993). They propose a method
that relies on an incremental approximation algorithm for the NP-hard problem of finding at each
stage a hyperplane that chops off as many remaining points as possible (the ‘densest hyperplane
problem’). Reports on the experimental performance of their method can be found in Marchand
and Golea (1993).

Threshold decision lists are special types of perceptron decision trees, decision trees in which
the decision nodes compute threshold functions. Such trees have been studied by Shawe-Taylor and
Cristianini (1998) and Bennett et al. (2000), where the importance of large margins was emphasised.
The techniques used to derive the results of Section 4 extend those used to derive generalization error
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bounds in those papers. Bennett et al. (2000) consider learning algorithms for perceptron decision
trees: specifically, they propose and test three variants of the OC1 perceptron decision tree learning
algorithm (Murthy et al., 1994) that aim for a large margin of separation at each decision node. The
theoretical generalization error bounds they derive apply to the case in which a perceptron decision
tree is produced that is consistent with the training sample. The bounds for perceptron decision trees
presented in this paper improve upon the bounds presented there and also apply, more generally, to
the case in which some empirical error (measured with respect to the margins) is permitted.

The representational properties of threshold decision lists and multilevel threshold functions
have been studied by a number of researchers, particularly in the context of Boolean functions. We
mentioned above the paper of Jeroslow (1975). There, it is shown, essentially, that any Boolean
function can be realized as a disjunction of threshold functions (and hence as a special type of
threshold decision list). The general problem of decomposing a Boolean function into a disjunction
of threshold functions has been considered independently of any machine learning considerations.
Hammer et al. (1981) defined the threshold number of a Boolean function to be the minimum s such
that f is a disjunction of s threshold functions; they and Zuev and Lipkin (1988) obtained results
on the threshold numbers of increasing Boolean functions. Although any Boolean function can be
expressed as a disjunction of threshold functions, threshold decision lists provide a more flexible
representation. For instance, the parity function on n variables (in which the output is 1 precisely
when the input to the function contains an odd number of entries equal to 1) can be represented
by a threshold decision list with n terms; whereas, as observed by Jeroslow (1975), the shortest
decomposition of parity into a disjunction of threshold functions involves 2"~ threshold functions.
Turan and Vatan (1997), by contrast, gave a specific example of a function with a necessarily long
threshold decision list representation.

Decision lists in which the tests are defined with respect to points in the training sample have
recently been investigated by Sokolova et al. (2003). They considered the case where the base
class of tests consists of data-dependent balls (that is, the characteristic functions of balls centered
on data points, and their complements). Additionally, Marchand et al. (2003) considered the use
of disjunctions and conjunctions of functions constructed as threshold functions, possibly in some
“feature space’. Here, examples x € X are transformed by a fixed function @into points of the feature
space @(X), and the classifiers used are disjunctions or conjunctions of functions that, acting in
feature space and on transformed examples @(x), are threshold functions with weight vectors defined
by three of the transformed examples. The problems studied in this paper are rather different: here,
we consider general threshold decision lists (rather than just conjunctions or disjunctions), and the
individual tests need not be data-dependent (or, at least, not in the explicit way that they are in
Marchand et al., 2003).

Multilevel threshold functions have been studied in a number of papers (Bohossian and Bruck,
1998; Olafsson and Abu-Mostafa, 1988; Takiyama, 1985, for instance). They originally were of in-
terest as the sets of functions computed by devices knows as multilevel threshold elements (Takiyama,
1985), generalizations of the linear threshold elements. The ‘capacity’ (in our terminology, the
growth function) has been of particular interest. Olafsson and Abu-Mostafa (1988) gave an upper
bound on the capacity, correcting a claimed upper bound of Takiyama (1985). Subsequently, Ngom
et al. (2003) claimed to have improved this bound, but were mistaken (Anthony, 2002). A bound
improving upon that of Olafsson and Abu-Mostafa (1988), and which is used in this paper, was
given in Anthony (2002). Just as threshold decision lists (and disjunctions of threshold functions)
are ‘universal’ for Boolean functions, so too are the multilevel threshold functions. Bohossian and
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Bruck (1998) observed that any Boolean function can be realized as a multilevel threshold function.
(Specifically, they showed that every Boolean function is a 2"-level threshold function, an appro-
priate weight-vector being w = (2"~1,2"-2 .. 2,1). For that reason, they paid particular attention
to the question of whether a function can be computed by a multilevel threshold function where
the number of levels is polynomial.) Functions similar to multilevel threshold functions have also
been of interest in multiple-valued logic (Obradovi€ and Parberry, 1994; Ngom et al., 2003) where,
instead of classification labels alternating between 0 and 1, a partition by k parallel planes defines a
(k+1)-valued function.

2. Generalization Error

Following a form of the PAC model of computational learning theory (see Anthony and Biggs,
1992; Vapnik, 1998; Blumer et al., 1989), we assume that labeled data points (x,b) (where x € R"
and b € {0,1}) have been generated randomly (perhaps from some larger corpus of data) according
to a fixed probability distribution P on Z = R" x {0,1}. (Note that this includes as a special case the
situation in which x is drawn according to a fixed distribution u on R" and the label b is then given by
b =t(x) where t is some fixed function.) Thus, if there are m data points, we may regard the data set
as a sample s = ((x1,b1),..., (Xm,bm)) € Z™, drawn randomly according to the product probability
distribution P™. Suppose that H is a set of functions from X to {0,1}. Given any function f € H,
we can measure how well f matches the sample s through its sample error,

ers(£) = {1 1(x) £ by},

(the proportion of points in the sample incorrectly classified by f). An appropriate measure of how
well f would perform on further examples is its error,

erp(f) =P({(x,b) € Z: f(x) #b}),

the probability that a further randomly drawn labeled data point would be incorrectly classified by
f.

Much effort has gone into obtaining high-probability bounds on erp(f) in terms of the sample
error. A typical result would state that, for all € (0,1), with probability at least 1 — &, forall h € H,
erp(h) < ers(h) +&(m,d), where (m,d) (known as a generalization error bound) is decreasing
in m and d. Such results can be derived using uniform convergence theorems from probability
theory (Vapnik and Chervonenkis, 1971; Pollard, 1984; Dudley, 1999), in which case €(m, d) would
typically involve the growth function (see Vapnik and Chervonenkis, 1971; Blumer et al., 1989;
Vapnik, 1998; Anthony and Bartlett, 1999). We indicate in the next section how this may be done
for threshold decision lists.

Recently, emphasis has been placed in practical machine learning techniques such as Support
Vector Machines (see Cristianini and Shawe-Taylor, 2000, for instance) on ‘learning with a large
margin’. (See Bartlett et al., 2000; Anthony and Bartlett, 1999, 2000; Shawe-Taylor et al., 1996, for
example). Broadly speaking, the rationale behind margin-based generalization error bounds is that
if a classifier has managed to achieve a ‘wide’ separation between (most of) the points of different
classification, then this indicates that it is a good classifier, and it is possible that a better (that is,
smaller) generalization error bound can be obtained. The classical example of this is linear separa-
tion, where the classifier is a linear threshold function. If we have found a linear threshold function
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that classifies the points of a sample correctly and, moreover, the points of opposite classifications
are separated by a wide margin (so that the hyperplane achieves not just a correct, but a ‘definitely’
correct classification), then this function might be a better classifier of future, unseen, points than
one which ‘merely’ separates the points correctly, but with a small margin. In Section 4, we apply
such ideas to threshold decision lists.

3. Generalization Bounds Based on the Growth Function

In this section, we use some by-now classical techniques of computational or statistical learning
theory to bound the generalization error.

3.1 Bounding the Error

The growth function of a set of functions H mapping from X = R" to {0,1} is defined as follow
(Blumer et al., 1989; Vapnik and Chervonenkis, 1971). Let My : N — N be given by

My (m) =max{|H|s| : S C X,|S| = m},

where H|s denotes H restricted to domain S. Note that My (m) < 2™ for all m. The key probability
results we employ are the following bounds, due respectively to Vapnik and Chervonenkis (1971)
and Blumer et al. (1989) (see also Anthony and Bartlett, 1999): for any € € (0,1),

P™({s € Z™: there exists f € H, erp(f) > ers(f) +&}) < 4My(2m)e ™/8,
and, form > 8/,
P™({s € ZM:there exists f € H, ers(f) =0anderp(f) > €}) < 2Myx(2m) o—em/2.

Thus, we can obtain (probabilistic) bounds on the error erp(f) of a function from a class H when
we know something about the growth function of H.

3.2 Growth Function Bounds

We first consider the set of threshold decision lists on R" with some number k of terms. (So, the
length of the list is no more than k.)

Theorem 1 Let H be the set of threshold decision lists on R" with k terms, where n,k € N. Then

My (m) < 4% (.i (mi_1>>k.

Proof: LetS be any set of m points in R". Suppose we have two decision lists

f= (f].?Cl)""a(fkaCk)a g= (gladl)a”"(gkadk)

in H, where the f; and g; are threshold functions on R". Clearly, f and g will agree on all points of S
if (i) ¢; = d; for each i and (ii) fj(x) = gi(x) for all x € S. For fixed i, condition (ii) is an equivalence
relation among threshold functions. The number of equivalence classes is |K|s| where K is the set
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of threshold functions. This is bounded by Mk (m), which, it is known (Cover, 1965; Blumer et al.,
1989; Anthony and Bartlett, 1999), is bounded above as follows:

M (M) gzii (mi_1>.

We can therefore upper bound |H|g| as follows:

=2 (25 (")

Here, the first 2K factor corresponds to the number of possible sequences of ¢; and the remaining
factor bounds the number of ways of choosing an equivalence class (with respect to S) of threshold
functions, for each i from 1 to k. |

There is a useful connection between certain types of decision list and threshold functions.
We say that a decision list defined on {0,1}" is a 1-decision list if the Boolean function in each
test is given by a formula that is a single literal. (So, for each i, there is some I; such that either
fi(y)=1ifand only ify;, =1, or fi(y) = 1 ifand only if y;, = 0.) Then, it is known (Ehrenfeucht
et al., 1989) (see also Anthony et al., 1995; Anthony, 2001) that any 1-decision list is a threshold
function. In an easy analogue of this, any threshold decision list is a threshold function of threshold
functions (Anthony, 2001). But a threshold function of threshold functions is nothing more than
a two-layer threshold network, one of the simplest types of artificial neural network. (A similar
observation was made by Marchand and Golea (1993) and Marchand et al. (1990), who construct a
‘cascade’ network from a threshold decision list.) So another way of bounding the growth function
of threshold decision lists is to use this fact in combination with some known bounds (Baum and
Haussler, 1989; Anthony and Bartlett, 1999) for the growth functions of linear threshold networks.
This gives a similar, though slightly looser, upper bound.

To bound the growth function of the subclass consisting of k-level threshold functions, we use

a result from (Anthony, 2002), which shows that the number of ways in which a set S of m points
n+k—1

can be partitioned by k parallel hyperplanes is at most Z) <km> (For fixed n and k, this bound is

tight to within a constant, as a function of m.) Noting that we may assume adjacent regions to have
different labels, there corresponds to each such partition at most two k-level threshold functions
(defined on the domain restricted to S) and we therefore have the following bound.

Theorem 2 Let H be the set of k-level threshold functions on R". Then
n+k—1
mez'5 ()

Combining the results of the previous two subsections, we can obtain the following generalization
error bounds.

3.3 Generalization Error Bounds
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Theorem 3 Suppose that n and k are fixed positive integers and that s is a sample of m labeled
points (x,b) of Z =R" x {0,1}, each generated at random according to a fixed probability distri-
bution P on Z. Let & be any positive number less than one. Then the following hold with probability
at least 1 — &:

1. If f is a threshold decision list with k terms, then the error erp(f) of f and its sample error
on s, erg(f) are such that

erp(f) < ers(f)+\/% <2k|n2+nk|n <@> +In (%))

2. If f is a k-level threshold function, then

erp(f) <ers(f)+\/% ((n+k—1)|n (nielin—k1> +1In (%))

Proof: We approximate the growth function of the class of k-term threshold decision lists by

o (77 <o (552"

for m > n. Similarly, when H is the class of k-level threshold functions,

n+k—1 km emk n+k—1
< -
I'IH(m)_Z i; <i><2<n+k—1> s

for m > n+k. The first part of the theorem is trivially true if m < n (since then the stated upper
bound on the error is at least 1). If m > n, then

g = \/% (2k|n2+nk|n (@) +1In <%)> > \/% (In <%6(2m))>’

P™({s € Z™: there exists f € H, erp(f) > ers(f)+go}) < 4My(2m)e ™o/8 < 5.

and so

Thus, with probability at least 1 — 8, for all f € H, erp(f) < ers(f)+ €. The second part follows
similarly. It is trivial for m < n+k and it follows for m > n+k on observing that, for H the class of
k-level threshold functions,

iy o (oren (2 Y (3)) = 2 (n (4,

For threshold decision lists that are consistent with a training sample, the following tighter
bounds can be used.
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Theorem 4 Suppose that k and n are fixed positive integers and that s is a sample of m labeled
points (x,b) of Z =R" x {0,1}, each generated at random according to a fixed probability distri-
bution P on Z. Let & be any positive number less than one. Then the following hold with probability
at least 1 — &:

1. If f is a threshold decision list with k terms and f is consistent with s (so that erg(f) = 0),

then ) (2m 1) )
e(2m—
erp(f) < - <2k+nklog2 (f) +log, (5)) .

2. If f is a k-level threshold function and f is consistent with s, then

era(f) < 2 ((n-+k-1)10g, (25 ) 10 (3 ) )

Proof: We use the growth function approximations of the proof of Theorem 3. For the class of
threshold decision lists with k terms, and for m > n,

2 e(2m-1 2 2 2Mu(2m
&= <2k+nklog2 <¥> +log, <5)> > - log, (*) ,

PM({seZ™:there exists f € H, ers(f) = 0and erp(f) > &}) < 2My(2m)2-%m2 = 5,

forn+k> 3.

and so

(Also, for m < n, the bound trivially holds.) The second part follows similarly on noting that, for
the class of k-level threshold functions, if m > n+k, then

;2 2emk 2 2 2Mp(2m)
&= <(n+k1) log, <m> +log, (S)) > alog2 <T) .

The bound is trivially true for m < n+k; and, for m > n+k, the condition n+k > 3 ensures that
m > 8/¢y, so that the bound of Blumer et al. (1989) applies. |

The following variations of these results, in which k is not prescribed in advance, are perhaps
more useful, since one does not necessarily know a priori how many terms a suitable threshold
decision list will have.

Theorem 5 With the notations as above, and for n > 3, the following holds with probability at least
1-9:

1. If f is a threshold decision list, then

erp(f) <ers(f)+\/% <2k|n2+nk|n <e(2n:17—1)> +1n (ial@)),

where k is the number of terms of f.
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2. If f is a multilevel threshold function, then

erp(f) <er5(f)+\/% <(n+k—1)|n (ngre%kl) +In <#;k2>>,

where K is the number of levels (terms) of f.

3. If f is a threshold decision list and ers(f) =0, then

erp(f) < % <2k+nk|092 (@) +log, (4_22>>

where Kk is the number of terms of f;

4. If f is a multilevel threshold function and erg(f) = 0, then

era(f) < 2 ((n-+k-Dtogs ( 255 ) +1n (4—22»

where Kk is the number of terms of f.

Proof: We prove the last part, the other three being very similar. We use a well-known technique
often found in discussions of ‘structural risk minimisation’ and model selection (see Vapnik, 1982;
Shawe-Taylor et al., 1996; Anthony and Bartlett, 1999, for instance). From Theorem 4, for any
0 € (0,1) and any k € N, if n+k > 3, then the probability pi that there is a k-level threshold
function f such that erg(f) =0 and

2
erp(f) < g, = % ((n+k1)log2 <nz+e7:]_k1> +1In <2T6l26k )>

is less than (8/k?)(6/12). The fact that n > 3 ensures that n+k > 3. Hence the probability that, for
somek € N, there is f € H with erp(f) > erg(f) +&xis less than S, px < 8(6/12) S, (1/k?) = .
The result follows on noting that 212 /6 < 4. u

4. Margin-Based Error Boundsfor Threshold Decision Lists

We now derive generalization error bounds dependent on the size of margins. The key qualita-
tive difference between these bounds and those of Section 3 is that the margin-based bounds are
dimension-independent, in that they do not depend on n.

4.1 Definition of Margin Error

Suppose that h is a threshold decision list, with k terms, and suppose that the tests in h are the
threshold functions t1,to,...,t, and that t; is represented by weight vector w; and threshold 6;.
Assume also, without any loss of generality, that ||w;|| = 1 for each i. We say that h classifies
the labeled example (x,b) (correctly, and) with margin y > 0 if h(x) = b and, for all 1 <i <k,
[{wi,x) —6;| >y. In other words, h classifies x with margin y if, overall, the classification of x given
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by the threshold decision list h is correct and, additionally, x is distance at least y from all of the k
hyperplanes defining h.> Note that we do not simply stipulate that x is distance at least y from the
single hyperplane involved in the first test that x passes: rather, we require x to be distance at least
y from all of the hyperplanes. (In this sense, the classification given to x by h is not just correct,
but ‘definitely’ correct.) Given a labeled sample s = ((x1,b1),..., (Xm,bm)), the error of h on s at
margin y, denoted er‘s’(h), is the proportion of labeled examples in s that are not classified by h with
margin y. Thus, er{(h) is the fraction of the sample points that are either misclassified by h, or are
classified correctly but are distance less than y from one of the planes.

Following the analysis of perceptron decision trees in Shawe-Taylor and Cristianini (1998) and
Bennett et al. (2000), we may want to consider separate margin parameters yi, Vs, - . ., Yk for each of
the k terms of the decision list. We have the following definition.

Definition 6 Suppose h = (t1,¢1),...,(t,Ck) is a threshold decision list, where t; is represented
by weight vector w; and threshold 6;, where ||w;|| = 1. Given I' = (y1,Y2,...,Yk), we say that h
classifies the labeled example (x,b) (correctly and) with margin I if h(x) = b and, for all 1 <i <Kk,
|(wi,X) — 6] > vi. We define erL (h) to be the proportion of labeled examples in the sample s that are
not classified with margin I'.

4.2 Covering Numbers

A useful tool in the derivation of margin-based generalization error bounds is the covering number
of a class of real functions. Suppose that F : X — R is a set of real-valued functions with domain
X, and that X = (X1,X2,...,Xm) is an unlabeled sample of m points of X. Then, fore >0,C CF is
an e-cover of F with respect to the dX-metric if for all f € F there is f € C such that dX(f, f) <,
where, for f,g e F,

X
do(f,9) = max [f(xi) —g(xi)l.
(Coverings with respect to other metrics derived from x can also be defined, but this paper needs
only the present definition.) The class F is said to be totally bounded if it has a finite e-cover with
respect to the d metric, for all € > 0 and all x € X™ (for all m). In this case, given x € X™, we define
the dX-covering number A (F,€,x) to be the minimum cardinality of an e-cover of F with respect
to the d-metric. We then define the (uniform) d..-covering numbers A (F,€,m) by

Noo (F,€,m) = sup{Ne(F,€,x) : x € X™}.

Many bounds on covering numbers for specific classes have been obtained (see Anthony and Bartlett,
1999, for an overview), and general bounds on covering numbers in terms of a generalization of the
VC-dimension, known as the fat-shattering dimension, have been given (Alon et al., 1997).

In this paper, we use a recent bound of Zhang (2002) for the d..-covering numbers of bounded
linear mappings. For R > 0, let Br = {x € R": ||x|| < R} be the closed ball in R" of radius R, centred
on the origin. For w € R", let f, : Bk — R be given by fy(X) = (w,X), and let

Lr={fw:weR" [lw| =1}.

1. The assumption that ||w;|| = 1 ensures that the interpretation in terms of distance is valid; for, in this case the ‘func-
tional’ and ‘geometric’ margins coincide. See the paper by Cristianini and Shawe-Taylor (2000).
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Zhang (2002) has shown that

l0g, Neo (Lr,€,m) <36|:—22I0g2 (2[4R/e+2]m+1). (@))

One thing of note is that this bound is dimension-independent: it does not depend on n. This bound
differs from previous bounds (Bartlett, 1998; Anthony and Bartlett, 1999; Shawe-Taylor et al., 1996)
for the logarithm of the d-covering numbers in that it involves a factor of order Inm rather than
(Inm)2.2

4.3 Margin-based Bounds

Following a method used by Shawe-Taylor and Cristianini (1998) and Bennett et al. (2000), together
with the covering number bound of Zhang (2002), we can obtain the following two results. (In these
results, it simplifies matters to assume that R > 1 and y; < 1, but it will be clear how to modify them
otherwise.)

Theorem 7 SupposeR>1andZ =Brx{0,1}, where Br={x € R": ||x|| <R}. Fixke NandletH
be the set of all threshold decision lists with k terms, defined on domain Bgr. Letyi,Vs,...,Yk € (0,1]
be given. Then, with probability at least 1 — &, the following holds for s € Z™: if h € H and

M= (Y1,Y2,---,¥k), then

erp(h) < erg (h) + \/% (576 R2D(T") In(8m) +In <%> + k),

where D(I') = TK_ (1/y?) and where the margin error erf (h) is as in Definition 6.

Proof: The proof extends a technique of Shawe-Taylor and Cristianini (1998) and Bennett et al.
(2000) (where the case of zero margin error was the focus), and is motivated by proofs of Anthony
and Bartlett (1999, 2000), Bartlett (1998), Shawe-Taylor et al. (1996), which in turn are based on
the original work of Vapnik and Chervonenkis (1971).

Given I = (y1,V2,...,Yn), it can fairly easily be shown that if

Q={seZ™:3heHwitherp(h) > erk(h) +¢}
and
T ={(s,8) €Z™x Z™: 3h € H with erg (h) > erL (h) +¢&/2},
then for m > 2/€2, P™(Q) < 2P?™(T). For, we have
P?™T) > P?™(3heH :erp(h) >er(h)+e and erg(h) > erp(h) —€/2)
= /QPm ({s':3n e H,erp(h) > er (h) +& and erg(h) > erp(h) —€/2}) dP™(s)

1
Z E Pm(Q)7
2. Previous approaches to bounding the de.-covering numbers first bounded the fat-shattering dimension and then used
a result of Alon et al. (1997) that relates the covering numbers to the fat-shattering dimension. An additional Inm
factor appears when this route is taken.
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for m > 2/€2, where the final inequality follows from P™(erg(h) > erp(h) —€/2) > 1/2, for any
h € H, true by Chebyshev’s inequality.

Let G be the permutation group (the ‘swapping group’) on the set {1,2,...,2m} generated by
the transpositions (i,m+i) for i =1,2,...,m. Then G acts on Z?™ by permuting the coordinates:
for o € G, 0(z1,22,...,22m) = (Zo(1),- - - »Zo(m))- NOw, by invariance of P2™ under the action of G,
P2M(T) < max{Pr(oz € T) :z € Z?M} where Pr denotes the probability over uniform choice of o
from G. (See Vapnik and Chervonenkis, 1971, and Anthony and Bartlett, 1999, for instance.)

Given a threshold decision list on Bg C R", each test is of the form f; < [w;, 6;]; that is, the
test is passed if and only if (w;j,x) > 6;. An equivalent functionality is obtained by using inputs in
Br augmented by —1, and using homogeneous threshold functions of n+ 1 variables; that is, ones
with zero threshold. So any threshold decision list of length k on Br can be realized as one on
R™1, defined on the subset Bg x {—1}, and with homogeneous threshold functions as its tests. Fix
z€Z?™and let X = (X1,X2, ...,Xom) € XM be the corresponding vector of x;, where z; = (x;,b;). For
i between 1 and k, let C; be a minimum-sized y; /2-cover of L with respect to the d metric, where
L is the set of linear functions x — (w,x) for ||w|| = 1, defined on the domain D = {(x,—1) : x €
R ||x|| < R}. Note that if x € R" satisfies ||x|| < R, then the corresponding (x,—1) has length at
most v/R? + 1. So, by the covering number bound (1),

|ogz|ci|§144($zi2+1)|ogz<<3ZV§2Jr +14> ) 285;2|ogz<m;m>. ©

Suppose thath = (f1,¢1),...,(fk Ck) is a threshold decision list with k homogeneous threshold tests,
defined on D. Denote the tests of the list by fl, fo,..., fk, where f; corresponds to weight vector
w; € R™1, Foreachi, let f; € C; satisfy dX (fi, f; ) < y,/2 let W; be the corresponding weight vector,
and let h be the threshold decision list obtained from h by replacing each f; by f;, leaving the c;
unchanged. The set H of all possible such h is of cardinality at most 2X[1%_, |Ci| (where the 2%
factor corresponds to the choices of the values c;). Suppose that 0z = (s,s’) € T and that erg(h) >
erk(h) +¢&/2. LetT/2=(y1/2,...,¥k/2). Then, because for all 1 < j<2mand all 1 <i <k,
[{wi, Xj) — (Wi, Xj )| < Vi/2, it can be seen that err/z(h) > erg(h) and erC (h) > ers/2(R). Explicitly
(denoting any given x; by x), err/z(h) > erg(h) follows from the observation that if (w;,x) < 0, then
(Wi, x) < vi/2 and if (wj,x) > 0, then (W;,x) > —v;/2; and erk (h) > ery/? (h) follows from the facts
that if (Wi,x) < vi/2 then (w;,x) <y, and if (Wi,X) > —Vi/2 then (w;,x) > —Vi. So, err/z(h) >

ers/2(R) +€/2, and therefore, for any z € Z2™,

Pr(ozeT) <Pr (02 e S(ﬁ)) ,

her

where S(h) = {(s,5') € Z*™: err/z(h) > err/z( h)+¢/2}. Fix h € A and let v; = 0 if h classifies z;
with margin at least I' /2, and 1 otherwise. Then

Pr(oz e S(h)) =Pr (% i(vm —vi) > e/2> —=Pr (% iaiwi — V| > s/2> ,

where the €; are independent (Rademacher) {—1,1} random variables, each taking value 1 with
probability 1/2, and where the last probability is over the joint distribution of the ;. Hoeffding’s
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inequality bounds this probability by exp(—&2m/8). (See Anthony and Bartlett, 1999, for instance,
for details.)
We therefore have

Prioze |JT(h) < Y Pr(ozeT(h h)) < |H|exp(—€°m/8),
her heH
which gives

PM(Q) < 2P*™(T) < 22k ﬁ ICi|exp(—€?m/8).

Using the bound (2), we see that, provided

e a5 0 (3) )

(in which case we certainly also have m > 2/g2) then the probability of Q is at most 8. So, with
probability at most 1 — 8, erp(h) < erk(h) +¢&o for all h € H. If, for each i, m > R?/y?, then
In(60Rm/yi) < 2In(8m) and so, with probability at least 1 — 8, for all h € H,

8 [ & 576R2 2
erp(h) <erk(h)+ | = In(8m) +In (-) +k . 3)

° m i; ¥ 0
If, however, for some i, m < R?/y?, then the bound (3) is trivially true (since the term under the
square root is greater than 1). The result follows. |

A tighter bound can be given when the margin error is zero, as follows. (The bound involves
1/m rather than 1/,/m.)

Theorem 8 SupposeR>1andZ =Bgrx {0,1}, where Br={x € R": ||x|| <R}. Fixk e Nand let H
be the set of all threshold decision lists with k terms, defined on domain Bg. Letyi, s, ...,k € (0,1]
be given. Then, with probability at least 1 — 9, the following holds for s € Z™: if h is any threshold
decision list with k terms, and h classifies s with margin I' = (yi,...,Yk), then

erp(h) < % (576 R%D(I") log,(8m) + log, (%) +k>

where D(I") L (1/¥D).
Proof: This proof is similar to that of Theorem 7. It uses, first, the fact® that if
Q={seZ™:3heHwitherl(h) =0, erp(h) > ¢}

and
T =1{(s,8) €Z™xZ™:3h € Hwitherl(h) =0, erg(h) > £/2},

3. For similar results, see Vapnik and Chervonenkis (1971); Blumer et al. (1989); and Anthony and Bartlett (1999).

202



GENERALIZATION BY THRESHOLD DECISION LISTS

then, for m > 8/g, PM(Q) < 2P?M(T). This is so, because
P?™T) > P*™(3heH:eri(h)=0, erp(h) >eand erg(h) >€/2)

— /QPm({s’ :3heH, erl(h) =0, erp(h) > & and erg(h) > €/2}) dP™(s)

1

Z zpm(Q)v

for m > 8/e. The final inequality follows from the fact that if erp(h) = 0, then for m > 8/¢,
PM(erg(h) > €/2) > 1/2, for any h € H, something that follows for m > 8/¢ by Chebyshev’s
inequality or a Chernoff bound (Anthony and Biggs, 1992, for instance). As before, P?™(T) <
maXx,.z2m Pr(oz € T), where Pr denotes the probability over uniform choice of o from the ‘swap-
ping group’ G. A very similar argument to that given in the proof of Theorem 3 establishes that for
any z € Z2™,

PriczeT)<Pr|oze [ Js(h) |,
heH
where S(h) = {(s,s') € Z2™: ery/%(h) = 0, er,/*(A) > £/2}. Now, suppose S(R) # 0, so that for
some T € G, 1z = (s,5') € S(R), meaning that erS/2(R) = 0 and er,/*(A) > £/2. Then, by symmetry,

Pr(oz € S(h)) = Pr(a(tz) € S(R)). Suppose that er’/(h) = r/m, where r > em/2 is the number
of x; in s’ not classified with margin ' /2 by h. Then those permutations o such that o(tz) € S(h)
are precisely those that ‘swap’ elements other than these r, and there are 2™ " < 2™€"2 gych g. It

follows that, for each fixed he F|,

R om(1-g/2)
Pr(oz e S(h)) < T g—em/2.
The proof then proceeds as does the proof of Theorem 7, using the bound (2). [ |

4.4 Uniform Margin-based Bounds

One difficulty with Theorems 7 and 8 is that the number, k, of terms, and the margins y; are specified
a priori. A more useful generalization error bound would enable us to choose, tune, or observe
these parameters after learning. We now derive such a result. The approach we take to obtaining
a ‘uniform’ result of this type differs from that taken by Shawe-Taylor and Cristianini (1998) and
Bennett et al. (2000), and gives a slightly better bound.

We first need a generalization of a result from (Bartlett, 1998), where the following is shown.
Suppose PP is any probability measure and that {E (a1,02,d) : 0 < 01,02,0 < 1} is a set of events
such that:

e forall a, P(E(a,a,d)) <9,

e if0<o;<a<az<land0<d <d<1, thenE(ay,02,01) CE(a,a,d).

ae(0,1]
We modify and extend this result as follows.

Then]P( U E(0/2,0,80/2) | <dfor0<d< 1.
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Theorem 9 Suppose P is any probability measure, k € N, and that
{E(T1,T2,8):T1,M2 € (0,18 < 1}
is a set of events such that:
(a) forall T € (0,1, P(E(T,T,3)) <,
(b) Iy <T <T7 (component-wise) and 0 < & <& < 1imply E(I1,I2,861) CE(,T,9).
Then

P( U E«uann&w»)<5
re

(0.1]¢

for 0 < d < 1, where

o -{f1e=(3)}

Proof: Denoting by u= (1,1,...,1) the all-1 vector of length k, we have
P( U E«uanrﬁamg
re

,,...,ik_o{E (1/2)F,F86(M)) :for j = 1,... kv € ((%)”H, @] })
0 e((3)7w () wenitai k) )

Here, we have used property (b) of the events E("1,I"2,3), together with the following two ob-
servations: if yj € ((1/2)'1,(1/2)"], then (1/2)F < (1/2)'i'uand I > (1/2)'i*!u; and y; €
((1/2)1*%,(1/2)'1] implies

IA
=
T

C s

IA
=
T
g
o

(105 (%))2 > (42 > (i +1)(i; +2).

so that
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Now, by property (),

© 1 i1+1 1 i1+1 k 1 1
]P) E by u’ ) U, 6 - B
<i1,L'J 0 <<2) <2> Dlj+llj+2
o 1 i1+1 1 i1+1 K 1 1
> PE <—> u, (—) et
i1,i2,ik=0 2 2 = j+1ij+2

IN

IA
s
i 8
o
(o]
Il =
N
+
=
=|r
+
D
~__

We can now obtain the following ‘uniform’ result.

Theorem 10 Suppose R >1and Z =Bgrx {0,1}, where B = {x € R": ||x|| <R}. Let H be the set
of all threshold decision lists (with any number of terms) defined on domain Bgr. With probability at
least 1 — 8, the following statements hold for s € Z™:

1. forall k € N and for all y1,y2,...,¥ € (0,1], if h € H has k terms, and
= (y1,Y2,---,Yk), then

erp(h) < erk(h) +J % <2304R2D(F) In(8m) +1In <%> +2k+2 iiln (Iog2 (%))),

where D(I") = TK, (1/y?).

2. forall k € N, and for all y1,y2,...,¥k € (0,1], if h € H has k terms, and h classifies s with
margin ' = (y1,Y2,...,Yk), then

erp(h) < % (2304R2D(F) log, (8m) + log, (%) +2k+2 _i'n ('092 <%>>> ,
where D(I") L(1/¥D).

Proof: FixkeN.Ifl; = (y(ll),...,yl((l)) and M, = y1 - yf( , let E(I"1,T2,8) be the event that
there exists a threshold decision list h with k terms such that

erp(h) > erk2(h) + \/% (576 R2D(I1)In(8m) +In (%) +k> ,
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where D(I'1) = zi“:l(l/yi(l))z. Then, by Theorem 7, P™(E(I',I",d)) < 8, and it is easily seen that
M<r<rand0<& <6< 1limplyE(I1,l2,01) CE(T,I,J). It follows that

pm( U E((1/2)I',I',6C(F))) <9,
re

(0,1]K

cm:{ﬂ.ogz (;)}2.

So, with probability at least 1 — &, for all y1, Vs, ..., Yk € (0,1], if h is any threshold decision list with
kterms, and I = (y1,V2,...,Yk), then

erp(h) < erf (h) + \/% <2304R2D(F) In(8m) +In <§) +k+1n <T1r))>7

where D(I') = SK_,(1/y?). This holds for any fixed k. Replacing & by &/2%, we see that, with
probability at least 1 — &/2K, for any h with k terms and any I",

erp(h) <erk(h) + \/:] <2304R2D(F) In(8m) +In <2§k> +k+1n <c(1r))>’

and so, with probability at least 1 — z;‘;l(é/Zk) =1-9, for all k, for all h of length k, and for all T,

where

8

erp(h) < erk(h) +J o (2304R2D(F) In(8m) +In <§> +2k+2 iln <Iog2 <%>>>

(Note that we could have replaced & by day where (o) is any sequence such that 3>, ax =1.) The
second part of the theorem is proved similarly, using Theorem 8. |

4.5 Comparison with Related Results

Shawe-Taylor and Cristianini (1998) and Bennett et al. (2000) proved a margin-based generalization
result for the more general class of perceptron decision trees, in the case where there is zero I'-
margin error on the sample. The special case of their result that applies to threshold decision lists
gives a bound (with probability at least 1 — &) of the form

erp(h) <o(; (D(F)(Inm)2+klnm+ln(é>>>. (4)

(The O-notation indicates that constants have been suppressed.)
By comparison, the bound given in Theorem 10 is of order

erp(h) <O (% (D(F)Inm+k+iilnln (%) +In (%))) . (5)
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The first term of bound (5) is a Inm factor better than the corresponding term of (4). That this is
S0 is because we have used Zhang’s covering number bound, (1), rather than bounding the covering
number by using results on fat-shattering dimension, coupled with the bound ofAlon et al. (1997).
Additionally, since all these probability bounds are trivial (greater than 1) unless m > (R/y;)? for
all i, the remaining terms of the bound (5) are of order no more than O(k + InInm) rather than the
O(kInm) of (4), and they are potentially much smaller. This improvement results from the use of
Theorem 9. Theorem 10 is therefore an improvement over the results implied by Shawe-Taylor and
Cristianini (1998) and Bennett et al. (2000).

4.6 Bounds for Perceptron Decision Trees

Although the focus of this paper is threshold decision lists, we now show how the analysis here
can be used to improve and extend results on perceptron decision trees given by Shawe-Taylor
and Cristianini (1998) and Bennett et al. (2000). Recall that these are decision trees in which the
decision nodes compute threshold functions. The definition of margin error er" (h) for a perceptron
decision tree classifier h is defined in a straightforward way by extending Definition 6. Suppose the
threshold functions computed at the decision nodes are ty, ..., tx, where k is the number of decision
nodes, and suppose that t; is represented by weight vector w; and threshold 6;, where ||w;|| = 1.
Given I' = (y1,Y2,...,Yk), We say that the tree h classifies the labeled example (x,b) with margin
[ if h(x) =b and, forall 1 <i <Kk, |[(wij,x) —6i| >Vi. Then, for a labeled sample s, erL (h) is the
proportion of labeled examples in s that are not classified with margin I.

Shawe-Taylor and Cristianini (1998) and Bennett et al. (2000) obtain a generalization error
bound for the special case in which the margin error is zero. The following theorem improves
that bound and provides a bound applicable in the case of non-zero margin error. (\We have stated
only a ‘uniform’ result; that is, one in which the margin parameters and tree size are not fixed a
priori. However, embedded in the proof are the corresponding non-uniform results.) The proof is a
modification of the proofs of the theorems for threshold decision lists, in which we make use of the
fact that the number of binary trees with k vertices—and hence the number of decision tree skeletons
with k decision nodes (as noted in Quinlan and Rivest, 1989; Bennett et al., 2000)—is given by the

Catalan number Ny = 15 (39).

1 /2k
Theorem 11 For k € N, let Ny = 1 < c ) Suppose R > 1 and Z = Bgr x {0,1}, where Bg =

{x € R":||x|| <R}. Let H be the set of all perceptron decision trees (of any size and structure)
defined on domain Bg. With probability at least 1 — &, the following statements hold for s € Z™:

1. forall k € N and for all y1,y2,...,¥ € (0,1], if h € H has k decision nodes, and
= (y1,Y2,---,Yk), then

erp(h) < erk(h)

+¢ % (2304R2D(F) In(8m) +In (2k+;Nk) LK 2 igln <I092 (%))),

where D(T) = 5, (1/y2).
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2. forallk e N, and for all y1,Ys,...,¥ € (0,1], if h € H has k decision nodes, and h classifies s
with margin I = (y1,Y2,...,Yk), then

erp(h) < % (2304 R%D(I") log, (8m) + log, (zk;sz) +k+2 i_iln (Iog2 (%))) ,

where D(T) = $K , (1/y?).

Proof: The proof is similar to that of Theorems 7, 8 and 10, so we will omit some of the detail.
As in the proof of Theorem 7, for any k € N, for H the class of perceptron decision trees (or, rather,
the functions represented by such trees) with k decision nodes, for any ', if

Q={seZ™:3heHwitherp(h) > erk(h) +¢}

and
T ={(s,5) €ZM™xZ™: 3h € H witherg (h) > erl (h) +&/2},

then for m > 2/€2, P™(Q) < 2P?™(T). With G the swapping permutation group, we have, as before,
P2M(T) < max{Pr(oz € T) : z € Z?™}, where Pr denotes the probability over uniform choice of o
from G. Given a perceptron decision tree on Bgr, we may (as discussed in the proof of Theorem 7)
realize the tree as one defined on D = {(x,—1) : x € R", ||x|| <R}, in which the decision nodes com-
pute homogeneous threshold functions. Fixing z € Z?™, and arguing as in the proof of Theorem 7,
for i between 1 and k, let C; be a minimal-cardinality v; /2-cover of L with respect to the d metric,
where L is the set of linear functions x — (w,x) for ||w|| = 1, defined on D. Then |C;| is bounded as
in (2). Suppose that, in a given perceptron decision tree h, and at a given decision node, the test is
given by the threshold function f;, represented by weight vector w; and let W; be an element of the
cover C; which is distance less than y; /2 from w;. Then a very similar analysis to that in Theorem 7
establishes that if f is the tree obtained by replacing each f; by f;, we have

Pr(ozeT)<Pr{oze |Jsh) ],
heH
where S(h) = {(s,5') € 22 : er,/*(h) > ers/*(A) +£/2}. Now, the set Hi of all such h will have
cardinality bounded as follows:

k k
“:” < 2k+lNk |—l ‘Ci| < 2k+1Nk |—12(288R2/yi2)logz(60Rm/w)’
i= i=

where the factor of 2t accounts for the possible binary values at the k + 1 leaves of the tree, and
Nk accounts for the number of skeletons of trees with k decision nodes. By arguing precisely as in
Theorem 7, we can then establish that for 6 € (0, 1), for fixed k and fixed I', with probability at least
1, for all perceptron decision trees with k decision nodes, erp(h) < erk (h) 4-&(I", 8,k, m), where

&(T",5,k,m) = \/% (576 R2D(I")In (8m) + In <2k+;Nk> )
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Next, we apply Theorem 9. Fixing k and taking E(I'1,I2,0) to be the event that there exists a
perceptron decision tree h with k decision nodes such that erp(h) > erk2(h) + g(I1,8,k,m), we
establish that with probability at least 1 — o, for all T,

erp(h) < erk(h) +J % (2304R2D(F) In(8m) +In <2k+§Nk> 42 iln (Iog2 <$>>>

Finally, replacing & by &/2% and proceeding as in the final part of the proof of Theorem 9, we obtain
the desired result. The proof of the second part of the theorem is similar. [ |

The result given in Shawe-Taylor and Cristianini (1998) and Bennett et al. (2000) corresponds
to the second case given in Theorem 11 and takes the form: with probability at least 1 — &, for all I
and for any perceptron decision tree such that er” (h) =0,

erp(h) <O (% <D(F) (Inm)2 4+-KkInm+ InNk +In (%))) ;

where we have suppressed the constants. Theorem 11 improves upon this, as can be seen by similar
considerations to those made in comparing bounds (4) and (5) above. In particular, an expression
of order D(I") (Inm)2 +kInm is replaced by one of order D(I") Inm+k 4 InInm.

5. Margin-Based Error Boundsfor Multilevel Threshold Functions

Suppose that h is a k-level threshold function, represented by weight vector w with ||w|| = 1 and
threshold vector 8 = (61,62, ...,6x) (Where 81 < 8;--- < 6). Regarded as a threshold decision list,
the tests are the threshold functions t;, where t;(y) = sgn((w, x) — 6;). Recall that we say h classifies
the labeled example (x,b) with marginy > 0 if h(x) = b and, forall 1 <i <Kk, [(w,x) —6i| > V. (In
other words, h classifies x correctly, and x is distance at least y from any of the hyperplanes defining
the multilevel threshold function h.) As above, for a labeled sample s, er{(h), the sample error at
margin y, is the proportion of labeled examples in s that are not correctly classified with margin y.

To bound generalization error in this special case, we take a slightly different approach to the
one used above for general threshold decision lists. Rather than take a cover for each term of the
decision list, a more “‘global’ approach can be taken, exploiting the fact that the planes are parallel.
In taking this approach, however, the analysis considers only one margin parameter, y, rather than k
possibly different margin parameters, one for each plane. (As before, for the sake of simplicity, we
assumethatR > landy<1)

5.1 Generalization Error Bounds for k-level Threshold Functions
We have the following result.
Theorem 12 Suppose R > 1and Z = Bg x {0,1}, where Bk = {x € R": ||x|| < R}. Fixk € N and

let H be the set of all k-level threshold functions defined on domain Bgr. Let P be any probability
distribution on Z, and suppose y € (0,1] and & € (0,1). Then, with P™-probability at least 1 — 8, a
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sample s is such that if h € H, then

et <ens & (252 om0 (7)1 (5)

Proof: Fixye (0,1]. As earlier, with H the set of k-level threshold functions on Bg, if

Q={sezZ™M:3heHwitherp(h) >erf(h)+¢€}

and
T ={(s,8') €Z™xZ™: 3h € H with erg(h) > er{(h) +-¢/2},

then P™(Q) < 2P?™(T). Also as before, P?™(R) < max{Pr(oz € R) : z € Z?™}, where Pr denotes the
probability over uniform choice of o from the ‘swapping group’ G. Let Lg be the set of all functions
of the form x — (w,x), where w € R" satisfies ||w| = 1, and where the domains of the functions
are Br. Now fix z € Z?™, let x € X?™ be the corresponding x;-vector, and let C be a y/4-cover of
minimum size of L with respect to the dX metric. By (1),

log, |C] < log, Neo(LRr,Y/4,2m)

576R?
v log, (2[16R/y+2]2m+1)

576R? 80Rm
7 log, [ —— |.

Each functign in C is represented by a weight vector, andAwe shall denote the set of these weight
vectors by W. For each w € R", denote by W a member of W such that fori =1,2,...,2m, [(w,X;) —
(W,X)| <y/4. Let

<

IN

D={6cR:3InecZn[—(4R/y)—1,(4R/y) + 1] such that ® = n(y/4)},

k k
6] < <%+2> < <@> .
y y

Now, suppose h is a k-level threshold function defined on Br. Then, of course, h is represented
by a weight vector w € R" with ||w| = 1 and a threshold vector 8 € R¥. Since, for all x € Bg,
[(w,x)| < [lw]|[|x]| = [|x|| < R, we can assume that each 6; satisfies |6;| < R. Then, denote by 6 a
member of ® such that fori = 1,2, ...k, |6; — 8| < y/4. (Such a 8 exists by the way in which @ is
defined.) Let H be the set of all k-level threshold functions representable by weight vectors W € W
and threshold vectors 8 = (64,...,6x) € ©. Then

and let © = DK. Then

k
IH| < 2 2(576R?/y) log,(80RM/Y) (@) '
B Y

(Here, the first factor of 2 accounts for the two different ways in which the classifications can
alternate as we traverse the planes is a normal direction.) For each h € H, let h be the k-level
threshold vector with weight vector w € W and threshold vector 8 € 8, where W and 8 satisfy the
properties indicated above. Foreachi=1,2,...,2m, foreach j=1,2,...,k,

[ ((wxi) —85) — (8, i) —85)] < [{w,xi) — (W, )| + 68 — B] < v/4+v/4=y/2.
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This means that, when x is any one of the xj, and 1 < j <Kk,

(w,x) <0 = (W,x) <8j+vY/2,

W,x) >8] = (W,x)>0j—y/2,
(W,x) <Bj+y/2 = (Wx)<8j+y,
<W7X>Zej_Y/2 = <W7X>>ej_y

It follows that er¥/*(R) > er¢(h) and er¥(h) > erf/?(R). So, if we have 0z = (s,s') € T and erg(h) >
er{(h) +¢/2, then

er’/2(h) > erg(h) > ert(h) +&/2 > erf/*(h) +¢/2.

The proof now proceeds as the proof of Theorem 7. For any z € Z2™,

Pr(czeT) <Pr (oz e S(ﬁ)) ,

herl

where

S(h) = {(s,5') € Z2™: er?(h) > er¥?(h) +-¢/2}.
Fixing h € A, we find that, by Hoeffding’s inequality,

Pr(oz € S(h)) < exp(—€*m/8).
Therefore,

k
P™(Q) < 2|H| exp(—ge2m/8) < 42576R"/y*log;(80Rm/y) (wTR) exp(—€2m/8).

So, with probability at least 1 — 8, for all h € H,

erp(h) < ers(h) + \/% <(5752R2> In (@) +kln <1OTR> +1In <%>>

The result follows on noting that the bound stated in the theorem is trivially true if m < R?/y?, and
is implied by the bound just derived if m > R? /y?. [ |

For the case in which the margin error is zero, a better bound can be derived.

Theorem 13 Suppose R > 0and Z =Bgr x {0,1}, where Bk = {x € R": ||x|| <R}. Fixk € N and
let H be the set of all k-level threshold functions defined on domain Bgr. Let P be any probability
distribution on Z, and suppose y € (0,1] and & € (0,1). Then, with P™-probability at least 1 — §, a
sample s is such that if h € H and er{(h) = 0, then

2 (1152R? 10R 2
erp(h) < o ( v log,(9m) +klog, <T> +log, (5)) .
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Proof: This result is obtained by modifying the proof of Theorem 12, just in the same way as
Theorem 8 is obtained by modifying the proof of Theorem 7. First, one uses the fact that if

Q={sezZM:3heHwitherf(h)=0,erp(h) > ¢}
and
T ={(s,8') €ZM™xZ™M:3h € H wither{(h) =0, erg(h) > €/2},

then, for m > 8/¢, P™(Q) < 2P?™(T). As before, P?™(T) < max,.zzn Pr(oz € T), where Pr denotes
the probability over uniform choice of o from the ‘swapping group’ G. Then, it can be seen that for
any z € Z?™,

PriczeT)<Pr|oze [Js(h) |,
heH
where S(h) = {(s,5') € Z2™: er{*(h) = 0, er/%(h h) > &/2} and where H is as in the proof of Theo-
rem 12. Arguing as in the proof of Theorem 8, if S(h) £ 0, so that for some T € G, 12 = (s,s') € S(h),
then Pr(oz € S(ﬁ)) = Pr(o(1z) € S(h)). Supposing that ery/ (h) = r/m, where r > em/2 is the
number of x; in s’ not classified with margin y/2 by h, we see that there are at most 2M—" < 2m-em/2
o such that o(tz) € S(h). Hence, for each h € H,
2m(1—a/2)
G|

The proof then proceeds as does the proof of Theorem 12. [ |

Pr(oz e S(h)) < = Em2

5.2 Uniform Margin-based Bounds for Multilevel Threshold Functions

It is straightforward to remove the a priori specification of yand k, using Theorem 9. The following
bounds are obtained.

Theorem 14 Suppose R >0and Z =Bgr x {0,1}, where B = {x € R": ||x|| <R}. Let H be the set
of all multilevel threshold functions defined on domain Bg. Let P be any probability distribution on
Z. Then, with P™-probability at least 1 — 8, the following hold:

1. forall k € Nand forall ye (0,1], if h € H is a k-level threshold function, then
erp(h) <eri(h) +¢(y,d,k,m)

where € = €(y, d,k, m) is given by

o= /2 (% o k(29 (5 20 (0, (1)) )

2. forall k € N, and for all y € (0,1], if h € H is a k-level threshold function and h classifies s
with margin vy, then

erp(h) < % (46(\)/§R2 log,(9m) +k + klog, <$> +log, (%) +2In (Iog2 (%))) .
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Proof: Let E(y1,Y2,0) C Z™ be the event that there exists h € H with k terms such that

erp(h) > er2(h) +¢€'(y1,8,k,m),

€ (y,d,k,m) = \/% (11‘33R2 In(9m) +kIn <1OTR> +1In <%>>

Then, by Theorem 12, PZ™(E(y,y,5)) < 3. Itisalsoclearthat0 <y; <y<y, <land0 <& <d<1
imply E(y1,Y2,81) C E(y,Y,d). By Theorem 9, with 5/2 in place of &, we therefore have that, for
any fixed k € N, with probability at least 1 — /2, for all y € (0, 1], every k-level threshold function
h satisfies

where

erp(h) < er¥(h)+¢€'(y/2,3c(y) /2%, k,m),

where c(y) = 1/ (log,(4/y))?. Thus, with probability at least 1 — &, for all y € (0,1] and all k € N,
every k-level threshold function has

erp(h) < er¥(h) +¢€(y/2,8c(y) /2% k,m) < er!(h) +£(y,5,k,m).

The first part of the result now follows, and the second is proved similarly, using Theorem 13. B

5.3 Comparison with the Bounds for General Threshold Decision Lists

The generalization error bound implied by Theorem 7 in the case in which y; =y for all i is, sup-

pressing constants,
1 /R 1
Y - —
erp(h) <erf(h)+0 <\/m < v Inm-+In <6>>>

(with probability at least 1 — &), whereas that of Theorem 12 is

erp(h) <er{(h)+0O <\/% <R?2|nm+kln (%) +1In (%))) ;

so there is some advantage in the more particular analysis that has been carried out for multi-level
threshold functions. Similar comments apply to the respective ‘uniform” bounds of Theorem 10 and
Theorem 14.

6. Conclusions and Further Work

This paper has derived different types of theoretical bounds on the generalization error of threshold
decision lists. Applying the standard PAC model, by bounding the growth functions, we have given
bounds for threshold decision lists and multilevel threshold functions. We then derived generaliza-
tion error bounds that involve the margins by which successive planes in the threshold decision list
‘clear’ the training examples. These bounds improve upon those that follow (for the special case
in which the margin error is zero) from earlier results of Bennett et al. (2000) and Shawe-Taylor
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and Cristianini (1998). Although threshold decision lists have been the focus of this paper, we have
also presented generalization error bounds for perceptron decision trees that improve and extend (to
the case in which margin error need not be zero) previous such bounds from Bennett et al. (2000)
and Shawe-Taylor and Cristianini (1998). For the subclass of multilevel threshold functions (those
threshold decision lists in which the defining hyperplanes may be taken to be parallel), a different
approach to constructing empirical covers has been shown to lead to better margin-based bounds
than those that would follow from the general bounds obtained for threshold decision lists.

There are several possible directions for further investigation.

We used upper bounds on the growth functions of threshold decision lists and multilevel thresh-
old functions to upper bound generalization error. An interesting combinatorial question concerns
the VC-dimension of these classes. Lower bounds on the VC-dimension would provide worst-case
lower bounds on generalization error (see Ehrenfeucht et al., 1989; Anthony and Biggs, 1992; An-
thony and Bartlett, 1999; Blumer et al., 1989). Certainly, upper bounds on the VC-dimensions
follow from the bounds we obtained on the growth functions, but these are quite likely to be loose
and a more direct attempt might be productive in obtaining not only better upper bounds, but also
lower bounds, on the VC-dimension.

There are other approaches to deriving generalization error bounds. Of particular importance
recently have been methods using Rademacher complexity and local Rademacher complexity, to-
gether with concentration-of-measure results (Bartlett and Mendelson, 2001; Mendelson, 2003;
Bartlett et al., 2002; Bousquet et al., 2002; Bousquet, 2003). It would be interesting to investigate
such approaches for threshold decision lists.

The margin-based results obtained here for multilevel threshold functions only involve a single
margin parameter rather than separate ones for each plane, and it is possible that a different approach
might permit such added flexibility.

We have not considered in this paper the algorithmics of learning threshold decision lists. As
mentioned, heuristics for learning threshold decision lists were studied by Marchand and Golea
(1993), and although no theoretical generalization error bounds were derived there, the techniques
appeared to perform well in experiments. Furthermore, the perceptron decision tree algorithms FAT,
MOC1, and MOC2 due to Bennett et al. (2000) are variants of the OC1 algorithm (Murthy et al.,
1994) that are explicitly driven by the aim of maximising the margins at the decision nodes. It would
be interesting to modify the techniques of Marchand and Golea (1993) with a view to obtaining large
margins, and to modify the algorithms of Bennett et al. (2000) so as to learn a threshold decision
list rather than a perceptron decision tree.
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