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Abstract

A novel approximation method is presented for approxintatire value function and selecting
good actions for Markov decision processes with large statkaction spaces. The method ap-
proximates state-action values as negative free energ@s undirected graphical model called a
product of experts. The model parameters can be learneikefficbecause values and derivatives
can be efficiently computed for a product of experts. Actioas be found even in large factored
action spaces by the use of Markov chain Monte Carlo samp8imgulation results show that the
product of experts approximation can be used to solve |largielgms. In one simulation it is used
to find actions in action spaces of siZ&2

Keywords: product of experts, Boltzmann machine, reinforcementiear, factored actions

1. Introduction

An agent must be able to deal with high-dimensional and uncertain statesctods in order to
operate in a complex environment. In this paper we focus on two relateteprebestimating the
value of a state-action pair in large state and action spaces; and selecithg@imns given these
estimates. Our approach is to borrow techniques from the graphical mpdigimture and apply
them to the problems of value estimation and action selection.

Inferring the state of the agent’s environment from noisy observatiagbéen a popular subject
of study in the engineering, artificial intelligence and machine learning commun@ies formal-
ism is the graphical model (Cowell et al., 1999). A graphical model sspris the distribution of
observed data with a probabilistic model. The graphical representatioe ofdtiel indicates which
variables can be assumed to be conditionally independent. Given ofisesvaf some variables,
inferring the distribution over unobserved (or hidden) variables is @rmpaunt importance in using
and learning the parameters of these models. Exact and approximatedaefatgorithms have been
and still are intensely studied in the graphical models and engineering liesgkialman, 1960;
Neal, 1993; Jordan et al., 1999; Cowell et al., 1999).

Acting on certain or uncertain information has been studied in a differetyt bbliterature. Re-
inforcement learning involves learning how to act so as to maximize a revgaral given samples
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of sequences of state-action pairs and rewards from the environBtorf and Barto, 1998). It
has been closely linked to Markov decision processes and stochastimiatyprogramming (see
for example Sutton, 1988; Bertsekas and Tsitsiklis, 1996). There lemsvberk on reinforcement
learning with large state spaces, state uncertainty and partial observatelityor example Bert-
sekas and Tsitsiklis, 1996; Jaakkola et al., 1995). In particular theexact dynamic programming
methods for solving fully and partially observable Markov decision preegg¢see Lovejoy, 1991,
for an overview). There are also approximate methods for dealing willvak#sed state and action
variables (see for example Baird and Klopf, 1993; Sutton, 1996; Santagtal., 1998).

Recently, techniques from the graphical models literature have startednt® together with
those from the planning and reinforcement-learning community. The reasilbben new algo-
rithms and methods for learning about decision processes and makingpdgciader uncertainty
in complex and noisy environments (see for example Boutilier and Poole; M®8lester and
Singh, 1999; Thrun, 2000; Sallans, 2000; Rodriguez et al., 20Qfhdband Boutilier, 2001).

In this article, we propose to make use of techniques from graphical madelapproximate
inference to approximate the values of and select actions for large Mddasion processes. The
value function approximator is based on an undirected graphical madtk esproduct of experts
(PoE). The value of a state-action pair is modeled as the negative fregyafehe state-action
under the product model.

Computing the free energy is tractable for a product of experts model.etywcomputing
the resulting distribution over actions is not. Given a value function expdeas a product of
experts, actions can be found by Markov chain Monte Carlo (MCMC) sagip As with any
sampling scheme, it is possible that action sampling will perform poorly, &djyeas the action
space becomes large. There are no theoretical guarantees as tethigerfess of sampling for
short periods of time.

The advantage of using MCMC sampling for action selection is that theregmmsebconcerted
effort put into making sampling methods work well in large state (or in our,@t®n) spaces. Itis
also possible to use this technique to approximate value functions overataabstate and action
spaces, or mixtures of discrete and real-valued variables, and to makef MCMC sampling
methods designed for continuous spaces to do action selection. It is arncahgpiestion whether
or not action sampling works well for specific problems.

Our technique uses methods from reinforcement learning and fronugiodf experts model-
ing. We therefore include a short review of the Markov decision pot@snalism, reinforcement
learning, and products of experts. For clarity, we will focus on onéqdar kind of product of
experts model: the restricted Boltzmann machine.

We then describe the method, which uses a product of experts netwaroas| value function
approximator. We demonstrate the properties of the PoE approximation onsig itacluding an
action-selection task with a 40-bit action space. We conclude with some siiscus the approxi-
mation method and possible future research.

2. Markov Decision Processes

An agent interacting with the environment can be modeled as a Markov degisicess (MDP)
(Bellman, 1957b). The task of learning which action to perform basedceward is formalized
by reinforcement learning. Reinforcement learning in MDPs is a much stymieblem. See for
example Sutton and Barto (1998).
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Figure 1: A Markov decision process. Circles indicate visible variablled,sguares indicate ac-
tions. The state is dependent on the previous state and action, and the dewands on
the current state and action.

If the sets of states and actions are finite, then the problem is called a finite MiizR of the
theoretical work done in reinforcement learning has focused on the tiage, and we focus on
finite MDPs in this article.

Formally, an MDP consists of

e A set of statess, and actions7,

An initial states® or distributionP(s"),

A transition distributiorP(s 1|, a), &, §* ¢ §, a € 4, and

A reward distributiorP(r!|s,a), s € 5, ' e R, a' € 4.

In the abovet indexes the time step, which ranges over a discrete set of points in time. We will
denote the transition probabilityr(s*! = j|s' =i,a' =a) by Pjj(a). We will also denote the
expected immediate reward received by executing actiorstatei by

ri(@)=(r'|s =ia = a>P(r'\s‘,a‘)’

where (-)p denotes expectation with respect to distributin Bold-face text denotes vectors or
matrices.

The goal of solving an MDP is to find policy which maximizes the total expected reward
received over the course of the task. A policy tells the learning agerntadtian to take for each
possible state. It is a mappingfrom states to actions or distributions over actions. We will focus
on stationarypolicies, in which the same mapping is used at every point in time.

The expected discountedturn for a policy tis defined as the sum of discounted rewards that
is expected when following polics

(R) = (r4yhpyrttey ) = <k§0y‘<r”"> :

L

wheret is the current time, and(s, a) is the probability of selecting acticain states. Note that
the discounting is required to ensure that the sum of infinite (discountedyds is finite, so that
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the quantity to be optimized is well-defined; the discount fagter0,1). The expectation is taken
with respect to the policyr, the initial state distributio(s°), the transition distributiof; (a), and
the reward distributiol®(r|s, a).

To solve an MDP, we must find a policy that produces the greatest expetten. With knowl-
edge of transition probabilitie3;j (a) and expected immediate rewargg), and given a stochastic
policy 1, we can calculate the expected discounted return after taking the adtiom the current
states and following policyrtthereafter:

Qs a) = < i yrtk|d =sd = a>
o

s

iy 00 Vil d — g gt :a>
(ryg e

= 2 Psi@
J

T

rs(a) + %ﬂ(i,b)vQ”(J' b) |- (1)

Heret denotes the current time. The functi@f is called theaction-value functioror policy Tt
The action-value function tells the agent the expected return that carhleyed by starting from
any state, executing an action, and then following poticy

Equation 1 is often called the Bellman equations @ It is a set of|$| x |4| linear equa-
tions (one for each statec § and actioma € 7). The set of coupled equations can be solved for
the unknown valueQ™(s,a). In particular, given some arbitrary initializatid@j, we can use the
following iterative update:

Qkii(sa) = Z Psj(a)
J

rs(a) + %ﬂ(i b)YQK(], b)] (2)

for all se€ § anda € 4. The iteration converges to the unique fixed-pdditask — . This
technique is called iterative policy evaluation.

The class of MDPs is a restricted but important class of problems. By asguhaha prob-
lem is Markov, we can ignore the history of the process, and therelwemran exponential in-
crease in the size of the domain of the policy (Howard, 1960). The Maaskeumption underlies
a large proportion of control theory, machine learning and signal psieg including Kalman fil-
ters (Kalman, 1960), hidden Markov models (HMMs) (Rabiner and Jub®86), two-time-slice
dynamic Bayesian networks (Dean and Kanazawa, 1989), dynamicapnagng (DP) (Bellman,
1957a) and temporal difference learning (TD) (Sutton, 1988).

When the states or actions are composed of sets of variables, we willad¢fiem as “factored”
states or actions. It is common for problems with large state or action spacasdstates and
actions expressed in a “factored” form. There has been a lot ofr@saad discussion about the
problems of dealing with large state spaces represented in factoredseerfof example Bertsekas
and Tsitsiklis, 1996). There has been comparatively little on dealing with kEctien spaces or
factored actions (Dean et al., 1998; Meuleau et al., 1998; Peshkin 2299, Guestrin et al., 2002).
In practice action spaces tend to be very large. For example considetiilaian of large numbers
of muscles, or the simultaneous actions of all of the players on a football Tiblkg state or action
space could also be continuous (Baird and Klopf, 1993; Santamaria £288).
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3. Temporal Difference Learning

Temporal difference (TD) learning (Sutton, 1988) addresses thegmmoof predicting time-delayed
rewards. We can view TD as performing approximate dynamic programmingnipute future
reward. Because they use a value function as an estimate of futurenpanice instead of sampled
rewards, TD algorithms trade off bias against variance in estimates oéfreward. The nature of
the approximation, this tradeoff, and the convergence of TD algorithms lb@en the subjects of
much study.

Temporal difference algorithms can be used to estimate the value of statestaonds. TD
techniques update the value estimate for states and actions as they are ns@d@uted. Backing
up the values of states only as they are visited gives rise to a number ofdedeupiles. The SARSA
algorithm computes the action-value function of the current policy (RummmedhyNiranjan, 1994;
Sutton, 1996):

Q(s,a) — (1-Kk)Q(s,a) +k [ +yQ(s™ha*)], ©)

wherek is a learning rate.

This update can be viewed as a Monte Carlo approximation to the update .¢2).H'he name
derives from the fact that the update depends on the set of vidies, rt, s+, a*+11. SARSA
computes the expected return conditioned on a state-action pair. The igudied@ned to move the
estimated value function closer to a “bootstrapped” Monte Carlo estimateés Heduced over time
in the appropriate manner, and all states continue to be visited an infinite nofimees, then this
algorithm will converge to the value function of the current policy (Singale2000).

Given the state-action value function, a greedy policy with respect to the fanction can be
found by maximizing over possible actions in each state:

TI(S) = argama>Q"(s, a).

Note that this involves an explicit maximization over actions. When the actiorespdarge or
continuous, this maximization will become difficult.

The optimal value function and policy can be found using SARSA, by comipwalue function
estimation (Eq.3) with policies which become greedy with respect to the valwtidanin the
limit of infinite time (i.e. an infinite number of value function updates, with all statesations
continuing to be visited/executed). See Singh et al. (2000) for a praafafergence and conditions
on the policies.

4. Function Approximation

In many problems there are too many states and actions to represent thevalit®function as
a state-action table. One alternative is to use function approximation. If {@xamation is
differentiable with respect to its parameters, the parameters can be ldgrmgthg to minimize
the TD error. The TD error is defined as

Erp(s,a) = [r'+yQ(s*h,a™™)] —Q(s,a). (4)

Consider an approximate value functi@ts, a;0) parameterized by parametér The update
rule for the parametdd is given by

AB = AErp(s,a)eQ(s,a;0), (5)
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where] is a learning rate. This is the approach taken by Bertsekas and Tsitsikli6)(&ghong
others. Although this approach can work in some cases, there are irmaneguarantees of
convergence to a specific approximation, or guarantees of the agafrttee approximation if it
does converge.

5. Boltzmann Machines and Products of Experts

We will use a product of experts model to approximate the values of stadesctions in a Markov
decision process (Hinton, 1999, 2002). Products of experts abapitstic models that combine
simpler models by multiplying their distributions together.

In this section we will focus on a particular kind of product of expertedaa restricted Boltz-
mann machine (Smolensky, 1986; Freund and Haussler, 1992; Hint@2).2lhis case is interest-
ing because inference and learning in this model has been intensely stAdidey et al., 1985;
Hinton and Sejnowski, 1986; Smolensky, 1986; Freund and Haus8E2; Hinton, 2002), and the
binary values are relatively easy to interpret.

Boltzmann machines are undirected models. That means that the model sgetifiproba-
bilities, rather than conditional probabilities. Directed graphical modelsxXample Bayesian net-
works, have also been used in conjunction with value function approximatioere the Bayesian
network encodes a compact model of the environment (see for exampldi@and Poole, 1996;
Boutilier et al., 2000; Rodriguez et al., 2000; Sallans, 2000; Thrum)R0hey have also been used
to directly encode utilities (Boutilier et al., 1999, 2001).

The free energy of a directed model could also be used to encode Exxiapgie value function.
However, unlike with product models, the computation of the free energyitarderivatives is
generally intractable for directed models. This is because inference in ttiel isanot tractable.
Research in approximate inference techniques for directed models is artantparea of current
research.

In a directed model, it is also intractable to compute the conditional distributionamtions
given states, as with the product of experts models. It would be possitbertbine an approximate
inference technique with a directed model to approximate the value, andsgsbaiapproximate
inference technique to sample actions from the network. The result wawtkl the flavor of an
actor-critic network, where the free energy of the directed model playsdle of the critic, and
the approximate inference technique plays the role of the actor. Thetadeawould be that the
distribution over actions could be evaluated, rather than just sampled samittathe product of
experts. The disadvantage is that we would use an approximation nobijusttion selection, but
also to compute the free energy and its derivatives.

We begin the next section with a discussion of the general Boltzmann ma&ukiey et al.,
1985) and review some necessary concepts such as energy aeddrgg, the Boltzmann distribu-
tion, and Markov chain Monte Carlo sampling. We then discuss the restrictiézhiBann machine.
For completeness, we include some derivations, but defer them to App&ndhe reader is di-
rected to Hertz et al. (1991), chapter 7, for a more in-depth introductitretBoltzmann machine.
Finally, we discuss more general products of experts.

5.1 Boltzmann M achines

A Boltzmann machine is an undirected graphical model. The nodes repl®sary random vari-
ables that have values of 1 or 0 and the weighted edges represenspapmmetric interactions
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between the variablésThe nodes are usually divided into two disjoint subsets, the “visible” vari-
ables,V and the “hidden” variabled;l. An assignment of binary values to the visible or hidden
variables will be denoted by or h and the binary value of an individual visible or hidden variable,
V; or Hy, will be denoted by or hx. The symmetric weight between nodand nodek is wik. In a
general Boltzmann machine, weights can occur between any pair of.nodes

The weights determine the “energy” of every possible joint configuratiothe@fvisible and
hidden variables:

E(v,h) =— %Wikvi hg — ZWijViVj - Z Wimhkhm,
I, i<) k<m
wherei and j are indices over visible variables akdand m are indices over hidden variables.
The energies of the joint configurations determine their equilibrium probabiliteethe Boltzmann
distribution:
exp(—E(v,h))

SoreXp—E(V,h)’
whereV, h indexes all joint configurations of the visible and hidden variables.

The probability distribution over the visible variables can be obtained by sumaoviegall
possible configurations of the hidden variables:

P(v,h) =

exp(—F(v)) = Zexp(—E(v,h)), (6)

P(v) = exp(—F(v)A) '
Yoexp(—F (V)
F(v) is called the “equilibrium free energy” of. It is the minimum of the “variational free
energy” ofv which can be expressed as an expected energy minus an entropy:

Fq(v) = qu)E(v,h) + Zq(h) logq(h), (7

whereqis any distribution over all possible configurations of the hidden units. Teertrekfirst term

in Eq.(7) low, the distributiom should put a lot of mass on hidden configurations for wi¢h, h)

is low, but to make the second term low, thelistribution should have high entropy. The optimal
trade-off between these two terms is the Boltzmann distribution in widjbhv) O exp(—E(v, h)):

P(h[v) = exp(—E(v,h)A) '
2 exp(—E(v,h))

This is the posterior distribution over the hidden variables, given the visdriahes. Using this
distribution, the variational free energy defined by Eq.(7) is equal togbdilerium free energy in

Eq.(6):

(8)

F(v)= ZP(h]v)E(v,h)+ZP(h|v) logP(h|v). 9)

1. We will assume that the variables can take on values of 1 or 0. Alteghatilie Boltzmann machine can be formu-
lated with values oft1. We also omit biases on variables, which can be incorporated into thétaédig adding a
visible variable which always has a value of one. Weights from this “adwaay variable act as biases to the other
variables.
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In Appendix A, we show that the equilibrium free energy can be written eéthén Eq.(6) or as in
Eq.(9) (see Appendix A, Eq.11).

One important property of Boltzmann machines is that, with enough hidderblesja Boltz-
mann machine with finite weights is capable of representing any “soft” distribotier the visible
variables, where “soft” means that the distribution does not contain aapilities of 1 or 0. An-
other important property is that there is a simple, linear relationship betw@grand each of the
weights in the network (Ackley et al., 1985). For a weight between a visiideazhidden unit this
relationship is

oF (V)
OWi

= Vi (") pn ) »

where the angle brackets denote the expectatidip ahder the distributio(hg|v). At first sight,
it is surprising that this derivative is so simple because changinwill clearly change the equi-
librium distribution over the hidden configurations. However, to first gréiee changes in this
equilibrium distribution have no effect da(v) because the equilibrium distributid?(h|v) is the
distribution for whichF (v) is minimal, so the derivatives df(v) w.r.t. the probabilities in the
distribution are all zero (see Appendix A).

For a general Boltzmann machine, it is computationally intractable to compute it egm
distribution over the hidden variables given a particular configurationf the visible variables.
(Cooper, 1990). However, values can be sampled from the equilibristribdtion by using a
Markov chain Monte Carlo method. Once the Markov chain reaches equififin other words,
all information about the initialization has been lost), hidden configurationsaangled according
to the Boltzmann distribution (Eq.8).

One sampling method is called the Gibbs sampler (Geman and Geman, 1984).aGived
configurationv of the visible variables, the Gibbs sampler proceeds as follows.

1. Initialize all the hidden variables with arbitrary binary values:
hO,..hO, ... h2.

2. Repeat the following until convergence:
In each iteration = 1,2, ..., and for each random variakig:

(@) Compute the enerds = E(v,hx =1, {hm=hi;t: m#k}).
(b) Compute the enerdgo = E(v,hx =0, {hm = ht-1:m#£Kk}).

(c) Sethx =1 with probability exg—E1)/(exp(—Eo) +exp(—Ez1))
and sethy = 0 with probability exgd—Ep)/(exp(—Eo) + exp(—E;1)).

This procedure should be repeated until the Markov chain convergestationary distribution
which is given by Eq.(8). Assessing whether or not convergenced@asred is not trivial, and will
not be discussed here.

The Gibbs sampler is only one possible sampling technique. There are many, dticluding
the Metropolis-Hastings algorithm (Metropolis et al., 1953), and hybrid tél@arlo algorithms
(Duane et al., 1987). The reader is directed to Neal (1993) for awevidviarkov chain Monte
Carlo methods.

The difficulty of computing the posterior over the hidden variables in a géB&itzmann ma-
chine makes it unsuitable for our purposes, because it means thatelenémyy of a visible vector
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can not be easily evaluated. However, a restricted class of Boltzmanrmes¢Bmolensky, 1986;
Freund and Haussler, 1992; Hinton, 1999, 2002) is more useful ta agestricted Boltzmann ma-
chine there are no hidden-hidden or visible-visible connections but ididgi-visible connection
is allowed. The connectivity of a restricted Boltzmann machine therefonesfarbipartite graph.

In a restricted Boltzmann machine the posterior distribution over the hiddébies factors
into the product of the posteriors over each of the individual hidden (Rresund and Haussler,
1992) (see Appendix A for a derivation):

P(hlv) = U P(hi|v).

The posterior over hidden variables can therefore be computed dffjclegcause each individ-
ual hidden-unit posterior is tractable:

1
P(hc=1Jv) = 1+exp(— 3 viwik)

This is crucial, because it allows for efficient computation of the equilibritea €nergy (v) and
of its derivatives with respect to the weights.

After a Boltzmann machine has learned to model a distribution over the visiliébies, it can
be used to complete a visible vector that is only partially specified. If, fomgka one half of
the visible vector represents a state and the other half represents an thetiBoltzmann machine
defines a probability distribution over actions for each given state. MereGibbs sampling in the
space of actions can be used to pick actions according to this distributmbdkmv).

In summary, restricted Boltzmann machines have the properties that weermyuirsing neg-
ative free energies to approximate Q-values: The free energy andiitatdes can be efficiently
computed; and, given a state, Gibbs sampling can be used to sample aatonrgra Boltzmann
distribution in the free energy.

5.2 Products of Experts

Restricted Boltzmann machines are only one example of a class of models caliiertts of ex-
perts (Hinton, 2002). Products of experts combine simple probabilistic mbyatailtiplying their
probability distributions. In the case of restricted Boltzmann machines, thedndi “experts” are
stochastic binary hidden variables. Products of experts share thé psgierties discussed above
for restricted Boltzmann machines. A product of experts model defineeahergy whose value
and its derivative can be efficiently computed; and instantiations of theonan@riables can be
sampled according to the Boltzmann distribution. Products of experts caménaiore complex
individual experts than binary variables. Examples of product modelgdagroducts of hidden
Markov models (Brown and Hinton, 2001) and products of Gaussian mgx{ttiaton, 2002). No-
tice that in each case the individual experts (hidden Markov models ansisfaaumixtures) are
themselves tractable, meaning that the posterior distribution over an indiexhert’s hidden vari-
ables, and derivatives of the free energy with respect to the paranetarbe computed tractably.
This is all that is required for the entire product model to be tractable. Adfhave focus on re-
stricted Boltzmann machines in this work, other products of experts moddts @iso be used, for
example, to model real-valued variables.
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6. The Product of Experts as Function Approximator

Consider a product of experts model, where the visible variables areasthiEction variables. The
free energy allows a PoE to act as a function approximator, in the follovenges For any input
(instantiation of the visible variables), the output of the function approxinisitaken to be the free
energy. With no hidden variables, the output is simply the energy. For arBattz machine, this is
similar to a linear neural network with no hidden units. With hidden variablesBttzmann ma-
chine is similar to a neural network with hidden units. However, unlike traditiogaral networks,
having probabilistic semantics attached to the model allows us to (at leaskapately) sample
variables according to the Boltzmann distribution. This is ideal for valuetiomapproximation,
because we can sample actions according to a Boltzmann exploration pohciti@ned on set-
tings of the state variables, even in large action spaces for which actuaijyutimg the Boltzmann
distribution would be intractable. To do this, we have to create a correspoatetween the value
of a state-action pair, and its negative free energy under the Boltzmarimmaacodel.

We create this correspondence using the parameter update rule foreement learning with
function approximation (Eq.5). The parameters of the POE model are apidatry to reduce the
temporal-difference error (Eq.4). By reducing the temporal-diffezegicor, we make the value
approximated by the product of experts closer to the correct value.

Once the negative free energy under the POE model approximates tlee walwse MCMC
sampling to select actions. After training, the probability of sampling an actomn fhe product of
experts while holding the state fixed is given by the Boltzmann distribution:

e—F(Sa)/T eQ(s,a)/T

whereZ is a normalizing constant, aridis the exploration temperature. Samples can be selected
at a particular exploration temperature by dividing the free energy by thigdaeature.

Intuitively, good actions will become more probable under the model, andab&oins will
become less probable under the model. Although finding optimal actions wdlie lifficult for
large problems, selecting an action with a probability that is approximately thalpitity under the
Boltzmann distribution can normally be done with a small number of iterations of AG&mpling
(and could include simulated annealing). In principle, if we let the MCMC samgglamverge to the
equilibrium distribution, we could draw unbiased samples from the Boltzmagiomtion policy at
a given temperature. In particular we can select actions according tiizaron exploration policy
that may be intractable to compute explicitly, because normalization would resuritening over
an exponential number of actions. In practice, we only sample for a ghoad of time. It should
be noted that this “brief” sampling comes with no performance guarantegspay be problematic
in large action spaces. However, we can easily incorporate improvemesatspling techniques to
improve performance in large discrete and real-valued action spaces.

6.1 Restricted Boltzmann M achines

Here we detail the approximation architecture for the specific example aftiacted Boltzmann
machine. We approximate the value function of an MDP with the negative fregy of the re-
stricted Boltzmann machine (Eq.6). The state and action variables will be as$arbe discrete,
and will be represented by the visible binary variables of the restrictedrBaita machine.
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In the following section, the number of binary state variables will be denotédt ithe number
of binary action variables biv; and the number of hidden variables Ky We will represent a
discrete multinomial state or action variable of adtpy using a “one-of}” set of binary variables
which are constrained so that exactly one of them is unity, and the restiare

We will use Gibbs sampling to select actions. To take the multinomial restriction iotiuat
the sampling method must be modified. Specifically, instead of sampling eachle@anigequence,
we will sample simultaneously over a group bf/ariables that represents a multinomial variable
of arity J. This is done by first computing the energy of each instantiation wherefahe group
takes on a value of unity, and the others are zeroH ke the free energy of the instantiation where
s = 1. This instantiation is selected as the new sample with probasbilfty [3 ; eFi].

The restricted Boltzmann machine is shown in Figure 2(a). Wesugedenote thé" state
variable andh; to denote thg™ action variable. We will denote the binary hidden variablespy
Weights between hidden and state variables will be denajgedand weights between hidden and
action variables will be denotag (Figure 2 (b)).

a) b)

hidden variables

state variables action variables

Figure 2: a) The restricted Boltzmann machine. The estimated action-valisetiirgy of the state
and action variables is found by holding these variables fixed and complémggative
free energy of the model. Actions are selected by holding the state varfa@dsand
sampling from the action variables.

b) The state variables are denosgdhe actions; and the hidden variabld®. A hidden-
state weight is denoted lwyy, and a hidden-action weight ly.

In the following, keep in mind that state variables are always held fixed tt@a@ctions are
always sampled such that any onedafaultinomial restrictions are respected. Given these restric-
tions, we can ignore the fact that the binary vector may represent thesval@a set of multinomial
variables. The representation of the free energy is the same as in the dasat

For a states= {s :i € {1,...,N}} and an actiora= {a; : j € {1,...,M}}, the free energy is
given by Eq.(6), restated here in terms of state, action, and hidden leatiab

K N M
Fisa) = -3 (_Z(Wiks (he)) + Zl(ujkaj <hk>)>
i= =

k=1

K
+ > (hlog(hy) + (1— (he))log (1— (hw)). (10)
&

2. This is equivalent to the Potts multinomial model formulation (Potts, 1952)

1073



SALLANS AND HINTON

The expected value of the hidden varialfe) is given by

N M
(hy)=0 (_ZlWikSi + Zlujkaj> ,
i= =

whereo(x) = 1/(1+ e *) denotes the logistic function. The first line of Eq.(10) correspond to an
expected energy, and the second to the negative entropy of the distribuéiothe hidden variables
given the data. The value of a state-action pair is approximated by theveefyag energy

~

Q(s,a) = —F(s,a).

6.2 Learning Model Parameters

The model parameters are adjusted so that the negative free energstaté-action pair under
the product model approximates its action-value. We will use the temporatethite update rule
SARSA (Eq.3). The temporal-difference error quantifies the inconsigteetween the value of a
state-action pair and the discounted value of the next state-action paig takiimmediate rein-
forcement into account.

The SARSA update is a parameter update rule where the target fo gy} is rt +yQ(s 1, at +1).
The update fowi is given by

Awic O (r+yQ(e a1 - Q(d a)) § (Hy).-
The other weights are updated similarly:
Aug O (r+yQ(e*,a ™) — Qs a)) a ().

This is found by plugging the derivative of the free energy with respeet parameter into the
update rule (Eqg.5). Although there is no proof of convergence in géfmrthis learning rule, it
can work well in practice even though it ignores the effect of changearameters o@(s”l, a+l).

It is possible to derive update rules that use the actual gradient. Sexdimple Baird and Moore
(1999).

6.3 Exploration

Given that we can select actions according to their value, we still havecideden an exploration
strategy. One common action selection scheme is Boltzmann exploration. Habjlity of select-
ing an action is proportional t€2($3/T_ |t can move from exploration to exploitation by adjusting
the “temperature” paramet@&r. This is ideal for our product of experts representation, because it is
natural to sample actions according to this distribution.

Another possible selection scheme-igreedy, where the optimal action is selected with proba-
bility (1—¢€) and a random action is selected with probabtitylhe exploration probabilitg can
be reduced over time, to move the learner from exploration to exploitation.

If the SARSA update rule is used with Boltzmann exploration then samples fBdltzmann
distribution at the current temperature are sufficient. This is what we dariexperimental section.
If e-greedy is used we must also evaluate gr(AaQs, a). This can be approximated by sampling at a
low temperature. To improve the approximation, the temperature can be initializetigh value
and lowered during the course of sampling.
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7. Simulation Results

To test the approximation we introduce two tasks: the large-action task abtbtdters task. The
former involves no delayed rewards, and is designed to test action sanmpdingrge action space.
The latter is smaller, but tests learning with delayed reward. We compar@parice against two
competing algorithms: a direct policy algorithm and a feed-forward nexatasbork with simulated

annealing action optimization.

First, we implemented the direct policy algorithm of Peshkin et al. (2000). dlgisrithm is
designed to learn policies for MDPs on factored state and action spacpardmeterize the policy,
we used a feed-forward neural network with one hidden layer. Thedeuof hidden units was cho-
sen to match the number of hidden variables in the competing restricted Boltzmahmeiarhe
output layer of the neural network consisted of a softmax unit for eaettbravariable, which gave
the probability of executing each value for that action variable. For exanfigea action variable
has four possible values, then there are separate inputs (weightsti@atiats) entering the output
unit for each of the four possible values. The output unit produagsiformalized probabilities by
first exponentiating the values, and then normalizing by the sum of the fponextiated values.

The parameterized policy is therefore factored. In other words, editinavariable in the col-
lective action is selected independently, given the probabilities exprégstdte softmax output
units. However, the hidden layer of the network allows the policy to "corarté” these probabili-
ties conditioned on the state.

Second, we implemented an action-value function approximation using ddeeard neural
network with one hidden layer (Bertsekas and Tsitsiklis, 1996). The bufiptnis network was
a linear unit which gave the estimated value for the state and action presentiee imput units.
We used the SARSA algorithm to modify the parameters of the network (Egti) giiadient was
computed using error backpropagation (Rumelhart et al., 1986). Videaugeeedy-epsilon explo-
ration strategy, where the optimal action was approximated by simulated agnddimnumber of
iterations of simulated annealing was matched to the number of iterations of sanmgsith¢p select
actions from the restricted Boltzmann machine, and the number of hidden @sitshatched to the
number of hidden variables in the corresponding restricted Boltzmann neachin

7.1 ThelLarge-Action Task

This task is designed to test value representation and action selection ie a¢dian space, and is
not designed to test temporal credit assignment. The large-action tasklgasymediate rewards.
The state at each point in time is selected independent of previous statesipdate rules were
therefore used with the discount factoset to zero.

Consider a version of the task with &hbit action. The task is generated as follows: Some
small number of state-action pairs are randomly selected. We will call thes@ flairs. During
execution, a state is chosen at random, and an action is selected by tlee. Idaraward is then
generated by finding the key state closest to the current state (in Hammingedistd he reward
received by the learner is equal to the number of bits that match betweeeyttaetion for this key
state and the current action. So if the agent selects the key action itegtle@/maximum reward
of N. The reward for any other action is found by subtracting the number ofriect bits fromN.
The task (foN = 5) is illustrated in Figure 3.

A restricted Boltzmann machine with 13 hidden variables was trained on an instantif
the large action task with an 12-bit state space and a 40-bit action spadeeiftkey states were
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Key state Key action: 11011
Current action: 10010
Current Rewar d: 3

state

Figure 3: The large action task. The space of state bit vectors is divittedlusters of those which
are nearest to each “key” state. Each key state is associated with dikey abe reward
received by the learner is the number of bits shared by the selected actidheakey
action for the current state.

randomly selected. The network was run for 12 000 actions with a learateggoing from QL

to 0.01 and temperature going fromQlto 01 exponentially over the course of training. Each
iteration was initialized with a random state. Each action selection consistedafetations of
Gibbs sampling. The task was repeated 10 times for each method. The compethags also
had learning rates and (in the case of the backprop network) explosati@dules. The backprop
network used a learning rate going fron®@05 to 0004, and ar-greedy exploration strategy going
from 1 to O linearly over the course of the task. The direct policy method asearning rate going
from 0.1 to 0.01 over the course of the task. All learning parameters were selectedlmnal error
during preliminary experiments, with the best-performing parameters rejduste.

Because the optimal action is known for each state we can compare the teshisoptimal
policy. We also compare to the two competing methods: the direct-policy methaesbkip et al.
(2000), and the feedforward neural network. The results arersiroiigure 4.

The learner must overcome two difficulties. First, it must find actions thaivecewards for
a given state. Then, it must cluster the states which share commonly relactiens to infer
the underlying key states. As the state space contdihertries and the action space contains
240 entries, this is not a trivial task. Yet the PoE achieves almost perfefctrpgmce after 12 000
actions. In comparison, the two other algorithms achieve suboptimal perioen@he direct policy
method seems to be particularly susceptible to local optima, yielding a large aaiasolution
quality. The backpropagation network may have continued to improve; giage training time.

7.2 TheBlockers Task

The blockers task is a co-operative multi-agent task in which there agasdfe players trying to
reach an end zone, and defensive players trying to block them (see By

The task is co-operative: As long as one agent reaches the engtzmfteam” is rewarded. The
team receives a reward afl when an agent reaches the end-zone, and a reward otherwise.
The blockers are pre-programmed with a fixed blocking strategy. Eaatit agcupies one square
on the grid, and each blocker occupies three horizontally adjacentesquan agent cannot move
into a square occupied by a blocker or another agent. The task hagrapraround edge conditions
on the bottom, left and right sides of the field, and the blockers and agamtaave up, down, left
or right. Agents are ordered. If two agents want to move in to the sameesgbarfirst agent in
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Figure 4: Results for the large action task. The graphs shows averagedrversus iteration of
training for three algorithms. The optimal policy gives an average rewid® ¢upper
line). A random policy gives gives an average return of 20 (lower liffdje solid line
shows the PoE network, the dashed line shows the backprop netwdokrnpance, and
the dash-dotted line shows the direct policy method. Errorbars indicatecbBfilence
intervals, computed across 10 repetitions of the task.

end-zone
=
NEN===
\\

blockers

0)
© O)

agents

Figure 5: An example of the “blocker” task. Agents must get past the btsdbk the end-zone. The
blockers are pre-programmed with a strategy to stop them, but if the agenfsecate
the blockers cannot stop them all simultaneously.

the ordering will succeed, and any others trying to move into that squarbemilhsuccessful. Note
that later agents can not see the moves of earlier agents when makingrdecisie ordering is just
used to resolve collisions. If a move is unsuccessful, then the agent seméis current square.
The blockers’ moves are also ordered, but subsequent blockarsakle decisions based on
the moves of earlier blockers. The blockers operate a zone-basedsdef Each blocker takes
responsibility for a group of four columns. For example, blocker 1 isaesible for columns 1
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through 4, blocker 2 is responsible for columns 4 through 7, and sofoan &gent moves into
one of its columns and is in front of the end-zone, a blocker will move to hikbdecause of the
ordering, blockers will not move to stop agents that have already begpestdy other blockers.

A restricted Boltzmann machine with 4 hidden variables was trained using th&&Adarning
rule on a 5x 4 blocker task with two agents and one blocker. The collective state caheidferee
position variables (two agents and one blocker) which could take on integers{1,...,20}. The
collective action consisted of two action variables taking on values frbm.,4}. The PoE was
compared to the backpropagation network and the direct policy method.

Each test was replicated 10 times. Each test run lasted for 300 000 c@llactiens, with a
learning rate going from.Q to 0.01 linearly and temperature going fron0Xo 0.01 exponentially
over the course of training. Gibbs sampling and simulated annealing last&@ ftarations. The
learning rates of the competing methods were the same as for the PoE nefiwetiackpropaga-
tion network used ae-greedy policy going linearly from 1 to O over the course of the task. The
parameters for all of the methods were selected by trial and error using éxjtiariments, and the
best performing values are reported here.

Each trial was terminated after either the end-zone was reached, ofl@€ige actions were
taken, whichever occurred first. Each trial was initialized with the bloclergal randomly in the
top row and the agents placed randomly in the bottom row. The results ave gh&igure 6.
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—-0.651
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|
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I o ©
B O ©
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0 60 120 180 240 300
1000s lterations

Figure 6: Results for the 2-agent blocker task. The graph showageeward versus iteration
of training for three algorithms. The solid line shows the PoE approximationglahe
dashed line shows the direct policy method; and the dashed line showsdkgrdya
network. The error bars show 95% confidence intervals.

Overall, the PoE network performs better than the two other algorithms. Ak thigorithms
have the potential to find suboptimal local optima. Again, the direct policy ifgorseems to be
particularly susceptible to this. The backprop network might have doner lifdttevas allowed to
continue training. The direct policy method finds a solution noticeably faster tie other two
algorithms.

A restricted Boltzmann machine with 16 hidden variables was trained ox & llockers task
with three agents and two blockers. Again, the input consisted of positia@bles for each blocker
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and agent, and action variables for each agent. The network was tfain880 000 collective
actions, with a learning rate going fromlQto 0.05 linearly and temperature from 1 td08 expo-
nentially over the course of the task. Each trial was terminated after eithemdheone was reached,
or 40 steps were taken, whichever occurred first. Again, the two compeliforithms were also
used. Each competitor had 16 hidden units, and simulated annealing ands@bpkng lasted for
10 iterations. The competing methods used the same learning rates andtexplsirategy as in
the previous experiment. Again, the task was replicated 10 times for eaditlalyoThe results
are shown in Figure 7.

-0.82
-0.841
-0.861
-0.881

|
©
©
T

-0.92r
-0.941

Average Reward

-0.961

-0.981 C 1

0 60 120 180 240 300
1000s lterations

Figure 7: Results for the 3-agent blocker task. The graph showage/eeward versus iteration
of training for three algorithms. The solid line shows the PoE approximationdahe
dashed line shows the direct policy method; and the dashed line showsdkyerdia
network. The error bars show 95% confidence intervals.

In this larger version of the task, the backprop network does extremehypd he direct policy
method does significantly worse than the POE method. Of the three methodsRmedthod was
able to find the best solution, although a suboptimal one. An example of altymictor the 4x 7
task is shown in Figure 8. The strategy discovered by the learner is @ tloedlockers apart with
two agents, and move up the middle with the third. In the example, notice that Agergms to
distract the “wrong” blocker given its earlier position. The agents in th&@rgde have learned a
sub-optimal policy, where Agent 1 moves up as far as possible, and thieas léar as possible,
irrespective of its initial position.

Examples of features learned by the experts are shown in Figure 9. iddenhvariables be-
come active for a specific configuration in state space, and recommeretificspet of actions.
Histograms below each feature indicate when that feature tends to bedaiivg a trial. The his-
tograms show that feature activity is localized in time. Features can be tholughimacro-actions
or short-term policy segments. Each hidden variable becomes active duparticular “phase” of
a trial, recommends the actions appropriate to that phase, and then cdasestive.
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Figure 8: Example agent strategy after learning the Zblocker task. a) The three agents are
initialized to random locations along the bottom of the field. b) Two of the agentsor
the top of the playing field. ¢) These two agents split and run to the sidesheddhird
agent moves up the middle to the end-zone.

8. Discussion

The action sampling method is closely related to actor-critic methods (Sutton, B884 et al.,
1983). An actor-critic method can be viewed as a biased scheme for sglactions according
to the value assigned to them by the critic. The selection is biased by the cli@ic®moparam-
eterization. The sampling method of action selection is unbiased if the Markom @hallowed
to converge, but requires more computation. This is exactly the tradequtired in the graphical
models literature between the use of Monte Carlo inference (Neal, 19€82)aaiational approxi-
mations (Neal and Hinton, 1998; Jaakkola, 1997). Further, the resplbdiny can potentially be
more complicated than a typical parameterized actor would allow. This is l=equerameterized
distribution over actions has to be explicitly normalized. For example, an agtaork might pa-
rameterize all policies in which the probability over each action variable is evtgnt. This is the
restriction implemented by Peshkin et al. (2000), and is also used for the dokcy method in
our experimental section.

The sampling algorithm is also related to probability matching (Sabes and JA@6), in
which good actions are made more probable under a model, and the tempatathich the prob-
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a) Agent 1 Agent 2 Agent 3 b) Agent 1 Agent 2 Agent 3

U U )
Eriprey
D D D

C) Agent 1 Agent 2 Agent 3 d) Agent 1 Agent 2 Agent 3

Figure 9: Features of the learned value function approximator for thgeBtalocker task. The
four features (a,b,c and d) correspond to the four stages shown iregiach feature
corresponds to a hidden variable in the RBM. The Hinton diagram showesenwdach
of the three agents must be in order to “activate” the hidden variablegdtts have
a value of unity with high probability). The vector diagram indicates what astare
recommended by the hidden variable. The histogram is a plot of frequérotivation
of the hidden variable versus time in a trial. It shows when during a run thisretends
to be active. The learned features are localized in state space and @etten Seature
activity is localized in time.

ability is computed is slowly reduced over time in order to move from exploratioxpt#ation

and avoid local minima. Unlike the sampling algorithm, the probability matching algotited

a parameterized distribution which was maximized using gradient descenit, didchot address
temporal credit assignment.
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The PoE approximator could also be used in direct policy method. The netvoardkl directly
encode the probabilities of selecting actions given states, rather thadimmdtioe values of states
and actions. Given a state, an action could be found using a sampling mé&ttreosmpling method
would select actions approximately according to the policy encoded by the Po

Direct policy methods can be advantageous, because encoding theergtaitdness of actions
or a ranking of actions might be simpler than encoding actual values. THhaeigptimal policy
might be easier to learn than the value function. A PoE could be used withraay pblicy method
that only requires samples from the policy. This is because it is in genérattiable to evaluate the
probabilities of actions encoded in the PoE network, but possible to apmately sample actions
using an MCMC method.

It is possible that the Gibbs sampling method which we use might not work we#dme
problems. In this case, other sampling methods could be used, which areshétd to avoiding
local minima. While the need to sample actions using MCMC can be viewed as atitage of
our technigue, an advantage is that improvements in sampling methods casilpénearporated
as they are developed.

8.1 Macro Actions

One way to interpret the individual experts in the product model is thatdheyearning “macro”
or “basis” actions. As we have seen with the Blockers task, the hiddé&bles come to represent
sets of actions that are spatially and temporally localized. We can think of tderhichriables
as representing “basis” actions that can be combined to form a wide afmagssible actions.
The benefit of having basis actions is that it reduces the number of f@asiliions, thus making
exploration more efficient. The drawback is that if the set of basis actionsotispan the space
of all possible actions, some actions become impossible to execute. By optimigiegttbf basis
actions during reinforcement learning, we find a set that can formuliaefions, while excluding
action combinations that are either not seen or not useful.

The “macro” actions learned by the PoE should not be confused with “teihpabstract ac-
tions”. The learning and use of temporally abstract actions is an impor@abéicurrent research
in reinforcement learning (Parr and Russell, 1998; Precup et al.; Mi¥8overn, 1998; Dietterich,
2000). The “macro” actions learned by the PoE have some features in comithaihese tempo-
rally abstract actions. In particular, the POE macro actions tend to remare &mtiemporally pro-
longed periods. However, that does not make them temporally abstteeisacrhey do not come
with the formal machinery of most temporally abstract actions (such as ternmircatnalitions), and
it would be difficult to fit them in to one of the existing frameworks for tempaiadtraction. The
PoE “basis” actions should be thought of as finding a smaller subsebofi“@ctions within a large
space of possible actions.

This suggests one way to improve the performance of an existing PoE sollitiba solution
is performing poorly, it could be because some of the action space is ameap by basis actions.
Adding and learning parameters for additional hidden variables, whilarigpttie parameters of
the pre-existing variables constant, would allow the policy to improve withodnbdo re-learn the
entire solution. Similarly, if some useful collective actions are known a ptiogly can be “hard-
coded” into the PoE by fixing the hidden-action weights, and allowing the Pd&ata when (in
which collective states) to use them.
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8.2 Conditional Completion

If the action allowed at a particular time step is constrained, it is natural to twdatow what is
the best action consistent with the constraints. For example, if one of thésagehe blocker task
becomes unable to move in directions other than up, we would like to ask fongaétiothe other
agents that are consistent with this restriction. Sampling allows us to do thisleaBiting a subset
of action variables to their required values, and sampling the rest. THeiseesset of good values
for some action variables conditioned on the fixed values of the others.

Similarly, we can fix only some of the state variables, and sample others. N thisiwould
be most useful for data completion: If a state variable is missing, it would leetaifill it in with
its most probable value, conditioned on the others. Unfortunately we datorthis with a single
PoE model. Instead of filling in values according to how probable they ateruhe dynamics of
the environment, it will fill in values that yield high expected returns. In otherds, the values
that will be filled in for state variables will be those that are most desirabtanost probable. This
could be used for an optimistic form of state completion, giving an upperdonmnvhat reward we
expect to see given that we do not really know what values those stéblea take on. This could
also be used to identify valuable “target” states that should be achieveskitybe

9. Summary

In this article we have shown that a combination of probabilistic inferenceehteaining and value
function approximation allows for the solution of large Markov decision esses with factored
states and actions. We have shown that the sampling technique can sktets gclarge action
spaces (40 bit actions). We have drawn links between approximaterioérstate representation
and action selection. Future research on hierarchical value functiordirzctly learning stochastic
policies represented as PoE models might be particularly fruitful.
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Appendix A.

In this appendix we give some derivations related to restricted BoltzmannimeachFirst, we
show that, for a restricted Boltzmann machine, the posterior distribution @aevariables given
visible variables factors into the product of the posterior distributions eaeh individual hidden
variable. Second, we show that the two expressions for the equilibregrefiergy are equivalent,
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and compute the derivative of the equilibrium free energy of a restrictdizBann machine with
respect to a parameter.

Given a set of binary random variabMswith valuesv, binary hidden variabled with valuesh,
and symmetric weighted edgé connecting visible variablieto hidden variabld, the equilibrium
free energy is given by

F(v) = (E(V;h))p) + (10gP(h|V))pryy) -

In the aboveE (v, h) denotes the energlp(h|v) denotes the posterior distribution of the hidden
variables given the visible variables, aqfl, denotes an expectation with respect to distribuion
(see Section 5.1).

Consider the posterior distribution over the hidden variables. In the folpwijrdenotes the
value of visible variable, andhy denotes the value of hidden varialsleThe notatiory ; denotes a
summation over all possible assignments to the binary variables in thk set

exp{ ¥ kWikVihg}
3 7 €XP{ T WikVi i}
kexp{ i WikVihi}
> 5 M €XP{ T Wikvihi}
[k exXp{ 3 WikVihi }
Mk 2 _oexP(3i WikVi i}
_ exp{ > i Wik Vi hk}
N III i _oexp(3i Wivi i}
= I;I P(hg|v).

P(hlv) =

The posterior factors into the product of the posterior distributions caein separate hidden
variable, given the values of the visible variables. The posterior oveehigariables can be com-
puted efficiently, because each individual hidden-unit posterior itatpbe

P(h=1|v) =0 (E(v,hk=1)),

wherea(-) denotes the logistic functiom(x) = 1/(1+¢€).

We will now compute the derivative of the equilibrium free energy with respea weight. We
follow the technique of (Hertz et al., 1991). First, we prove the cornedence between the negative
equilibrium free energy and the log of the normalizing constant of the posthstribution (see Egs.
6and9):

F(v) = (E(V,h))pmnp + (I0gP(h|V))pmy)
= (E(v,h))p(ny) 1 (10gP(h|V))p(ny)
+1og'y exp{—E(v,h)} —log y exp{—E(v,h)}
) s

= —(logexp{—E(v,h)})py) + (logP( h’V )P(hiv)

+IogZexp{ E(v,h)} —IogZexp{—E(v,ﬁ)}
h
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— _<Iog exp{—E(v, )A} >
Zhexp{ E( h)} P(h|v)
+ 0GPV 109 Y expl—E(v. )
= —(logP(h|V))pg) + (I0gP(h|V))pnyy) —Iogzexp{ E(v,h)}
= —logy exp{—E(v,h)}
2

= —logZ,, (11)

whereZy, denotes the normalizing constant of the posterior distribution over the hidd@ables

given the visible variables.
Next, we can take the derivative eflogZ, with respect to a weightiy.

Lobgz, 1%
owik  ZnOowi
-1 0
= Z own [%exp{—E(v,h)}]

= %;—:— [ViﬁkEXp{gwikVi/ﬁk}]

exp{3; kWikViﬁk}V_ﬂk
|

- _Z VZh

h
= — Z P(ﬁ’V)Viﬁk
h

= —Vi(")pn) -

Thus, the derivative of the equilibrium free energy with respect to ahveggsimply the ex-
pected value of the hidden variable, times the value of the visible variable.
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