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Abstract

Localizing sounds with di�erent frequency and time domain characteristics in a dy-

namic listening environment is a challenging task that has not been explored in the

�eld of robotics as much as other perceptual tasks. This thesis presents an integrated

auditory system for a humanoid robot, currently under development, that will, among

other things, learn to localize normal, everyday sounds in a realistic environment. The

hardware and software has been designed and developed to take full advantage of the

features and capabilities of the humanoid robot of which it will be an integral compo-

nent. Sounds with di�erent frequency components and time domain characteristics

have to be localized using di�erent cues; a neural network is also presented that has

been developed o�-line to learn to integrate the various auditory cues, using primarily

visual data to perform self-supervised training.

Thesis Supervisor: Rodney A. Brooks

Title: Professor, Department of Electrical Engineering & Computer Science
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Preface

This thesis describes work that is part of a larger, ongoing project, and should be

viewed in that context. In any major robotics undertaking, it is �rst necessary to

build the hardware and low-level software components before exploring the more

interesting aspects of arti�cial intelligence.
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Chapter 1

Introduction

In no other �eld of science: : : does a stimulus produce so many di�erent

sensations as in the area of directional hearing.1

1.1 Motivation

In the robotics and arti�cial intelligence �elds, the most popular sensory modality to

be incorporated in systems is vision; until very recently hearing has not playedmuch of

a role in the intelligent systems research. Few attempts have been made to incorporate

sound processing in a self-contained robot.2 However, sound provides a rich source

of information: many animals rely on localization and other auditory perceptual

tasks to survive; speech and hearing are the primary means of communication for

human beings. In some ways audition on a robot is more subtle and di�cult than

vision. Unlike the eyes, the ears do not directly receive spatial information from the

surroundings. The auditory system thus relies much more heavily on the processing

of raw sensory data to extract acoustic cues and indirectly derive spatial information.

Despite these complexities, it is important to take advantage of the complementary

nature of auditory and visual information to extract features and information from the

surrounding environment that would be di�cult or impossible from either modality

alone (Gamble & Rainton 1994). To this end, it is crucial to have an integrated

system that can tightly couple di�erent sensory modalities, like audition and vision.

Work presented in this thesis is part of a larger ongoing project, the Humanoid

Robot Group at the MIT Arti�cial Intelligence Laboratory, that seeks to explore and

take advantage of such tight couplings of sensors and motors to achieve human-like

behavior.

This thesis presents a scalable, general-purpose auditory system for a humanoid

robot that will be able to perform a wide variety of auditory perception tasks. The

humanoid robot, Cog, approximates a human being from the waist up, with corre-

sponding structures and sensors, such as video cameras for eyes, mechanical arms and

hands, and a plastic shell for a skin. Modularity was a key design goal for the audi-

1(von B�ek�esy 1960)
2There is a large body of research in speech processing, usually on regular computer systems.
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tory system, in order to facilitate the close integration of the various sensors on Cog.

Scalable computational power was another requirement, to allow complex on-board

and real-time signal processing of sensory data. An application is also presented as an

example of the system's functional capabilities; simple audio and visual localization

have been directly implemented on the system, while more complex features have

been designed and developed o�-line.

One of the fundamental auditory perception tasks is the localization of the sources

of sounds, and much psychoacoustic research has been performed on human beings

and animals to isolate the individual cues of sound localization. Very simple single

source localization based on multiple cues, including vision, has been implemented

on the auditory system, as a validation of the system and the underlying signal

processing architecture. More interesting and complex localization techniques have

been developed o�-line using a standard mathematics package, and preliminary results

are also presented. A neural network learns how to localize normal sounds in a realistic

listening environment by integrating visual and audio cues. The key idea is that visual

motion detection is used for self-supervised training of the network.

1.2 Scope and Contents

It is important to note the scope of the thesis; a major portion is the hardware and

software design of the general purpose auditory system. It is not the intention of

this thesis to explore all the intricacies and subtleties of sound localization, yet. The

actual implementation of localization on the system is currently crude and simple,

but is meant more as a veri�cation of the auditory system's functionality; it forms

a signal processing foundation for future work in auditory perception and is a �rst

step towards more complex integration and perception. Work performed o�-line with

neural networks gives an indication of what can and will be performed by the system.

Chapter 2 contains a brief introduction to auditory perception and neural net-

works. Some recent relevant work in both �elds is also presented.

Chapter 3 covers the design and implementation of the actual auditory percep-

tion system, including the issues that a�ected the overall design of the hardware and

low-level software. discussed.

Chapter 4 describes the signal processing architecture of the auditory system

implementation of simple two-dimensional sound localization using two audio cues

and vision. Work that forms the basis of future, more complex, perceptual tasks is

also described in depth.

Chapter 5 presents the results of the o�-line neural network development and

training.
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Chapter 2

Background

By indirections �nd directions out1

2.1 Auditory Perception

2.1.1 Terms

In describing sound localization, several terms need to be de�ned. The head of the

listener can be thought of as a sphere, with three planes that intersect at a point in

the center (refer to Figure 2-1). As an approximation, the center can also be thought

of as the midpoint of the line segment joining the two ears. Localization studies often

consider only the horizontal plane, called the azimuthal plane. Azimuthal angle will

be de�ned in this paper to be the angle in the azimuthal plane, with 0� corresponding

to directly in front of the head. The medial plane is the vertical plane that is used to

describe elevation information.

With two openings, sounds can only be localized on a single plane. Human be-

ings can localize on two planes due to the e�ects of the outer ear structures called

pinnae, that frequency �lter incoming signals depending on elevation, and shadows

high frequency sounds, which is used in front-back determination.

The basic con�guration of the auditory system described in this thesis includes a

pair of microphones and no external structures. To accomplish sound localization in

more than one plane, the system can be easily expanded with an additional pair of

microphones.

2.1.2 Localization techniques

Sound localization for human beings is primarily a binaural phenomenon, and cues are

usually based on di�erences between the inputs to the two ears. Two cues that have

been found to play the most dominant role in the direct sound �eld are interaural time

(ITD) and intensity (IID) di�erences. Binaural cues are e�ective, with some overlap,

1Hamlet, Act II, Scene I
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Figure 2-1: Planes used to describe localization. [Blauert, p.14]

for di�erent sounds and situations. Robust localization is achieved when a system

can combine information gathered from di�erent cues to localize di�erent sounds.

ITDs arise from the fact that the two ears are located a �nite distance apart; sound

impinging on the near ear takes some time to reach the far one. Delays range from

0 sec. for a source directly in front of the head to about 700 �sec. for an azimuthal

angle of �90 degrees. For low frequency signals, below about 1.5KHz, the ITD can

be measured as a phase delay in the left and right channel waveforms. For higher

frequencies, the resolution of the ears is not �ne enough to distinguish the phase

di�erence. In this case, the onset time di�erence of the signal envelopes at the two

ears provides a form of ITD (Burgess 1992). Using some geometry, an approximate

expression for interaural time di�erence can be derived2. Figure 2-2 shows a close

correspondence between the approximate model and actual ITD. Note however that

with an adaptive system such as the one presented here, there is no need to specify

head-speci�c head parameters such as diameter, microphone position, etc.

High frequency sounds, those having wavelengths that are comparable to the width

of the head, are \shadowed" by the head; the intensity of sound entering the far ear is

diminished with respect to the sound entering the near ear. The interaural intensity

di�erence can not be modeled as easily as ITDs. The head shadow e�ect can cause

IIDs of up to 20dB, and the e�ect is very frequency dependent as shown in Figure 2-3

(Mills 1972).

Head motions remove ambiguities from localization that may occur from using

ITDs and IIDs alone. Although it has been shown that, with fully developed auditory

systems, we can localize sounds without head motion (Blauert 1983), it is also known

that newborn human infants orient their heads to the general direction of sounds

(Muir & Field 1979).3 In addition, other experiments have concluded that localization

2If we model the head as a sphere of radius 8.75cm, �t�sec = 255(� + sin�), where � is the
azimuthal angle (Mills 1972)

3Muir et. al. admit however that it can not be concluded that newborns actually localize sound
or possess a spatial map.
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Figure 2-2: ITD Functional Form

(Mills 1972)

Figure 2-3: IID Functional Form

(Mills 1972)

Figure 2-4: Interaural Time and Intensity Di�erences. [Durrant, p. 251]

resolution in human adults is greatest in the area directly in front of the head, so it

makes sense to orient the head towards the sound source for better localization (Mills

1972).

Vision serves as a signi�cant non-acoustic localization cue. In many cases auditory

cues are ignored if they conict with visual cues. When watching television or a

movie, we perceive speech to be coming from the mouths of people instead of from

speakers. Similarly, a ventriloquist's dummy appears to be actually speaking if its

mouth moves synchronously with the speech. It is because of this phenomenon that

vision was chosen to be the reference for training the neural network.

Other localization cues include reections o� of shoulders and the upper body and

pinnae shadowing, though the exact mechanisms of these cues have not been studied

as thoroughly as the ones described above, and will not be explicitly utilized at �rst

in this research project.

2.1.3 Advantages of an Adaptive Learning System

The necessity of a learning component in auditory localization is obvious for several

reasons. Each individual organism has di�erent sized and shaped heads and bodies;

moreover, as the individual matures, the size and shape of the body changes. Thus,

localization cues, which are a�ected by the size and shape of the body, would be

di�erent for each individual at di�erent ages, precluding any sort of neural encoding
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of size/shape information. It has also been shown that localization of unfamiliar

sounds is worse than for familiar ones, so the auditory system clearly adapts to new

sounds during the life of the organism (Bose 1994).

With respect to the humanoid robot, there has been a deliberate decision not to

\hard-code" or store models of the auditory system. As discussed in Section 2.1.2,

psychoacoustics researchers have modeled approximately the functions of ITD and

(to a lesser extent) IID cues. Rather than using these models explicitly, there is

biological motivation to learn the functional maps adaptively so that calibration and

head speci�c parameters are unnecessary.

2.1.4 Auditory-Visual Integration

There is biological evidence that vision plays a major role in the development or

\training" of sound localization, and it is this biological basis that provides the in-

spiration for much of the project. The underlying assumption is that there is a cor-

responding motion associated with most normal and \interesting" sounds the robot

is likely to hear.4

Investigations with owls have determined that owls that have had one of their

ears occluded since infancy could not, after reaching maturity and having the ear

plugs removed, correct their auditory localization errors without visual input. With

the plugs removed and vision fully restored, the owls could \relearn" how to localize

sounds correctly. If, however, vision was restored but subjected to a constant error

using prisms, the owls would adjust their localization such that localization errors

match the induced visual error. Vision therefore provides the spatial reference for

\�ne-tuning" auditory localization (Knudsen & Knudsen 1985).

Auditory-visual integration is important not only for localization, but other per-

ceptual tasks. Speech perception also bene�ts from visual input; isolated word recog-

nition in a noisy environment improved signi�cantly when normal hearing subjects

were able to see the speakers as well as hear the speech (Yuhas, Jr., Sejnowski &

Jenkins 1990). This is not surprising, since even those who have impaired hearing

can learn to \lip read" and thus perceive speech mostly or solely from vision.

It should be noted that, once the neural network has been trained, the auditory

system can direct the eyes to \interesting" objects that are not initially in the visual

�eld. This system can be used to initiate head movements based soley on audio

stimuli. This will aid in future work in object recognition, as Cog will be able to

make assumptions on what sort of object it is looking for or trying to identify by the

nature and direction of the sound the object makes.

4This assumption is even more valid when one considers that Cog is to behave like a human
infant; infants are often subjected to rattles, exaggerated motions accompanying sounds, etc.
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2.1.5 Listening Environment

It is important to consider the problem of localization in a realistic setting.5 Many

researchers, when studying sound localization, work in either anechoic chambers or

approximate direct sound �elds to simplify the processing or experiment that is per-

formed. While this makes localization much easier, it is not realistic, as we normally

live and interact in closed spaces that give rise to echoes and reverberations from

reections o� of walls and objects. A very popular test sound in psychoacoustic re-

search, the continuous tone or sinusoid, is ironically one of the most di�cult to localize

in reverberant �elds. What is desirable, therefore, is to have the sound localization

system handle sounds in both direct and reverberant �elds, and adapt techniques

that will be optimal for each.

A realistic listening environment includes naturalistic stimuli and both direct and

reverberant sound �elds. The listener is said to be in the direct sound �eld if the

sound source is located su�ciently close that the �rst arrival of the sound dominates

the signal entering the ears; subsequent echoes due to the reection of the original

sound o� of walls and other objects are negligible. In the reverberant �eld , the listener

is far enough from the source that the sound heard by the listener is due primarily

to repeated reections; localization becomes di�cult since the localization cues of

the initial direct sound are soon corrupted by reected sounds that arrive from all

directions.6 The major cue that must be used in the reverberant �eld is the onset time

di�erence of the signal envelopes (Bose 1994). Since this cue disappears after the start

of the signal, continuous tones can not be accurately localized in reverberant �elds,

while clicks and other transients, with sharp onset time di�erences, can be localized

quite well. This is fortunate, since normal everyday sounds, including speech, are

rarely continuous pure tones, but complex, transient signals.

2.1.6 Related Work

Researchers at the ATR Human Information Processing Laboratories have started

to work on a head/eye/ear system that can learn a spatial mapping between au-

ditory and visual stimuli. They too make the assumption that acoustic and visual

signals that occur roughly at the same time (temporally correlated) are from the

same source (spatially coincident). They use somewhat of an arti�cal setting, work-

ing with a computer controlled speaker/light array; a light turns on at the same time

its corresponding speaker emits a sound. The system makes an association between

the motor commands necessary to saccade to the light (center its image in the visual

�eld) and the left and right power spectra of the ears (Gamble & Rainton 1994).

Another related e�ort is the Anthropomorphic Auditory Robot developed at

Waseda University, Japan. They have developed a neural network that performs

front/back determination of pulsed sounds, without visual input, and uses di�erences

5A detailed discussion of acoustic theory is beyond the scope of this thesis, and interested parties
may refer to dedicated texts on acoustics. One such text is (Beranek 1970).

6It has been shown that the human auditory system suppresses these later arriving signals some-
what when determining directionality.
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in both onset time and power spectra. Results were promising, although the exper-

iments were performed in an anechoic room (Takanishi, Masukawa, Mori & Ogawa

1993).

2.2 Neural Networks

2.2.1 Introduction

Neuron i
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X1

Xn

Xj

.

.

.

.
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Activity Activation Function

F(⋅) Output

Inputs

Σ

Figure 2-5: Perceptron

A comprehensive introduction to neural networks is beyond the scope of this thesis.7

While there are several di�erent neural network architectures and methodologies,

the feed-forward multi-layer perceptron (MLP) remains the most widely used and

succesful architecture. The basic computational unit of a MLP is a perceptron, shown

in Figure 2-5, that performs a nonlinear trasformation of its inputs to compute an

output. The output of neuron i, givenN inputs x1 � � �xN , is expressed mathematically

as :

yi = F (
NX

j=0

wijxj � �i)

where w are the weights associated with each input, � is the threshold,8 and F (�) is

the activation function, a quantizer that limits the response of the perceptron.

As the name implies, a MLP consists of several layers of perceptrons, with usually

full connectivity between layers, but none among perceptrons within a layer. MLPs

are popular due to their relatively simple architecture and the existence of the back-

propagation learning algorithm, which allows straightforward and e�cient updating

of the weights in the neural network. Section 4.3 goes into more detail about the

speci�c multi-layer perceptron used to localize sound.

There is a large body of research dealing with applications of neural networks

to signal processing. Neural networks are ideally suited for signal processing and

7(Haykin 1994) provides an excellent introduction to the entire neural networks �eld and is highly
recommended.

8To simplify notation, the threshold is usually considered to be just another weight with a �xed
input of -1.
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especially for audio/visual processing for several reasons: they are nonlinear compu-

tational units that can learn an input-output mapping by generalizing and adapting

to changes in the input; they can perform data reduction by extracting features from

a higher order input space; they are biologically inspired.9 Currently, only biological

auditory systems have completely and e�ectively solved complex perceptual tasks,

like sound localization, discrimination, and recognition in a noisy environment (Mor-

gan & Sco�eld 1991); by performing computation in a similar manner to biological

systems, it is hoped that arti�cial systems can achieve a similar level of performance.

It is also natural to try to exploit a property of neural networks that make them

\universal approximators." It can be mathematically proven that certain neural

networks are able to approximate any function, given enough input/output pairs

and training. It has been discussed above that psychoacoustic research has revealed

that the ITDs and IIDs take some functional form, though the relative interaction

and combination of these (and other) cues are far from being well understood. Neural

networks are ideal not only for determining the functional forms, but for combining

them into one consistent system.

While it might be said that localization is a \simple" task that has been already

solved, it is the author's �rm belief that robust localization, integrated with vision

and able to handle a variety of sounds in a realistic listening environment with noise

is a far from simple task. In a noise free environment, localization of a limited set

of samples would be relatively easy. Indeed, most of what we have gathered from

psychoacoustic research come from only arti�cial settings, like anechoic chambers

and test \clicks." Applying standard neural networks architectures in novel ways will

hopefully allow \simple" tasks such as localization to perform well in realistic, and

therefore complex, listening environments.

2.2.2 Related Work

There have been recent attempts to speci�cally apply neural networks in the integra-

tion of vision and audition. (Yuhas et al. 1990) explore the use of neural networks to

improve speech perception, speci�cally the recognition of isolated vowels. One MLP

was trained to estimate the spectral characteristics of the corresponding acoustic sig-

nals from visual images of the speaker's mouth. An alternative MLP was trained

to directly recognize vowels from the visual signals. Performances of both neural

networks were similar to human performance.

9Inspiration does not necessarily mean duplication; biological neural systems are signi�cantly
more complex. However, both systems approach a problem by exploiting the bene�ts of parallelism
and high connectivity.
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Chapter 3

System Design and

Implementation

It's just a matter of hardware and software now : : :
1

3.1 Setup

3.1.1 Cog

The humanoid robot, Cog, on which this project is based is an ambitious e�ort

lead by Professors Rodney Brooks and Lynn Stein at the MIT Arti�cial Intelligence

Laboratory to understand human cognition by embodying intelligence in a physical

manifestation (Brooks & Stein 1994). This belief, that cognition must be rooted in

a physical embodiment and can not usefully be relegated to simulation, is a notion

�rmly believed by all members of the group, including the author. One of the unique

features of this auditory system, the author feels, is that it is running on a human-like

robot, with vision and dextrous upper body and arm motion abilities. Using such a

system at once simpli�es and complicates the task of sound localization. Compared

to static setups that most researchers use, having a mobile head that can orient itself

with three degrees of freedommakes the systemmuchmore dynamic, as the robot can

orient the microphones in such a way to maximize the sensitivity of localization and

remove ambiguities. Having vision capabilities introduces non-acoustic cues for sound

localization, and is, as will be discussed, vital for the robot to learn how to localize.

Complexities arise from the fact that not only will the robot be generating its own

noise, from its motors and manipulators, but it is currently located in a very noisy

environment where reverberations will likely be dominant (refer to Figure 3-1). The

system described in this thesis is exible enough to overcome the di�culties involved

in using a humanoid robot.

The robot itself, shown in Figure 3-2, is still under development.2 This robot

1Anonymous colleague, 1992 Undergraduate Group Engineering Design Project
2Refer to papers by other members of the group for a more complete description of the other

subsystems (Ferrell, Scassellati & Binnard 1995, Marjanovi�c 1995, Williamson 1995, Matsuoka 1995).
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is built from the waist up, and is currently bolted to an immovable stand; as we

learn more about the issues involved in embodied intelligence, more robots will be

built incorporating the lessons we have learned. The upper torso and head assembly

are complete, with each having three degrees of freedom. The head houses an active

vision system consisting of four cameras, mounted in pairs and having two DOF each.

Each \eye" consists of a pair of cameras, one having a wide angle view and the other

a narrow view; this simulates the fovea and wide-angle vision of a human eye. The

visual input for the auditory system will be primarily from the wide angle cameras.

Currently in development is a six degree of freedom arm and a lightweight grasping

hand. The entire robot will be enclosed in a plastic shell that will serve as the \skin"

of the robot. The microphones will be mounted directed on the plastic head casing.

The \brain" of the robot is an o�-board, large-scale MIMD parallel computer,

referred to as ��, with a Motorola 68332 micro-controller3 board at each node. The

board has local memory that contains L, a multitasking Lisp language, and user

programs. L will be the primary language for high level processing, and is described

in Section 3.2.6. The current backplane supports sixteen nodes, loosely coupled and

in a con�gurable but �xed topology network, with communication between nodes

and sensory hardware accomplished through the use of dual-ported static RAMs,

which provide independent, asynchronous access to the same memory range through

two ports. ��'s features|modularity, total asynchrony, no global control or shared

memory, scalability|were chosen to make the entire system have some degree of

biological relevance (Kapogiannis 1994). A new backplane is currently being designed

for better performance and reliability.

Section 3.2 contains a more detailed description of the actual hardware and soft-

ware of the auditory system.

3.1.2 Styrofoam Head System

While the main body of Cog is under development, a simpler head system has been

constructed (See Figure 3-3). A Styrofoam head mounted on a hobby servo, found

in radio control models, has one degree of freedom (pan) and houses two electret

condenser microphones.4 A single CCD camera is \mounted" on approximately the

center of the forehead. Instead of using the multi-processing backplane, a smaller

version, referred to as the �-Cog, with support for two nodes is used. While the size

and material of the two heads are not identical, using an adaptive learning system

like a neural network allows the auditory system to adapt to di�erent con�gurations.

3The MC68332 is a 32-bit micro-controller running at 16.78 MHz, with built-in timer and serial
subsystems.

4The hobby servo, not used in this particular application yet, is controlled by a pulse width
modulated (PWM) signal from a parallel processing node. Using the servo to perform some form of
tracking based on sound localization is a logical next step.
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Figure 3-1: Cog Setup Figure 3-2: Cog

3.2 Design and Implementation

A major portion of the project consists of developing a general purpose auditory

system for Cog with enough exibility to be used in wide variety of applications,

including but not limited to localization. The system has been designed to take full

advantage of the parallelism of Cog's architecture, and to be as scalable as possible;

multiple microphones and speakers can be easily interfaced to Cog. Multiple DSP

boards may also be connected together in various con�gurations. Sound localization

was chosen as a natural �rst task to accomplish, as it is one of the most fundamental

auditory perception tasks, and makes full use of the modularity of this system. At

�rst, all localization will be referenced on a plane in the frontal region of the azimuthal

Figure 3-3: Styrofoam Head Setup Figure 3-4: Hardware Setup
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Figure 3-5: �-Cog Setup

plane.5 An overall system diagram is shown in Figure 3-6.

Backplane

DPRAM DPRAM

To Neck Motors

DSP Board

DSP−DPRAM
Interface

Audio
Board

Microphones Pre-Amp

Other DSP Boards

Camera

Frame Grabber Display Board

Monitor

DPRAM DPRAM

Figure 3-6: Overall System Diagram

3.2.1 Dual Ported RAM

A key component in this system is the dual-ported static RAM (DPRAM), which

is used for communication among most of the components of the humanoid robot,

including the parallel processing nodes, the sensory (audio and visual) hardware, and

a high performance DSP board. Two devices connected to the two ports of a DPRAM

can access the same memory range simultaneously. DPRAMs used in this system,

and in Cog in general, have 8K of 16-bit words. A crude form of handshaking is

available using the DPRAM's interrupt mechanism; devices on either of the ports

can write to distinct memory locations to generate an interrupt on the other port. It

is through this mechanism that most components of the auditory system and Cog in

general can perform synchronized communication.

5As the system develops, we will add more microphones and localize fully on two planes.
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Using DPRAMs provide a basis for designing modular system components, and

makes the high level of integration of the components, necessary to perform intelligent,

human-like tasks, possible. Sound localization is one excellent example of such a task.

3.2.2 Microphone and Pre-amplifer

Figure 3-7: BT1759 Microphone

While the auditory system is designed to work with any standard microphone, the

Knowles BT1759 electret condenser (pressure) microphone has been selected for this

particular application due to its small size6 and high sensitivity. It has a sensitivity

of -60�3 dB re 1 V

�bar
at 1KHz, with a frequency response roll-o� of around 10KHz

(Kno 1973).

The pre-ampli�er circuit, adapted from the sample circuit in the data sheets ((AD

1994)), is a simple inverting ampli�er con�guration that serves to level-shift and

amplify the microphone output to \industry standard" MIC input levels that the

codec expects. The op-amp is also con�gured to low-pass �lter (�rst order) the

analog input, for anti-aliasing purposes. (See Section 3.2.3 for more information)

Appendix A.1 contains the schematic for the preampli�er.

3.2.3 Audio Board

A custom audio board has been designed with the same modular philosophy as

with the rest of the robot; both raw and processed sound data is communicated via

DPRAMs, so that the board can be directly interfaced not only to the backplane, but

to a DSP board for faster computation via a DSP-DPRAM interface board that was

also designed and built. The board contains a codec,7 the Analog Devices AD1848K,

which allows simultaneous stereo audio recording and playback. Data is transferred

to and from the codec on an 8-bit data bus. Sampling and playback rates of up

to 48KHz on both channels is possible, with up to 16-bit resolution. Sound data

6It was designed for hearing aid applications
7Codec stands for compressor-decompressor, and has come to mean a combined ADC/DAC,

usually with a high degree of programmability.
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Figure 3-8: Audio Board

can be stored in a variety of standard formats, from uncompressed linear PCM to

compressed �-law and A-law encodings. The codec is highly programmable, with 16

registers specifying every aspect of data acquisition and conversion. The board has

been designed to allow on-the-y changes of all acquisition/conversion parameters,

including sampling rate, data resolution, and internal input ampli�er gain control.

The built-in analog to digital converters (ADC) include linear phase (decimation)

low-pass �lters with a 3-dB point at around the Nyquist frequency.8 Only a simple

single pole external low pass �lter is necessary to insure anti-aliasing, simplifying the

microphone pre-ampli�er circuit greatly (AD 1994). Any standard microphone can

be interfaced to the system; electret condenser microphones were chosen for their

small size and power requirements.

DPRAM Banks

Left0 Left1

Right0 Right1

Pre-amp

Pre-amp

Microphones

Audio
Amplifier

AD1848K

Codec

68HC11

8-bit Data Bus

DMA
PAL

Memory
Interface

Figure 3-9: Audio Board:System Diagram

Figure 3-9 is a system diagram indicating the various components of the audio

board and their interactions. The audio board has been designed to be very simple

to program and use. The codec itself demands a relatively complex interface of direct

and indirect registers. For optimal performance Direct Memory Access (DMA) is

necessary, and has speci�c timing requirements that must be met for lossless data

transfer. The problem is compounded when simultaneous data capture and playback

(digital to analog conversion) is desired. To achieve a modular system, and remove the

burden of exact timing and register manipulations, it was decided to add a Motorola

68HC11 microcontroller, on the same 8-bit data bus as the codec and DPRAMS, to

8The Nyquist Frequency is one-half the sampling frequency and is the highest frequency that can
still be accurately represented by the discrete time series without aliasing
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handle all low-level details of codec interfacing, so the audio board's only external

interface will be through DPRAMs. The DPRAMs themselves have a very simple

interrupt mechanism that is a lot easier to interface. As a result, any device (back-

plane, DSP board, etc), referred to as the host, that is connected to the audio board

through DPRAMs can receive stereo audio data and send mono data simultaneously

without having to worry about codec register accessing and the intricacies of DMA.

Customizing acquisition/conversion parameters is a mere matter of the host writing

the parameters to one of the DPRAMS and generating an interrupt.

The codec has two modes of operation, programmed I/O (PIO) for register ac-

cesses and DMA for sound data transfer. The 68HC11 handles the switching of the

these two modes as necessary; parameter updates and status information requests by

the host are read by the 6811 and processed using PIO. For actual sound transfer, the

6811 switches the codec into DMA mode, and controls Programmable Array Logic

(PAL) chips, implementing a �nite-state machine (FSM), that perform Direct Mem-

ory Access (DMA) between the codec and multiple banks of DPRAMs. Note that

the 6811 itself does not transfer any sound data, as its 2MHz operating clock and .5

�s instruction cycle time would be a bottleneck.9

The bank of four DPRAMs serves as a double bu�er for seamless data trans-

fer. Stereo audio signals can not only be continuously captured by the codec writing

to alternate Leftx/Rightx banks a bank at a time, but a mono signal can be out-

put through the codec to a speaker simultaneously. Appendix A.2 contains selected

schematics of the audio board, information concerning the codec from the data sheets,

and the state diagram implemented by the PALs.

3.2.4 DSP Development System

Figure 3-10: DSP Board and DPRAM Interface

TI TMS320C40 DSP Board

It was soon determined that at the current state of development, the parallel process-

ing nodes needed to be augmented with a fast processor for applications requiring

9DMA transfers are a necessity, especially with simultaneous stereo 16-bit recording and playback
at 48kHz, which would require data transfer rates of close to 400kHz.
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signi�cant computational power, such as signal processing. While the nodes running

L routines are su�cient for low data throughput applications, and even for simple

visual processing of frames, sound processing is much more dependent on complex

computations such as convolution and FFT's.10 Such tasks can be accomplished

extremely quickly and e�ciently with a digital signal processor.

TMS320C40

DUART

Expansion Connector
(to DSP-DPRAM Interface)

Global Bus Memory

Local Bus Memory

Serial COM 
Channels

(to other C40s)

RS232 Serial

128Kx32

128Kx32

(to Mac)

Global Bus

Figure 3-11: DSP System Diagram

The Texas Instruments TMS320C40 (C40) Digital Signal Processor was chosen for

this task. It is capable of performing about 200 million operations per second, and

has a powerful instruction set optimized for a variety of signal processing tasks, from

time domain correlation and statistical analyses, to frequency domain Fast Fourier

Transform computations. The C40 also has several features that make it ideal for

connecting multiple DSP boards together for parallel processing; six DMA serial

communications channels are speci�cally designed to allow 20-Mbytes/s bidirectional

asynchronous transfer between multiple C40s. Two identical external data and ad-

dress buses11 are ideal for shared memory con�gurations (TI 1993).

A DSP board, shown in Figure 3-10, was independently developed at the AI Lab

and is another key part of the system. A system diagram is given in Figure 3-11.

The board adds 64K of static memory, divided equally on the local and global buses.

C40 programs are downloaded serially via the DUART. The connector brings out the

global bus for external expansion.

DSP-DPRAM Interface

The DSP-DPRAM interface board connects to the DSP board through the expansion

connector, and allows modular connections between the DSP board and any other

device in Cog, from the parallel processing nodes to the audio and vision boards.

10Since visual processing consists of taking \snapshots" of the image in time, many tasks are
still possible on a slower processor by using a number of techniques, from sub-sampling the image,
working with fewer frames per second, etc. We do not have as much luxury in sound processing,
where the two dimensions of time and intensity are much more tightly coupled. There is no notion
of \snapshots" and data must be taken continously. Unlike vision, audition usually can not rely
solely on time-domain techniques, but requires in addition frequency domain (FFT) analyses.

11The C40 has a \harvard" architecture, with separate buses for data and addresses.
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As shown by the block diagram in Figure 3-12, the DSP DPRAM interface board

is a very simple circuit that interfaces up to 9 DPRAMs to the DSP.

5

Interrupt Multiplexer

ExtInt0
ExtInt1
ExtInt2

High
Block

Low
Block

AB Group LD Group LC Group

Bank 0 Bank 1 Bank 0 Bank 1 Bank 0

(ExtInt1) (ExtInt2) (ExtInt0)

Note: Only Low Order Blocks
Have Interrupts Connected

Global Bus
Interrupt
Indicator

Figure 3-12: DSP-DPRAM Interface

Before describing the DSP system in detail, some terms should be de�ned. Each

individual 8K word DPRAM is de�ned to be a block. To increase data throughput,

and since the data bus of the C40 is 32-bits wide, two (16-bit wide) DPRAM blocks

are combined to form one bank; the C40 accesses the DPRAMs one bank at a time.

(It therefore makes sense to speak of high-order and low-order blocks in a bank.) Due

to a limitation of the C40 that is discussed below, banks are organized into groups.

System Memory Map

Global Bus

Local Bus $0000 0000

$8000 0000

Boot EPROM (128Kx8)

DUART (16x8)

Local Bus sRAM (128Kx32)

AB DPRAM Bank0

Bank1

(16Kx32)

LC DPRAM Bank0

Interrupt PAL

Global Bus sRAM (128Kx32)

LD DPRAM Bank0

Bank1

(16Kx32)

(8Kx32)

$003F 0000

$4000 0000

$8000 4000

$8000 8000

$8xx8 xxxx

$C000 0000

(Audio Data)

(Vision Data)

(Misc)

Figure 3-13: DSP System Memory Map

Interrupt Handling The C40 has relatively few external interrupt lines12, so a

scheme for multiplexing interrupts was devised. The DPRAM banks were organized

into three groups, each sharing a single external interrupt. A PAL multiplexes the

12The C40 itself has four; the DSP board described here reserves one of the external interrupts,
leaving only three.
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interrupts and passes them onto the C40 and keeps track of which particular bank of

a group caused the interrupt. The PAL is mapped to an address range on the C40

memory map (See Figure 3-13) so that when the C40 accesses this range, the PAL

outputs the particular bank that caused the interrupt onto the data bus. Multiple

interrupts, from di�erent groups, that occur simultaneously are also supported.

3.2.5 Vision System

The video camera subsystem has been developed by other members of the Cog group.

Two boards, the frame grabber and display board, have been built with DPRAM

interfaces that allow the capture and display of video data. The frame grabber board

uses standard video chips to convert normal NTSC video signals to 8-bit grey-scale

values with a screen resolution of 128 by 128 pixels. Video data is written to the

DPRAMs at a rate of 30 frames per second, with the end of frame signaled by an

interrupt. The display board takes 8-bit grey scale values and converts them into a

standard (black and white) NTSC signal.

The camera used is an inexpensive color CCD camera with a �eld of view of

around 70 degrees, although any camera with an NTSC output would be su�cient.13

3.2.6 System Software

Most of the low-level signal processing routines and system software are written in

assembly language and C for the C40. Presently, high-level processes such as the neu-

ral network have been implemented o�-line in Matlab14, and will shortly be ported

to the DSP in C. Eventually, when a more stable version of the backplane is designed

and built, high-level processes will be implemented in L, a downwardly-compatible

multi-tasking subset of Common Lisp written by Professor Rodney Brooks, for the

parallel processing nodes. L provides a multitasking lisp environment for the devel-

opment of \brain models," where the nature and organization of processing will be

inuenced by actual biological brains. The goal is not to build a model of an actual

brain, but to take inspiration from the modular structure of brains (Brooks & Stein

1994).

13While the camera output is color, the frame grabbers output grayscale values.
14Matlab is a registered trademark of The Mathworks Inc. and is an easy to use mathematics

software package.
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Chapter 4

Application

Use the right tool for the right job.1

4.1 Procedure

It was originally planned that the neural network to perform sound localization will

be implemented on Cog itself, using the parallel processor nodes. Due to several

factors, it became prudent to develop on a separate setup, the temporary Styrofoam

head system described in Section 3.1.2, and mostly on the DSP system for tighter

integration of audio and vision. When the new backplane is completed, and other

structures of Cog built, the auditory hardware can be easily mounted on the robot

itself, and the high-level software ported to L.

Even in this separate setup, it became much easier to perform initial signal pro-

cessing and algorithm prototyping of cue extractors using Matlab. Audio and visual

data was collected using the integrated auditory system, and then transferred to a

Sun workstation on which Matlab was running. Since the DSP C compiler also resides

on the Suns, this was not as inconvenient as originally thought. Figure 4-1 shows the

actual working setup. The Macintosh is running MCL, a version of Common Lisp,

that communicates with L on the �-Cog via a serial port. Binary data received by

the �-Cog via DPRAMs can be saved into a �le on the Macintosh through this link.

The Macintosh is also running a terminal program that communicates with the DSP

board via another serial port; DSP programs are downloaded to the DSP using this

link, and text output from the DSP can be saved to a �le on the Mac.

Development of the neural network was also based primarily in Matlab, using parts

of the Neural Network Toolbox. Matlab has a C-like language, so the developed neural

network should be easily ported to the DSP.2 There are some implementation issues

such as synchronization that must be addressed; see Section 4.4.

Initial experiments involved using the auditory system to collect raw sound data

and processed visual data; these were then passed to the �-Cog which then saved

them to the Mac. They were then transferred to the Sun workstations and processed

1Old engineering maxim.
2Porting the neural network eventually to L should not be much more di�cult.
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using Matlab. Section 4.4 describes the implementation of an actual architecture to

handle sound processing on the DSP board itself.

Styrofoam
Head

Audio Board DSP System

Micro-CogVision
System Mac

Serial 1

Serial 2

Ether-
net

NTSC

MIC

DPDP

DP

Sun

Matlab
DSP C 
 Compiler

MCL
Terminal

L

C40 Assembly6811 Assembly

DP=DPRAM Connection

Figure 4-1: Overview of Development System

4.2 Cue Extractors

Very rarely are neural networks fed raw signal inputs; some form of pre-processing is

usually performed to reduce the data into a more manageable form while retaining

the important features and characteristics.

The cue extractors for the input layer can be divided into two broad categories,

time domain and frequency domain functions. Most extractors will use short-time

block signal processing, in which the continuous input audio stream is divided into

short time blocks and any processing is performed on a block at a time. Each extractor

will give its own estimate of the source of the sound. Naturally, not all of the extractors

will give meaningful estimates for every sound. It is up to the neural network to learn

the relevance of each cue in each situation.

Discrete time representations of sound signals are usually analyzed within short-

time intervals. Depending on the application, analysis frames of 5-25 ms. of the signal

are selected during which the signal is assumed to be quasi-stationary, or has slowly

changing properties. For sound localization, a good balance between a short enough

window to catch di�erences in cues and a long enough window to obtain meaningful

information seems to occur with a window length of about 10ms.3

Most of the short-time processing techniques, as well as the short-time Fourier

representation discussed in Section 4.2.2, can be expressed mathematically in the

form

Qn =
1X

m=�1

T [x(m)]w(n�m)

where x(m) is the signal, w(n) is the analysis window sequence, and T [�] is some linear

or nonlinear transformation function. w(n) is usually �nite in length and selects a

short sequence of the transformed signal around the the time corresponding to the

sample index n. Qn can therefore be interpreted as a sequence of locally weighted

average values of the sequence T [x(m)] (Rabiner & Schafer 1978). The choice of w(n)

3Like much research in sound and speech processing, this value has been empirically determined.
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not only determines the interval over which the signal is evaluated, but by how much

each data point within the frame should be counted; a typical sequence called the

rectangular or boxcar window is de�ned as

w(n) = 1; 0 � n � N � 1

0; otherwise

The boxcar window weighs each data point within the window equally.4

Figure 4-2 shows a block diagram of the sound pre-processing that was performed

with Matlab. Only \interesting" portions (ie. those with actual non-background sig-

nals) were selected to be pre-processed. These portions were then segmented into

equal-length frames using a boxcar window. After some experiments a suitable con-

�guration of sampling rate and window size was determined. Data was sampled at

22KHz with 8-bit resolution. The window length was set to 128 bytes (approximately

8 ms.) with no overlap. A more detailed discussion concerning the various design

issues of the acquisition and short-time segmentation is presented in Section 5.4.1.

Localization cues were computed from the time and frequency domain measure-

ments by subtraction, to result in the following: cues indicating a sound source in the

left direction would be negative, cues indicating a sound source in the right direction

would be positive.

4.2.1 Short-Time Time Domain Processing

Four time domain measures were chosen to obtain localization cues. A deliberate

attempt was made to choose measures that were as simple as possible to compute,

but could still provide useful information.

Phase Delay This is the dominant ITD cue for low-frequency and sustained sig-

nals. The delay of one channel with respect to the other can be computed by

performing a cross-correlation of both channels (See Section 4.2.2).

Maximum Value The maximum positive value of each signal for each segment was

determined. A localization cue based on the di�erence of the two maximum

values in each segment is a form of IID.

Maximum Location The locations of the maximumvalues in each segment of each

channel were also recorded. The di�erence in the locations is an ITD cue similar

to phase delay, and is meant as an approximate measure of onset delay. Onset

delay is a useful cue for high frequency sounds or complex transients.

P
Magnitudes Another simple to compute IID cue is the di�erence in the sum of

magnitudes of the signals in each segment. This is an approximate measure

of the short-time energy of each signal (Rabiner & Schafer 1978). As with the

maximum value measure, the channel from the near microphone should have a

greater energy (magnitude) content than that from the far microphone.

4Another popular window is the Hamming window, discussed in Section 5.4.1.
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Figure 4-2: Localization Cues Block Diagram

4.2.2 Short-Time Frequency Domain Processing

Frequency domain cue extractors use the spectrum of the signal in their processing.

There are several representations for the spectrum, but by far the most commonly

used in digital systems is the Discrete Fourier Transform, having the mathematical

form5

X[k] =
N�1X

n=0

w(n)x(n)e
�j2�nk

N

As in short-time time domain processing, the boxcar window is often used for w(n).

Since an N-point discrete time series transforms to an N

2
-point discrete Fourier Trans-

form series (the other N
2
points of the DFT are symmetric copies and contain no

additional information), the original time series is usually extended with zero-value

samples to increase the resulting resolution of the DFT series (Beauchamp & Yuen

1979).

The development of the Fast Fourier Transforms (FFTs),6 has improved the speed

5The DFT is the sampled version of the continuous short-time Fourier Transform (STFT), ex-
pressed as Xn(e

j!) =
P
1

m=�1
w(n�m)x(m)e�j!m, within each window. ! is evaluated at N points

around the complex unit circle, or ! = 2�n

N
(Morgan & Sco�eld 1991).

6The term FFT is a misnomer; it is not a transform at all, but a collection of algorithms with
which one obtains the Discrete Fourier Transform.
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at which the DFT is computed from O(N2) operations to O(NlogN) operations.

Modern DSPs have been optimized mainly to perform Fourier transforms, and as a

result spectral processing has �nally become feasible in real-time intelligent systems.

Even the implementation of time domain processing functions has bene�ted from

the development of FFT techniques, as some analyses like correlation are now more

e�ciently computed by �rst transforming into the frequency domain, performing an

equivalent operation, and transforming back into the time domain.

Correlation Analysis
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Figure 4-3: Cross correlation of beginning of clap

Correlation analysis has been used in a variety of �elds from statistics, in determining

the similarities or \correlation" between two signals, to control theory, in deriving an

approximate impulse response function of the plant, to signal processing, in recovering

signal from noise (Beauchamp & Yuen 1979). Another application of correlation

analysis is to determine the phase di�erence between two identical time-shifted signals.

While the left and right channel sound signals are not identical, they are similar

enough to exploit this last application.

Discrete cross-correlation is an operator on two discrete time signals (assumed to
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have length N each) that can be expressed as

l[n]
� r[n] �
N�1X

m=0

l[m]r[m+ � ]

One interpretation of the above de�nition is that the two discrete time series l[n] and

r[n] are multiplied together element-by-element, after one is shifted in time � samples.

The correlation will be large for some positive value of � if the �rst signal, l[n], leads

the second, r[n] in time, and for some negative value of � if l[n] lags r[n]. Figure 4-3

shows the cross correlation of the left and right channels of a clap performed to the

left of the head (the left channel signal leads the right); note that the two signals are

not identical, even with time shifting. Still, a peak to the right of the vertical line

denoting � = 0 indicates that the left signal leads the right signal, which con�rms

visual inspection.

While it may seem straightforward to implement the correlation operator in the

time domain, FFT techniques have proven to be more e�cient by exploiting the

discrete correlation theorem, stated as

l[n]
� r[n]() L

�[k]R[k]

Thus, implementing e�cient cross-correlation involves transforming the two discrete

time series into their DFT representations, performing element-by-element multipli-

cation of one DFT series with the complex conjugate of the other, and then inverse

transforming the product back into the time domain (Press, Flannery, Teukolsky &

Vetterling 1988).

Filterbank-Based Cues

One common representation obtained from signal spectrums consists of \banks" or

groupings of passband �lters, called �lterbanks (Morgan & Sco�eld 1991). The center

frequency of the �lterbanks are usually spaced logarithmically, emphasizing the low

frequency end of the spectrum, especially in speech processing. Due to the nature of

IID cues, which are predominantly high frequency cues, it was thought that having

equally spaced �lterbanks would be more suitable.

Computing the DFT of the sound signals results in a spectrum with a bandwidth

of Fs
2
, where Fs is the sampling frequency. The range [0; Fs

2
] is divided into four

equally spaced banks, and the sum of magnitudes in each bank are computed. These

sums represent the average spectral density of the short-time signal at each frequency

range.

4.2.3 Visual Processing

For this project, only very simple visual processing has been performed to train the

network. Since we are assuming that the sound sources that will be used in the

training phase of the network will have corresponding motion associated with them|

door slamming, hands clapping, rattles shaking, etc.|visual processing consists of
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detecting the \centroid of motion," or the centroid of the di�erence between succes-

sive frames. This value will be used to derive a very coarse azimuthal angle, with

only three values corresponding to \left," \center," and \right." This value will serve

as a reference for training the neural network using error backpropagation (see Sec-

tion 4.3.2).

x(1) x(2)
x(3)

128 pixels

128 pixels

8 pixels

Centroid=(Σx(i))/3

Figure 4-4: Motion pixel image (pixels in shaded block are ignored).

Figure 4-4 illustrates the concept of horizontal center of motion. After subtracting

successive image frames, any pixel that had changed intensity between the frames

would have an intensity value of the di�erence.7 Large motions such as hand clapping

in a particular part of the image will result in a number of motion pixels having

nonzero values in the particular region. Since we are only interested in the azimuthal

angle, averaging the horizontal components of all nonzero motion pixels will produce

the mean, or centroid, of motion. We are admittedly making many assumptions about

the nature of sound production and its associated motion. A more careful analysis

will be performed in future work.

There is added complexity caused by noise from the (inexpensive) cameras. Large

portions of the screen icker constantly, adding noise to the successive subtraction

operation. This was handled by a combination of averaging and thresholding, and

is described in the Section 4.4. In addition, the pixels in the leftmost portion of the

image were especially noisy, so were omitted from the processing.

High resolution is not necessary for this particular application. In fact, the nu-

merical value of the centroid of motion is eventually converted into an abstract rep-

resentation with only three distinct values (see Section 4.3.2).

4.3 Neural Networks

4.3.1 Design

The primary role of a neural network is to associate inputs, in this case binaural

cues, with an output, the azimuthal angle. This association is stored in the network

7To avoid confusion, the term image pixel will refer to a pixel from the raw image. Motion pixel

will refer to a pixel from the processed (successive subtraction) image.

39



Input 
Layer

Output
Layer

Hidden
Layer

Left

Mid

Right

16 nodes
Logistic
Sigmoidal
Transfer
Functions

∆Max
∆MaxLoc
∆ΣMag
XCorr

∆Bank1
∆Bank2
∆Bank3
∆Bank4

Simple 
Localization
Output

Time

Figure 4-5: Neural Network Block Diagram

as the variable interconnection weights between nodes; these weights are a form of

\memory." It is an established fact that we can localize familiar sounds better than

unfamiliar sounds. This is especially true for sounds that produce ambiguous localiza-

tion cues, since the auditory system learns to pay attention to only those cues that are

in agreement and discard irrelevant or misleading cues (Blauert 1983). As stated ear-

lier, vision plays a major role in this learning process, for both humans and the neural

network described here; everyday sounds, including speech, are mostly transient in

nature, and their production often involves some sort of motion. Taking advantage of

both audio and visual features of such stimuli will improved the robustness of sound

localization.

Figure 4-5 shows the architecture of the neural network that was implemented

in Matlab. The input layer (8 nodes) is fed with the simple localization cues that

were described above. The hidden layer (16 nodes) represents the associations and

interactions of the various localization cues. The output layer (3 nodes) of the network

will produce some form of \angle" on the azimuthal plane, that will be the best

estimate of the location of the sound source. This output will be used in conjunction

with the visual motion detector to generate an error signal for back-propagation

learning.

The neural network implemented in this project was a standard feed-forward

multi-layer perceptron with one hidden layer. Neural networks with more than two

hidden layers are rarely necessary, and the bulk of neural networks research deals with

MLPs with only one of two hidden layers (Haykin 1994). Standard MLPs can only

learn static maps from input to output. This is not a severe limitation for the pur-

poses of localization, as it has been determined that the cues, acting separately, have

a �xed, functional form (see Section 2.1.2). More complex, time-dependent neural

network architectures are also possible and are discussed in Section 5.4.2.
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4.3.2 Training

Procedure

Visual feedback will play the major role in the training phase. As the objective of

this project as well as the entire Cog project is to have the robot imitate a human

infant as much as possible, the training methods have been chosen to reect this.

Several di�erent sounds were recorded with the auditory system, at di�erent az-

imuthal angles with respect to the head. The signals were divided into two classes,

training and validation signals. The training signals were selected as representatives

of the types of naturalistic audio stimuli that the robot may hear. These signals were

also chosen for their relatively high degree of associated motion. Claps were chosen

as a typical short, complex transient signal, while the spoken vowel, \ahh," represents

sustained, periodic signals.8 These sounds will be used to successively train the neu-

ral network. Sounds of a door slamming from two di�erent directions were recorded

as validation signals, which will be used to test the neural network once the weights

have been determined.9

Each training signal was recorded at three di�erent locations within the visual �eld

of the camera, denoted \left," \center," and \right," all with respect to the head, for a

total of 6 training signals.10 \Left" and \right" positions were at the very edges of the

�eld of view, corresponding to about �35 degrees from the center; distances from the

head were on the order of four feet. As mentioned above, exact distances and models

were not recorded or used. This particular project is not interested in developing an

accurate localization system yet, and for now, azimuthal angle will be expressed only

in terms of representations of \left," \center," and \right." Performing only coarse

localization is consistent with the overall project philosophy of accomplishing simple

tasks in complex environments, at least in the beginning; more precise localization

will be explored in the future.

One training signal out of the set of six was selected, processed, and presented

to the network. The azimuthal angle to the sound source derived from the visual

centroid of motion detector was taken as the reference or desired localization an-

gle; the error signal was be computed by subtracting the output of the network, the

estimated azimuthal angle, from the desired angle. This signal will then be prop-

agated backwards through the network to adjust the interconnection weights. The

presentation-backpropagation process was repeated, up to a maximumof 1000 epochs,

until the error signal was su�ciently low (1% sum-squared error). Other training sig-

nals were then selected, until all six had been presented to the neural network. The

entire procedure was repeated ten times to allow the neural network to assimilate all

the training signals.

Each training signal, as well as the two validation signals, were then presented in

8This type of signal is more worthwhile to study than sustained sinusoids, as it is can also be used
in speech experiments in the future. The associated motion is the mouth movements to produce the
vowel sound.

9Conveniently, there are two doors located to the left and right of the auditory system.
10Due to the very coarse resolution of the chosen azimuthal angle representation, it was not

necessary to worry about exact positions and angles.
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succession to the neural network and the results (localization outputs) were recorded.

Parameters

The auditory system itself is very exible in terms of the format of sound acquisition.

Parameters such as sampling rate and sample resolution can be varied depending on

the particular application. For sound localization, most parameters were empirically

determined so as to produce the best performance from the cue extractors and neural

network. It was determined that a sampling rate of 22KHz with 8-bit quantizing

resolution, and a hidden layer consisting of 16 fully connected nodes were su�cient

for adequate performance.11

Representation

Using a neural network for signal processing raises the question of at what level should

the localization cues be represented. In other words, what form should the inputs and

outputs of the neural network take? Research in both image and sound processing

have explored both extremes, from taking raw data after minimal subsampling, to

pre-processing the raw data and abstracting most of the signal characteristics to very

high-level representations (Yuhas et al. 1990).

An intermediate approach was taken for this project, and some amount of pre-

processing on the raw sound data was performed resulting in rough localization cues

from the binaural di�erences of various signal properties. The inputs to the network

are therefore not raw signals, nor representations of \left," \right," etc., but an in-

termediate representation. Since each localization cue had di�erent ranges, initial,

randomly chosen weights and thresholds took into account the di�erent input ranges.

The form of the outputs turns localization into a classi�cation problem; the three

output nodes symbolically represent the three general directions a sound can come

from, and have a range of [0,1]. This representation lends itself easily to the integra-

tion with the output of the visual centroid of motion detector. Azimuthal \angle"

can therefore be determined by taking the maximum of the three output nodes.

4.4 Online Implementation

Having prototyped the design of the pre-processor and neural network o�-line, as

much functionality was implemented on the DSP as possible given time constraints.

Much greater attention must be paid to issues of synchronization, memory, and pro-

cessing time for implementations on the actual system than for an o�-line system

with (nearly) unlimited resources. Part of the reason for selecting simple localization

cues was to ease the computational demands and the synchronization problems.

11A 22KHz sampling rate, with a Nyquist frequency of 11KHz, is fast enough to accurately model,
without aliasing, most commonsounds, including speech. The corresponding sampling delay of about
46 �s is also short enough to capture interaural time di�erences while still avoiding oversampling.
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4.4.1 Visual Processing
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Figure 4-6: Visual Processing Block Diagram

As stated earlier, visual data was processed directly on the DSP from the start. This

was to reduce the data throughput through the �-Cog setup, and because visual

processing was very straightforward to implement on the DSP system.

Figure 4-6 presents the overall processing algorithm. DPLD0 refers to the actual

DPRAM that receives the raw image data from the frame grabber. DPLD1 is the

output DPRAM, and is connected to a monitor via the display board. RAW and AVG

refer to internal bu�ers that store the raw and average image pixel values, respectively,

of the previous frame. This scheme is necessary to smooth the noisy raw images before

processing (subtracting) them. Note that the entire 128 by 128 image is not used in

the visual processing; a vertically centered horizontal strip, 32 pixels in width, was

used, and the rest of the image was ignored. Even with averaging, the images were

still noisy, resulting in spurious nonzero motion pixels. A thresholding function, �,

was added, and only motion pixels with a value greater than the threshold12 were

actually output, to DPLD1 as well as the horizontal centroid of motion extractor.

4.4.2 Auditory Processing

Figure 4-7 shows a block diagram of the interrupt service routine (ISR) for collect-

ing continuous streams of data from the audio board. When a bank in the AB group

is full, an interrupt (ExtInt1) is signaled. The ISR determines which bank caused the

12This threshold was also empirically determined, and was set to 25.
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interrupt, by examining the interrupt PAL.13 Data is read 4 samples at a time (32

bits), and stored in the appropriate internal bu�ers. Reading and writing multiple

samples at once increases data throughput and saves memory.14

The cue extraction routine (see Figure 4-8) that was implemented on the DSP was

a simpler version of the processing performed in Matlab, due to the lack of a routine

to compute FFTs.15 Thus, only time domain signal processing was possible. Pass 1,

performed by the ISR, keeps tracking of running measures of the maximum sample

13As shown in the DSP System memory map (Figure 3-13), the interrupt PAL is mapped to a
range in the global bus. Reading the PAL returns which bank(s) have caused interrupt(s).

14All data types in the DSP C language are 32 bits wide; storing one sample per data type would
take up twice as much space as this scheme, which packs 2 samples (16 bits total) into each internal
memory location.

15We are currently in the process of porting a public-domain FFT routine to the C40.
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and its location, and the sum of magnitudes while the samples are being transferred

to internal memory. Pass 2 takes the updated segment measures of both channels and

computes time domain cues based on the di�erences of the corresponding measures.

While the nature of the processing is very simple compared to that performed o�-

line, the important point to note is that an interrupt-driven architecture for obtaining

raw audio data and processing segments of data was implemented; this architecture

can be readily expanded to include the features described in Section 4.2.

4.4.3 Synchronization

Time

Processing

Audio ISR

Sound
Localization

Visual
Processing

Time between interrupts
(16K/22Khz= .72 sec.)

Interrupt
Driven

Polling

Figure 4-9: Process Synchronization

A combination of interrupt-driven and polling schemes was employed to integrate the

auditory and visual processing. To ensure continuous sound processing, the DPRAMs

receiving data from the audio board must be processed in a timely manner. Thus,

low-level auditory processing routines were interrupt-driven, while less critical visual

processing routines were implemented by polling the video DPRAM interrupt. Since

it was not necessary to get frequent updates of the centroid of motion, not every

video frame needed to be processed, and a �xed number of frames were dropped per

second.16

16Satisfactory results were obtained by dropping as many as 20 out of 30 frames a second.
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Chapter 5

Results and Discussion

5.1 Cue Extractions

5.1.1 Training Signals

Two types of signals were used to train the network, a short clapping sound and a

voiced vowel, \ahh." Included in this section are representative �gures of each of

these sounds and their corresponding time and frequency domain cue extractions.

Note the \noisiness" of each individual cue for any particular signal; no single cue is

accurate in crude localization. What is necessary is to have a neural network \learn"

which cue is correct in a particular situation. Figures of the remaining training and

validation sounds are presented in Appendix B.

Clapping

Figure 5-1 shows time domain signals of a hand clap from the \left" direction. The

left channel (corresponding to the left ear of the Styrofoam head) is shown on top and

the right channel on the bottom. Note that it is evident even from visual inspection

that the left channel slightly leads the right, and that in general, the magnitudes of

the left are greater than the corresponding ones in the right. Time-domain (Figure 5-

2) and frequency-domain (Figure 5-3) cue extractions generally agree. (A negative

azimuthal angle corresponds to the \left" direction, with respect to the head.)

Spoken \ahh"

Figure 5-4 shows time domain signals of the voiced vowel, \ahh," coming from

the \left" direction. Note that the signal has much lower magnitudes in general, as

compared with those of the clap signal. Still, the left channel appears to have a

higher magnitude content than the right. ITDs are di�cult to ascertain from visual

inspection, but are present, as shown in Figure 5-5. As expected, frequency domain

IIDs shown in Figure 5-6 agree with the actual direction of the source.
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Figure 5-3: Frequency

Domain Cues

Door Slam

As an application of the completed neural network, two additional test signals, from

the slamming of doors located to the left and right of the head, were recorded and

presented to the trained neural network to see how well it localizes a slightly di�erent

sound.

As can been seen from �gure 5-7, the sound of a door slam is very similar to that

of a hand clap; both are short transient signals. In general, both time and frequency

domain cue extractors indicate a \left" direction; however, it also appears that both

extractor outputs are noisier than those for the clap signal, which could cause the

neural network some problems in determining localization angle.

5.2 Visual Input

Figure 5-10 shows the output of a sample run of the visual centroid of motion extrac-

tor. (Actual raw and processed images are given in Appendix B.4.) Large values cor-

respond to a centroid in the left portion of the camera's visual �eld, while small values

correspond to a centroid in the right portion. In this particular run, plateaus indicate

a clapping motion at the particular direction, while slopes connecting plateaus indi-

cate motion from the subject moving to a new location. The relatively at plateaus

eased the generation of desired responses for the neural network greatly; after manual

extraction of interesting sound segments from the raw sound stream, it was discov-

ered that the corresponding centroid of motion was uniformly constant. This was

because the �nal output of the centroid of motion extractor was limited to the three

\left," \right," and \center" directions. Thus, for one particular training segment,

for example a clap from the left direction, the desired response for the neural network
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Domain Cues

was a constant \left." Noisy centroid of motion signals would have complicated the

training of the network by producing false, spurious desired responses.

5.3 Neural Network Performance

After ten cycles of presenting and training the neural network with the entire training

set of six signals, the resulting neural network was presented with the training set as

well as the two validation signals to examine its performance in localization.1

5.3.1 Training Data

Figure 5-11 shows the localization angle output of the neural network for a clap

originating from (top to bottom) the \left," \center," and \right" directions. (The

output of the \left" classi�er is denoted by a dashed line, the output of the \center"

classi�er by a dotted line, and the output of the \right" classi�er by a solid line.)

Note that the network localizes the left and right clap signals well, but has di�culty

with the clap from the center direction. This is most likely because it is di�cult for

the cue extractors to output a zero value, indicating the center direction; the outputs

of the cue extractors are usually positive or negative, and very rarely zero.

Figure 5-12 indicates an even worse performance of the network for the voiced

\ahh" sounds. The network failed to localize the \ahh" from the left direction

correctly.2 The network response to the centered \ahh" is interesting; it appears

1When a fully on-line implementation of this neural network is completed, ongoing training of
the network would be possible, instead of a �xed number of cycles.

2There appears to be a bias of localizing towards the left due to the nature of training; training
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Domain Cues

that there is some competition between the left and right localization cues, which

might be expected for a sound coming from the center.

5.3.2 Validation Data

Figure 5-13 also shows that the network performs poorly on the validation signals.

This is puzzling, since the time domain signals for a door slamming appeared to be

very similar to that of hands clapping. One explanation is that the network was

overtrained, and became dependent on particular characteristics of the training set.

5.4 Discussion

5.4.1 Design Issues

A variety of neural networks, each with slightly di�erent parameters, were trained.

The results presented here are of the single neural network that seemed to have the

best overall performance, and yet it still failed to perform adequately in the validation

set.

There is much that can be improved in the immediate future concerning this

simple backpropagation network. Of course, more training data of di�erent types of

sounds can be collected, and more cycles of the entire training set presentation can be

performed. There is a danger of over-�tting the neural network, whereby particular

signals from the right were presented to the network last, and may have caused the bias.
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characteristics found only in the training set will be learned. The use of a compre-

hensive validation set to check the progress of the training, ending when performance

of the network on the training set exceeds the performance on the validation set, can

prevent such over-�tting.

The pre-processing of the signals can also be done di�erently: di�erent windows3

and di�erent length segments can be tried; overlapping segments will smooth the

output of both the time domain and frequency domain cue extractors; a more rigorous

�lter bank method can be pursued.

5.4.2 Extensions

Even for a simple static neural network, there are a large number parameters that can

all be changed to \tweak" the performance of the neural network. Unfortunately, there

are usually no hard and fast rules or an easy function to compute the optimal variables.

Like much in the �eld of neural networks, empirical study coupled with \rules of

thumb" are the best means of �nding such values. The problem is compounded since

changes in one parameter invariably a�ect others, and so the search space is vast. An

extension of this current work is to make many of the parameters, such as window

length, type, �lter bank division, sampling rate, etc. be adaptive, based on the type

3Another often used window is the Hamming window, de�ned as w(n) = 0:54 � 0:46cos( 2�n
N�1

)
for 0 � n � N � 1 and 0 otherwise. A Hamming window weighs data points near the center of the
analysis frame greater than those at either end.
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and time varying characteristics of the sound signal.4

A major change to the structure of the neural network will be to incorporate time

dependence with a sound stream explicitly. Research in neural networks for speech

processing have developed time delay neural networks (TDNN) that take into account

the time varying changes of speech characteristics in a given utterance (Morgan &

Sco�eld 1991). The TDNN is a MLP whose hidden and output nodes are replicated

across time. In other words, the same weights are applied to a series of time-delayed

inputs.5 Training a TDNN is performed by a modi�ed temporal backpropagation

learning algorithm. TDNNs have been implemented that have better performance in

recognizing isolated words than traditional hidden Markov models (Haykin 1994).

There is some biological justi�cation for incorporating time dependence into a

neural network for sound localization; it has been noted that a sound that has been

already localized recently in the past is expected or predicted to remain in the same

general location, helping the human auditory system in determining the present lo-

calization angle (Bregman 1990).

4Note that there are two separate time dependencies at work here|changes in the localization
cues throughout the duration of a particular signal, and changes in the di�erent signals that are
heard.

5The TDNN architecture can be implemented on an existing MLP by representing each synapse
of each neuron in the network as a �nite impulse response (FIR) �lter (Haykin 1994). In other
words, each synapse has a �nite memory of past inputs associated with it.
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Chapter 6

Conclusion

6.1 Future Work

With the completion of the hardware and low-level software of the auditory system,

e�orts can �nally be concentrated on improving the performance of the neural network

presented in this paper. Once sound localization based on audio-visual integration has

been improved, more advanced tasks can be explored, including the characterization

and recognition of sounds. For example, when Cog hears a familiar sound, it should

be able to localize it and predict what the object producing the sound is, without

having to actually see it. Other advanced auditory perception skills will also be

studied, including multiple source discrimination (including the so-called \cocktail

party e�ect") and eventually, speech understanding.

As more components of Cog become available, interesting intelligent behavior can

be explored; with the completion of the arms and hands, it is conceivable to have

Cog: hear but not see a toy rattle, move its head to the general direction of the sound

so that it appears in its visual �eld, �ne tune the localization using both visual and

audio data, and attempt to grab or swat the rattle with its hand and arm. Just as

human infants may �nd it di�cult to grab the rattle on their very �rst try, Cog may

make gross errors initially, but it could learn to better control its motions (hands,

arms, and body) based on its senses (vision and hearing). The key point is that the

inherent parallel architecture of its \brain" and the modularity of hardware will allow

tight coupling of its sensors and e�ectors, and make such a complicated task possible.

Cog is meant to be a testbed for arti�cial intelligence, speci�cally the closely coupled

phenomena of embodiment and cognition; having a general purpose auditory system

that provides robust sound localization adds an extra dimension to the perceptual

capabilities of the humanoid robot.

6.2 Conclusion

This thesis presented an auditory system that has been designed and built for a

humanoid robot. It also described the software and signal processing architecture

that has been developed that will allow the robot to learn how to use a variety of
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techniques to localize sounds, and to react accordingly. A prototype of a neural

network, developed o�-line, to perform robust sound localization based on several

binaural cues was also presented. As Cog develops and we learn more about embodied

cognition, more advanced auditory and visual perception skills will be explored.
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Appendix A

Schematic Diagrams

A.1 Microphone Pre-Ampli�er
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A.2 Audio Board

A.2.1 Selected Schematics
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Figure A-3: Audio Board: DMA PAL Interface
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Figure A-4: Audio Board: DPRAM Interface
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Figure A-5: Audio Board: 68HC11 Controller
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A.2.2 Audio PAL State Diagram

PIO

Play1 CapL1 CapR1

Play2 CapL2 CapR2

DMA

CLK
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PIO&COF

~PIO&COF~PIO&COF

16BIT
(once)

16BIT
(once)

16BIT
(once)

16BIT
(once)

CLK

Notes: Unless otherwise noted, state transitions occur on CLK
16BIT(once) means, go through this branch if 16BIT asserted, but only once.
Playx: sequence to perform DMA write accesses to codec
Capxx: sequence to perform DMA read accesses from codec
Initial State is PIO
When 6811 indicates end of transfer by asserting PIO, transfers do not

stop till COF (address counter overflow) is asserted.

DP0 DP1

DP2 DP3

(CapL1)

(CapL2)

(CapR1/Play1)

(CapR2/Play2)

Physical DPRAM
Mapping

Data Encoding
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LL(1) RL(1) LH(1) RH(1)P(1) XX

Notes: P(1) indicates first byte of Playback stream, etc.
In 8bit acquisition mode, Cap buffers are divided into Left and Right streams
In 16bit mode, Cap buffers are divided into Low and High Order byte streams.
In 16bit mode, Only Low order Playback byte is used. P(1)=$80 results in 

the 16bit value to be sent to codec equal to $8080.

Figure A-6: Audio Board: FSM State Diagram

62



A.2.3 Codec Information

Figure A-7: Codec Block Diagram (AD 1994)

Figure A-8: Frequency Response of ADC (AD 1994)
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Figure A-9: Timing Diagram for DMA accesses (AD 1994)
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B.1.2 \Right" Direction
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B.2 Spoken \ahh"
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Figure B-9: Frequency

Domain Cues
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B.2.2 \Right" Direction
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Figure B-10: \ahh":
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Figure B-11: Time Do-

main Cues
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Figure B-12: Frequency

Domain Cues
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B.3 Door Slam from Right direction
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Figure B-13: Door slam:
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Figure B-14: Time Do-

main Cues
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Figure B-15: Frequency

Domain Cues
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B.4 Visual Processing

The �gures on the top row are raw visual images. Beneath them are processed,

\motion images." Note the lack of any noise outside the desired clapping motion.
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