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Abstract. To explore issues of developmental structure, physical em-
bodiment, integration of multiple sensory and motor systems, and social
interaction, we have constructed an upper-torso humanoid robot called
Cog. The robot has twenty-one degrees of freedom and a variety of sen-
sory systems, including visual, auditory, vestibular, kinesthetic, and tac-
tile senses. This chapter gives a background on the methodology that
we have used in our investigations, highlights the research issues that
have been raised during this project, and provides a summary of both
the current state of the project and our long-term goals. We report on
a variety of implemented visual-motor routines (smooth-pursuit track-
ing, saccades, binocular vergence, and vestibular-ocular and opto-kinetic
reflexes), orientation behaviors, motor control techniques, and social be-
haviors (pointing to a visual target, recognizing joint attention through
face and eye finding, imitation of head nods, and regulating interaction
through expressive feedback). We further outline a number of areas for
future research that will be necessary to build a complete embodied sys-
tem.

1 Introduction

Building an android, an autonomous robot with humanoid form and human-
like abilities, has been both a recurring theme in science fiction and a “Holy
Grail” for the Artificial Intelligence community. In the summer of 1993, our
group began the construction of a humanoid robot. This research project has
two goals: an engineering goal of building a prototype general purpose flexible
and dextrous autonomous robot and a scientific goal of understanding human
cognition (Brooks & Stein 1994).

Recently, many other research groups have begun to construct integrated hu-
manoid robots (Hirai, Hirose, Haikawa & Takenaka 1998, Kanehiro, Mizuuchi,
Koyasako, Kakiuchi, Inaba & Inoue 1998, Takanishi, Hirano & Sato 1998, Morita,
Shibuya & Sugano 1998). There are now conferences devoted solely to humanoid
systems, such as the International Symposium on Humanoid Robots (HURO)
which was first hosted by Waseda University in October of 1996, as well as sec-
tions of more broadly-based conferences, including a recent session at the 1998
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IEEE International Conference on Robotics and Automation (ICRA-98) in Leu-
ven, Belgium. There has also been a special issue of the Journal of the Robotics
Society of Japan in October of 1997 devoted solely to humanoid robotics.

Research in humanoid robotics has uncovered a variety of new problems
and a few solutions to classical problems in robotics, artificial intelligence, and
control theory. This research draws upon work in developmental psychology,
ethology, systems theory, philosophy, and linguistics, and through the process
of implementing models and theories from these fields has raised interesting
research issues. In this chapter, we review some of the methodology and results
from the first five years of our humanoid robotics project.

Since the inception of our research program, we have developed a methodol-
ogy that departs from the mainstream of AI research (Brooks, Breazeal (Ferrell),
Irie, Kemp, Marjanović, Scassellati & Williamson 1998). Section 2 reviews some
of the assumptions of classical AI that we have found lacking and concentrates
on four aspects of a new methodology that have greatly influenced our research
program: developmental structure, physical embodiment, integration of multi-
ple sensory and motor systems, and social interaction. In section 3, we describe
the current hardware and software environments of our upper-torso humanoid
robot, including twenty-one mechanical degrees of freedom, a variety of sensory
systems, and a heterogeneous distributed computation system. Section 4 focuses
on some of the long-term research issues that members of our group are currently
investigating, and Section 5 describes some of the current tasks and behaviors
that our robot is capable of performing. We conclude in Section 6 with a few of
the open problems that have yet to be addressed.

2 Methodology

In recent years, AI research has begun to move away from the assumptions of
classical AI: monolithic internal models, monolithic control, and general purpose
processing. However, these concepts are still prevalent in much current work and
are deeply ingrained in many architectures for intelligent systems. For example,
in the recent AAAI-97 proceedings, one sees a continuing interest in planning
(Littman 1997, Hauskrecht 1997, Boutilier & Brafman 1997, Blythe & Veloso
1997, Brafman 1997) and representation (McCain & Turner 1997, Costello 1997,
Lobo, Mendez & Taylor 1997), which build on these assumptions.

Previously, we have presented a methodology that differs significantly from
the standard assumptions of both classical and neo-classical artificial intelli-
gence (Brooks et al. 1998). Our alternative methodology is based on evidence
from cognitive science and neuroscience which focus on four alternative at-
tributes which we believe are critical attributes of human intelligence: devel-
opmental organization, social interaction, embodiment and physical coupling,
and multimodal integration.

In this section, we summarize some of the evidence that has led us to abandon
those assumptions about intelligence that classical AI continues to uphold. We
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then briefly review the alternative methodology that we have been using in
constructing humanoid robotic systems.

2.1 False Assumptions about Human Intelligence

In studying human intelligence, three common conceptual errors often occur: re-
liance on monolithic internal models, on monolithic control, and on general pur-
pose processing. These and other errors primarily derive from naive models based
on subjective observation and introspection, and biases from common computa-
tional metaphors (mathematical logic, Von Neumann architectures, etc.)(Brooks
1991a, Brooks 1991b). A modern understanding of cognitive science and neuro-
science refutes these assumptions.

Humans have no full monolithic internal models. There is evidence that in
normal tasks humans tend to minimize their internal representation of the world.
Ballard, Hayhoe & Pelz (1995) have shown that in performing a complex task,
like building a copy of a display of blocks, humans do not build an internal model
of the entire visible scene. By changing the display while subjects were looking
away, Ballard found that subjects noticed only the most drastic of changes; rather
than keeping a complete model of the scene, they instead left that information in
the world and continued to refer back to the scene while performing the copying
task.

There is also evidence that there are multiple internal representations, which
are not mutually consistent. For example, in the phenomena of blindsight, cor-
tically blind patients can discriminate different visual stimuli, but report seeing
nothing (Weiskrantz 1986). This inconsistency would not be a feature of a single
central model of visual space.

These experiments and many others like it, e.g. Rensink, O’Regan & Clark
(1997) and Gazzaniga & LeDoux (1978), convincingly demonstrate that humans
do not construct a full, monolithic model of the environment. Instead humans
tend to only represent what is immediately relevant from the environment, and
those representations do not have full access to one another.

Humans have no monolithic control. Naive introspection and observation
can lead one to believe in a neurological equivalent of the central processing
unit – something that makes the decisions and controls the other functions of
the organism. While there are undoubtedly control structures, this model of
a single, unitary control system is not supported by evidence from cognitive
science.

One example comes from studies of split brain patients by Gazzaniga &
LeDoux (1978). As an experimental treatment for severe epilepsy in these pa-
tients, the corpus callosum (the main structure connecting the two hemispheres
of the brain) was surgically cut. The patients are surprisingly normal after the
operation, but with deficits that are revealed by presenting different information
to either side of the (now unconnected) brain. Since each hemisphere controls
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one side of the body, the experimenters can probe the behavior of each hemi-
sphere independently (for example, by observing the subject picking up an object
appropriate to the scene that they had viewed). In one example, a snow scene
was presented to the right hemisphere and the leg of a chicken to the left. The
subject selected a chicken head to match the chicken leg, explaining with the
verbally dominant left hemisphere that “I saw the claw and picked the chicken”.
When the right hemisphere then picked a shovel to correctly match the snow,
the left hemisphere explained that you need a shovel to “clean out the chicken
shed” (Gazzaniga & LeDoux 1978, p.148). The separate halves of the subject
independently acted appropriately, but one side falsely explained the choice of
the other. This suggests that there are multiple independent control systems,
rather than a single monolithic one.

Humans are not general purpose. The brain is conventionally thought to
be a general purpose machine, acting with equal skill on any type of operation
that it performs by invoking a set of powerful rules. However, humans seem to
be proficient only in particular sets of skills, at the expense of other skills, often
in non-obvious ways. A good example of this is the Stroop effect (Stroop 1935).
When presented with a list of words written in a variety of colors, performance in
a color recognition and articulation task is dependent on the semantic content
of the words; the task is very difficult if names of colors are printed in non-
corresponding colors. This experiment demonstrates the specialized nature of
human computational processes and interactions.

Even in the areas of deductive logic, humans often perform extremely poorly
in different contexts. Wason (1966) found that subjects were unable to apply the
negative rule of if-then inference when four cards were labeled with single letters
and digits. However, with additional context—labeling the cards such that they
were understandable as names and ages—subjects could easily solve exactly the
same problem.

Further, humans often do not use subroutine-like rules for making decisions.
They are often more emotional than rational, and there is evidence that this
emotional content is an important aspect of decision making (Damasio 1994).

2.2 Essences of Human Intelligence

In an attempt to simplify the problem of building complex intelligent systems,
classical AI approaches tended to ignore or avoid many aspects of human in-
telligence (Minsky & Papert 1970). We believe that many of these discarded
elements are essential to human intelligence. Our methodology exploits four
central aspects of human intelligence: development, social interaction, physical
interaction and integration. Development forms the framework by which humans
successfully acquire increasingly more complex skills and competencies. Social
interaction allows humans to exploit other humans for assistance, teaching, and
knowledge. Embodiment and physical coupling allow humans to use the world
itself as a tool for organizing and manipulating knowledge. Integration allows
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humans to maximize the efficacy and accuracy of complementary sensory and
motor systems. We believe that not only are these four themes critical to the
understanding of human intelligence but also they actually simplify the problem
of creating human-like intelligence.

Development: Humans are not born with complete reasoning systems, com-
plete motor systems, or even complete sensory systems. Instead, they undergo
a process of development where they perform incrementally more difficult tasks
in more complex environments en route to the adult state. Building systems de-
velopmentally facilitates learning both by providing a structured decomposition
of skills and by gradually increasing the complexity of the task to match the
competency of the system.

Development is an incremental process. Behaviors and learned skills that
have already been mastered prepare and enable the acquisition of more advanced
behaviors by providing subskills and knowledge that can be re-used, by placing
simplifying constraints on the acquisition, and by minimizing new information
that must be acquired. For example, Diamond (1990) shows that infants between
five and twelve months of age progress through a number of distinct phases
in the development of visually guided reaching. In this progression, infants in
later phases consistently demonstrate more sophisticated reaching strategies to
retrieve a toy in more challenging scenarios. As the infant’s reaching competency
develops, later stages incrementally improve upon the competency afforded by
the previous stages. Within our group, Marjanović, Scassellati & Williamson
(1996) applied a similar bootstrapping technique to enable the robot to learn
to point to a visual target. Scassellati (1996) has discussed how a humanoid
robot might acquire basic social competencies through this sort of developmental
methodology. Other examples of developmental learning that we have explored
can be found in (Ferrell 1996, Scassellati 1998b).

By gradually increasing the complexity of the required task, a developmen-
tal process optimizes learning. For example, infants are born with low acuity
vision which simplifies the visual input they must process. The infant’s visual
performance develops in step with their ability to process the influx of stimula-
tion (Johnson 1993). The same is true for the motor system. Newborn infants
do not have independent control over each degree of freedom of their limbs, but
through a gradual increase in the granularity of their motor control they learn
to coordinate the full complexity of their bodies. A process in which the acuity
of both sensory and motor systems are gradually increased significantly reduces
the difficulty of the learning problem (Thelen & Smith 1994). The caregiver also
acts to gradually increase the task complexity by structuring and controlling
the complexity of the environment. By exploiting a gradual increase in complex-
ity both internal and external, while reusing structures and information gained
from previously learned behaviors, we hope to be able to learn increasingly so-
phisticated behaviors. We believe that these methods will allow us to construct
systems which scale autonomously (Ferrell & Kemp 1996, Scassellati 1998b).
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Social Interaction: Human infants are extremely dependent on their care-
givers, relying upon them not only for basic necessities but also as a guide to
their development. This reliance on social contact is so integrated into our species
that it is hard to imagine a completely asocial human; developmental disorders
that effect social development, such as autism and Asperger’s syndrome, are
extremely debilitating and can have far-reaching consequences (Cohen & Volk-
mar 1997). Building social skills into an artificial intelligence provides not only
a natural means of human-machine interaction but also a mechanism for boot-
strapping more complex behavior. Our research program has investigated social
interaction both as a means for bootstrapping and as an instance of develop-
mental progression.

Social interaction can be a means to facilitate learning. New skills may be so-
cially transfered from caregiver to infant through mimicry or imitation, through
direct tutelage, or by means of scaffolding, in which a more able adult manip-
ulates the infant’s interactions with the environment to foster novel abilities.
Commonly scaffolding involves reducing distractions, marking the task’s critical
attributes, reducing the number of degrees of freedom in the target task, and
enabling the infant to experience the end or outcome before she is cognitively
or physically able of seeking and attaining it for herself (Wood, Bruner & Ross
1976). We are currently engaged in work studying bootstrapping new behav-
iors from social interactions (Breazeal & Scassellati 1998, Breazeal & Velasquez
1998).

The social skills required to make use of scaffolding are complex. Infants
acquire these social skills through a developmental progression (Hobson 1993).
One of the earliest precursors is the ability to share attention with the caregiver.
This ability can take many forms, from the recognition of a pointing gesture to
maintaining eye contact (see chapter in this volume by Scassellati). In our work,
we have also examined social interaction from this developmental perspective,
building systems that can recognize and respond to joint attention by finding
faces and eyes (Scassellati 1998c) and imitating head nods of the caregiver (Scas-
sellati 1998d).

Embodiment and Physical Coupling: Perhaps the most obvious, and most
overlooked, aspect of human intelligence is that it is embodied. A principle
tenet of our methodology is to build and test real robotic systems. We believe
that building human-like intelligence requires human-like interaction with the
world (Brooks & Stein 1994). Humanoid form is important both to allow hu-
mans to interact socially with the robot in a natural way and to provide similar
task constraints.

The direct physical coupling between action and perception reduces the need
for an intermediary representation. For an embodied system, internal repre-
sentations can be ultimately grounded in sensory-motor interactions with the
world (Lakoff 1987). Our systems are physically coupled with the world and op-
erate directly in that world without any explicit representations of it (Brooks
1986, Brooks 1991b). There are representations, or accumulations of state, but
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these only refer to the internal workings of the system; they are meaningless
without interaction with the outside world. The embedding of the system within
the world enables the internal accumulations of state to provide useful behavior.1

In addition we believe that building a real system is computationally less
complex than simulating such a system. The effects of gravity, friction, and
natural human interaction are obtained for free, without any computation. Em-
bodied systems can also perform some complex tasks in relatively simple ways
by exploiting the properties of the complete system. For example, when putting
a jug of milk in the refrigerator, you can exploit the pendulum action of your
arm to move the milk (Greene 1982). The swing of the jug does not need to be
explicitly planned or controlled, since it is the natural behavior of the system.
Instead of having to plan the whole motion, the system only has to modulate,
guide and correct the natural dynamics. We have implemented one such scheme
using self-adaptive oscillators to drive the joints of the robot’s arm (Williamson
1998a, Williamson 1998b).

Integration: Humans have the capability to receive an enormous amount of in-
formation from the world. Visual, auditory, somatosensory, and olfactory cues are
all processed simultaneously to provide us with our view of the world. However,
there is evidence that the sensory modalities are not independent; stimuli from
one modality can and do influence the perception of stimuli in another modality.
For example, Churchland, Ramachandran & Sejnowski (1994) demonstrated an
example of how audition can cause illusory visual motion. Vision can cause au-
ditory illusions too, such as the McGurk effect (Cohen & Massaro 1990). These
studies demonstrate that sensory modalities cannot be treated independently.

Sensory integration can simplify the computation necessary for a given task.
Attempting to perform the task using only one modality is sometimes awkward
and computationally intensive. Utilizing the complementary nature of separate
modalities can result in a reduction of overall computation. We have imple-
mented several mechanisms on Cog that use multimodal integration to aid in
increasing performance or developing competencies. For example, Peskin & Scas-
sellati (1997) implemented a system that stabilized images from a moving camera
using vestibular feedback.

By integrating different sensory modalities we can exploit the multimodal
nature of stimuli to facilitate learning. For example, objects that make noise often
move. This correlation can be exploited to facilitate perception. Wertheimer
(1961) has shown that vision and audition interact from birth; even ten-minute-
old children will turn their eyes toward an auditory cue. This interaction between
the senses continues to develop; visual stimuli greatly affect the development of
sound localization (Knudsen & Knudsen 1985). In our work, Irie (1997) built an
auditory system that utilizes visual information to train auditory localization.
This work highlights not only the development of sensory integration, but also

1 This was the fundamental approach taken by Ashby (1960) contemporaneously with
the development of early AI.
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Fig. 1. Cog, an upper-torso humanoid robot. Cog has twenty-one degrees of freedom
to approximate human movement, and a variety of sensory systems that approximate
human senses, including visual, vestibular, auditory, and tactile senses.

the simplification of computational requirements that can be obtained through
integration.

3 Hardware

In pursuing the methodology outlined in the previous section, we have con-
structed an upper-torso humanoid robot called Cog (see Figure 1). This section
describes the computational, perceptual, and motor systems that have been im-
plemented on Cog as well as the development platforms that have been con-
structed to test additional hardware and software components.

3.1 Computational System

The computational control for Cog is a heterogeneous network of many differ-
ent processors types operating at different levels in the control hierarchy, rang-
ing from small microcontrollers for joint-level control to digital signal processor
(DSP) networks for audio and visual preprocessing.

Cog’s “brain” has undergone a series of revisions. The original was a network
of 16 MHz Motorola 68332 microcontrollers on custom-built boards, connected
through dual-port RAM. Each of these nodes ran L, a multithreading subset of
Common Lisp. The current core is a network of 200 MHz industrial PC com-
puters running the QNX real-time operating system and connected by 100VG
ethernet. The network currently contains 4 nodes, but can be expanded at will
by plugging new nodes into the network hub. QNX provides transparent and
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fault-tolerant interprocess communication over the network. The PC backplanes
provide ample room for installing commercial or custom I/O boards and con-
troller cards. The “old” and “new” brains can inter-operate, communicating via
a custom-built shared memory ISA interface card.

Video and audio preprocessing is performed by a separate network of Texas
Instruments C40 digital signal processors which communicate via the proprietary
C40 communications port interface. The network includes C40-based framegrab-
bers, display boards, and audio I/O ports. The processors relay data to the core
processor network via ISA and PCI interface cards.

Each joint on the robot has a dedicated local motor controller, a custom-
built board with a Motorola HC11 microcontroller, which processes encoder and
analog inputs, performs servo calculations, and drives the motor via pulse-width
modulation. For the arms, the microcontroller generates a virtual spring behavior
at 1kHz, based on torque feedback from strain gauges in the joints.

3.2 Perceptual Systems

To obtain information about the environment, Cog has a variety of sensory
systems including visual, vestibular, auditory, tactile, and kinesthetic senses.

Visual System: Cog’s visual system is designed to mimic some of the capa-
bilities of the human visual system, including binocularity and space-variant
sensing (Scassellati 1998a). Each eye can rotate about an independent vertical
axis (pan) and a coupled horizontal axis (tilt). To allow for both a wide field
of view and high resolution vision, there are two grayscale cameras per eye, one
which captures a wide-angle view of the periphery (88.6◦(V ) × 115.8◦(H) field
of view) and one which captures a narrow-angle view of the central (foveal) area
(18.4◦(V )× 24.4◦(H) field of view with the same resolution). Each camera pro-
duces an NTSC signal that is digitized by a frame grabber connected to the
digital signal processor network.

Vestibular System: The human vestibular system plays a critical role in the
coordination of motor responses, eye movement, posture, and balance. The hu-
man vestibular sensory organ consists of the three semi-circular canals, which
measure the acceleration of head rotation, and the two otolith organs, which
measure linear movements of the head and the orientation of the head relative
to gravity. To mimic the human vestibular system, Cog has three rate gyroscopes
mounted on orthogonal axes (corresponding to the semi-circular canals) and two
linear accelerometers (corresponding to the otolith organs). Each of these devices
is mounted in the head of the robot, slightly below eye level. Analog signals from
each of these sensors is amplified on-board the robot, and processed off-board
by a commercial A/D converter attached to one of the PC brain nodes.

Auditory System: To provide auditory information, two omni-directional mi-
crophones were mounted on the head of the robot. To facilitate localization,
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crude pinnae were constructed around the microphones. Analog auditory signals
are processed by a commercial A/D board that interfaces to the digital signal
processor network.

Tactile System: We have begun experimenting with providing tactile feedback
from the robot using resistive force sensors. Each sensor provides a measurement
of the force applied to its sensing surface. As an initial experiment, we have
mounted an 6 × 4 array of these sensors to the front of the robot’s torso. The
signals from these sensors are multiplexed through a single 6811 microcontroller,
thus giving measurements of both force and position. A similar system has been
used to mount tactile sensors on some of the hands that we have used with the
robot.

Kinesthetic System: Feedback concerning the state of Cog’s motor system is
provided by a variety of sensors located at each joint. The eye axes utilize only
the simplest form of feedback; each actuator has a single digital encoder which
gives position information. The neck and torso joints have encoders, as well as
motor current sensing (for crude torque feedback), temperature sensors on the
motors and driver chips, and limit switches at the extremes of joint movement.
The arms joints have the most involved kinesthetic sensing. In addition to all the
previous sensors, each of the 12 arm joints also has strain gauges for accurate
torque sensing, and potentiometers for absolute position feedback.

3.3 Motor Systems

Cog has a total of twenty-one mechanical degrees-of-freedom (DOF); two six
DOF arms, a torso with a two degree-of-freedom (DOF) waist, a one DOF torso
twist, a three DOF neck, and three DOF in the eyes.

Arms: Each arm is loosely based on the dimensions of a human arm with 6
degrees-of-freedom, each powered by a DC electric motor through a series spring
(a series elastic actuator, see (Pratt & Williamson 1995)). The spring provides
accurate torque feedback at each joint, and protects the motor gearbox from
shock loads. A low gain position control loop is implemented so that each joint
acts as if it were a virtual spring with variable stiffness, damping and equilibrium
position. These spring parameters can be changed, both to move the arm and
to alter its dynamic behavior. Motion of the arm is achieved by changing the
equilibrium positions of the joints, not by commanding the joint angles directly.
There is considerable biological evidence for this spring-like property of arms
(Zajac 1989, Cannon & Zahalak 1982, MacKay, Crammond, Kwan & Murphy
1986).

The spring-like property gives the arm a sensible “natural” behavior: if it is
disturbed, or hits an obstacle, the arm simply deflects out of the way. The dis-
turbance is absorbed by the compliant characteristics of the system, and needs
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Fig. 2. Range of motion for the neck and torso. Not shown are the neck twist (180
degrees) and body twist (120 degrees)

no explicit sensing or computation. The system also has a low frequency char-
acteristic (large masses and soft springs) which allows for smooth arm motion
at a slower command rate. This allows more time for computation, and makes
possible the use of control systems with substantial delay (a condition akin to
biological systems). The spring-like behavior also guarantees a stable system if
the joint set-points are fed-forward to the arm.

Neck and Torso: Cog’s body has six degrees of freedom: the waist bends side-
to-side and front-to-back, the “spine” can twist, and the neck tilts side-to-side,
nods front-to-back, and twists left-to-right. Mechanical stops on the body and
neck give a human-like range of motion, as shown in Figure 2 (Not shown are
the neck twist (180 degrees) and body twist (120 degrees)).

3.4 Development Platforms

In addition to the humanoid robot, we have also built three development plat-
forms, similar in mechanical design to Cog’s head, with identical computational
systems; the same code can be run on all platforms. These development platforms
allow us to test and debug new behaviors before integrating them on Cog.

Vision Platform: The vision development platform (shown at the left of Figure
3) is a copy of Cog’s active vision system. The development platform has identical
degrees of freedom, similar design characteristics, and identical computational
environment. The development platform differs from Cog’s vision system in only
three ways. First, to explore issues of color vision and saliency, the development
platform has color cameras. Second, the mechanical design of the camera mounts
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Fig. 3. Two of the vision development platforms used in this work. These desktop
systems match the design of the Cog head and are used as development platforms for
visual-motor routines. The system on the right has been modified to investigate how
expressive facial gestures can regulate social learning.

has been modified for the specifications of the color cameras. Third, because the
color cameras are significantly lighter than the grayscale cameras used on Cog,
we were able to use smaller motors for the development platform while obtaining
similar eye movement speeds. Additional details on the development platform
design can be found in Scassellati (1998a).

Vision and Emotive Response Platform: To explore ideas in social inter-
action between robots and humans, we have constructed a platform with capa-
bilities for emotive facial expressions (shown at the right of Figure 3). This sys-
tem, called Kismet, consists of the active stereo vision system (described above)
embellished with facial features for emotive expression. Currently, these facial
features include eyebrows (each with two degrees-of-freedom: lift and arch), ears
(each with two degrees-of-freedom: lift and rotate), eyelids (each with one degree
of freedom: open/close), and a mouth (with one degree of freedom: open/close).
The robot is able to show expressions analogous to anger, fatigue, fear, disgust,
excitement, happiness, interest, sadness, and surprise (shown in Figure 4) which
are easily interpreted by an untrained human observer.

A pair of Motorola 68332-based microcontrollers are also connected to the
robot. One controller implements the motor system for driving the robot’s facial
motors. The second controller implements the motivational system (emotions
and drives) and the behavior system. This node receives pre-processed perceptual
information from the DSP network through a dual-ported RAM, and converts
this information into a behavior-specific percept which is then fed into the rest
of the behavior engine.
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Fig. 4. Static extremes of Kismet’s facial expressions. During operation, the 11 degrees-
of-freedom for the ears, eyebrows, mouth, and eyelids vary continuously with the cur-
rent emotional state of the robot.

Visual-Auditory Platform: A third development platform was constructed
to investigate the relationships between vision and audition. The development
platform has an auditory system similar to that used on Cog, with two micro-
phones and a set of simplified pinnae. As a simplified visual system, a single
color camera was mounted at the midline of the head.

4 Current Long-Term Projects

This section describes a few of the long-term research issues that our group is
currently addressing. Although each project is still in progress, initial results
from each of these areas will be presented in Section 5.

4.1 Joint Attention and Theory of Mind

One critical milestone in a child’s development is the recognition of others as
agents that have beliefs, desires, and perceptions that are independent of the
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child’s own beliefs, desires, and perceptions. The ability to recognize what an-
other person can see, the ability to know that another person maintains a false
belief, and the ability to recognize that another person likes games that differ
from those that the child enjoys are all part of this developmental chain. Further,
the ability to recognize oneself in the mirror, the ability to ground words in per-
ceptual experiences, and the skills involved in creative and imaginative play may
also be related to this developmental advance. These abilities are also central to
what defines human interactions. Normal social interactions depend upon the
recognition of other points of view, the understanding of other mental states,
and the recognition of complex non-verbal signals of attention and emotional
state.

If we are to build a system that can recognize and produce these complex
social behaviors, we must find a skill decomposition that maintains the com-
plexity and richness of the behaviors represented while still remaining simple
to implement and construct. Evidence from the development of these “theory
of mind” skills in normal children, as well as the abnormal development seen
in pervasive developmental disorders such as Asperger’s syndrome and autism,
demonstrate that a critical precursor is the ability to engage in joint attention
(Baron-Cohen 1995, Frith 1990). Joint attention refers to those preverbal social
behaviors that allow the infant to share with another person the experience of a
third object (Wood et al. 1976). For example, the child might laugh and point
to a toy, alternating between looking at the caregiver and the toy.

From a robotics standpoint, even the simplest of joint attention behaviors
require the coordination of a large number of perceptual, sensory-motor, atten-
tional, and cognitive processes. Our current research is the implementation of
one possible skill decomposition that has received support from developmen-
tal psychology, neuroscience, and abnormal psychology, and is consistent with
evidence from evolutionary studies of the development of joint attention behav-
iors. This decomposition is described in detail in the chapter by Scassellati, and
requires many capabilities from our robotic system including basic eye motor
skills, face and eye detection, determination of eye direction, gesture recogni-
tion, attentional systems that allow for social behavior selection at appropriate
moments, emotive responses, arm motor control, image stabilization, and many
others.

A robotic system that can recognize and engage in joint attention behav-
iors will allow for social interactions between the robot and humans that have
previously not been possible. The robot would be capable of learning from an
observer using normal social signals in the same way that human infants learn;
no specialized training of the observer would be necessary. The robot would also
be capable of expressing its internal state (emotions, desires, goals, etc.) through
social interactions without relying upon an artificial vocabulary. Further, a robot
that can recognize the goals and desires of others will allow for systems that can
more accurately react to the emotional, attentional, and cognitive states of the
observer, can learn to anticipate the reactions of the observer, and can modify its
own behavior accordingly. The construction of these systems may also provide a
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new tool for investigating the predictive power and validity of the models from
natural systems that serve as the basis. An implemented model can be tested
in ways that are not possible to test on humans, using alternate developmen-
tal conditions, alternate experiences, and alternate educational and intervention
approaches.

4.2 Social Interaction between an Infant and a Caretaker

Other ongoing work focuses on altricial learning in a social context (Breazeal (Fer-
rell) 1998, Breazeal & Scassellati 1998, Breazeal & Velasquez 1998). By treating
the robot as an altricial system whose learning is assisted and guided by the
human caretaker, this approach exploits the environment and social interactions
that are critical to infant development.

An infant’s motivations (emotions, drives, and pain) play an important role
in generating meaningful interactions with the caretaker (Bullowa 1979). The
infant’s emotional responses provide important cues which the caretaker uses
to assess how to satiate the infant’s drives, and how to carefully regulate the
complexity of the interaction. The former is critical for the infant to learn how
its actions influence the caretaker, and the latter is critical for establishing and
maintaining a suitable learning environment for the infant. Similarly, the care-
taker’s emotive responses to the infant shape the continuing interaction and can
guide the learning process.

An infant’s motivations are vital to regulating social interactions with his
mother (Kaye 1979). Soon after birth, an infant is able to display a wide variety
of facial expressions (Trevarthen 1979). As such, he responds to events in the
world with expressive cues that his mother can read, interpret, and act upon.
She interprets them as indicators of his internal state (how he feels and why),
and modifies her actions to promote his well being (Tronick, Als & Adamson
1979, Chappell & Sander 1979). For example, when he appears content she tends
to maintain the current level of interaction, but when he appears disinterested
she intensifies or changes the interaction to try to re-engage him. In this manner,
the infant can regulate the intensity of interaction with his mother by displaying
appropriate emotive and expressive cues.

An important function for a robot’s motivational system is not only to es-
tablish appropriate interactions with the caretaker, but also to regulate their in-
tensity so that the robot is neither overwhelmed nor under stimulated by them.
When designed properly, the intensity of the robot’s expressions provide appro-
priate cues for the caretaker to increase the intensity of the interaction, tone it
down, or maintain it at the current level. By doing so, both parties can modify
their own behavior and the behavior of the other to maintain the intensity of
interaction that the robot requires.

The use of emotional expressions and gestures facilitates and biases learning
during social exchanges. Parents take an active role in shaping and guiding how
and what infants learn by means of scaffolding. As the word implies, the parent
provides a supportive framework for the infant by manipulating the infant’s
interactions with the environment to foster novel abilities. The emotive cues the
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parent receives during social exchanges serve as feedback so the parent can adjust
the nature and intensity of the structured learning episode to maintain a suitable
learning environment where the infant is neither bored nor overwhelmed.

In addition, an infant’s motivations and emotional displays are critical in
establishing the context for learning shared meanings of communicative acts
(Halliday 1975). An infant displays a wide assortment of emotive cues such as
coos, smiles, waves, and kicks. At such an early age, the mother imparts a con-
sistent meaning to her infant’s expressive gestures and expressions, interpreting
them as meaningful responses to her mothering and as indications of his inter-
nal state. Curiously, experiments by Kaye (1979) argue that the mother actually
supplies most if not all the meaning to the exchange when the infant is so young.
The infant does not know the significance his expressive acts have for his mother,
nor how to use them to evoke specific responses from her. However, because the
mother assumes her infant shares the same meanings for emotive acts, her con-
sistency allows the infant to discover what sorts of activities on his part will get
specific responses from her. Routine sequences of a predictable nature can be
built up which serve as the basis of learning episodes (Newson 1979).

Combining these ideas one can design a robot that is biased to learn how
its emotive acts influence the caretaker in order to satisfy its own drives. To-
ward this end, we endow the robot with a motivational system that works to
maintain its drives within homeostatic bounds and motivates the robot to learn
behaviors that satiate them. For our purposes, we further provide the robot with
a set of emotive expressions that are easily interpreted by a naive observer as
analogues of the types of emotive expressions that human infants display. This
allows the caretaker to observe the robot’s emotive expressions and interpret
them as communicative acts. This establishes the requisite routine interactions
for the robot to learn how its emotive acts influence the behavior of the care-
taker, which ultimately serves to satiate the robot’s own drives. By doing so,
both parties can modify both their own behavior and the behavior of the other
in order to maintain an interaction that the robot can learn from and use to
satisfy its drives.

4.3 Dynamic Human-like Arm Motion

Another research goal is to build a system that can move with the speed, pre-
cision, dexterity, and grace of a human to physically interact with the world in
human-like ways. Our current research focuses on control methods that exploit
the natural dynamics of the robot to obtain flexible and robust motion without
complex computation.

Control methods that exploit physical dynamics are not common in robotics.
Traditional methods are often kinematically based, requiring accurate calibra-
tion of the robot’s dimensions and mechanical properties. However, even for
systems that utilize only a few degrees of freedom, kinematic solutions can be
computationally expensive. For this reason, researchers have adopted a number
of strategies to simplify the control problems by reducing the effects of sys-
tem dynamics including careful calibration and intensive modeling (An, Atke-
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son & Hollerbach 1988), using lightweight robots with little dynamics (Salisbury,
Townsend, Eberman & DiPietro 1988), or simply by moving slowly. Research em-
phasizing dynamic manipulation either exploits clever mechanical mechanisms
which simplify control schemes (Schaal & Atkeson 1993, McGeer 1990) or results
in computationally complex methods (Mason & Salisbury 1985).

Humans, however, exploit the mechanical characteristics of their bodies. For
example, when humans swing their arms they choose comfortable frequencies
which are close to the natural resonant frequencies of their limbs (Herr 1993,
Hatsopoulos &Warren 1996). Similarly, when placed in a jumper, infants bounce
at the natural frequency (Warren & Karrer 1984). Humans also exploit the active
dynamics of their arm when throwing a ball (Rosenbaum et al. 1993) and the
passive dynamics of their arm to allow stable interaction with objects (Mussa-
Ivaldi, Hogan & Bizzi 1985). When learning new motions, both infants and
adults quickly utilize the physical dynamics of their limbs (Thelen & Smith
1994, Schneider, Zernicke, Schmidt & Hart 1989).

On our robot, we have exploited the dynamics of the arms to perform a
variety of tasks. The compliance of the arm allows both stable motion and safe
interaction with objects. Local controllers at each joint are physically coupled
through the mechanics of the arm, allowing these controllers to interact and
produce coordinated motion such as swinging a pendulum, turning a crank, and
playing with a slinky. Our initial experiments suggest that these solutions are
very robust to perturbations, do not require accurate calibration or parameter
tuning, and are computationally simple (Williamson 1998a, Williamson 1998b).

4.4 Multi-modal Coordination

Our group has developed many behaviors and skills for Cog, each involving
one or two sensory and/or motor systems – i.e. face finding, crank turning,
auditory localization. However, to be truly effective as an embodied robot, Cog
requires a general mechanism for overall sensory-motor coordination, a facility
for effectively combining skills or at least preventing them from interfering with
each other.

A multi-modal coordination system will manifest itself in three different ways.
First, for interactions between sensory systems, such a facility would provide
a basis for the combination of several sensory inputs into a more robust and
reliable view of the world. Second, interactions between motor systems produce
synergisms — coactivation of motor systems not directly involved with a task
but which prepare the robot for more effective execution overall. Third, for
interactions between sensory and motor systems, this system would provide a
method for “sensory tuning,” in which adjusting physical properties of the robot
can optimize the performance of a sensory system (foveation is a very basic
example).

The foundation for such a general coordination mechanism rests on two mod-
ules: a system that incorporates intrinsic performance measures into sensorimo-
tor processes, and a system for extracting correlations between sensorimotor
events. Combined, these provide sufficient information for Cog to learn how its
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internal systems interact with each other. Unfortunately, finding this information
is by no means trivial.

Performance measures are the most straightforward. For sensory processes,
the performance is estimated by a confidence measure, probably based on a com-
bination of repeatibility, error estimates, etc. Motor performance measurements
would be based upon criteria such as power expenditure, fatigue measures, safety
limits, and actuator accuracy.

Extracting correlations between sensorimotor events is more complex. The
first step is segmentation, that is, determining what constitutes an “event” within
a stream of proprioceptive data and/or motor commands. Segmentation algo-
rithms and filters can be hard-coded (but only for the most rudimentary enu-
meration of sensing and actuating processes) or created adaptively. Adaptive
segmentation creates and tunes filters based on how well they contribute to
the correlation models. Segmentation is crucial because it reduces the amount
of redundant information produced by confluent data streams. Any correlation
routine must deal with both the combinatorial problem of looking for patterns
between many different data sources and the problem of finding correlations
between events with time delays.

A general system for multimodal coordination is too complex to implement
all at once. We plan to start on a small scale, coordinating between two and
five systems. The first goal is a mechanism for posture — to coordinate, fixate,
and properly stiffen or relax torso, neck, and limbs for a variety of reaching and
looking tasks. Posture is not merely a reflexive control; it has feed-forward com-
ponents which require knowledge of impending tasks so that the robot can ready
itself. A postural system being so reactive and pervasive, requires a significant
amount of multi-modal integration.

5 Current Tasks

In pursuing the long-term projects outlined in the previous section, we have im-
plemented many simple behaviors on our humanoid robot. This section briefly
describes the tasks and behaviors that the robot is currently capable of perform-
ing. For brevity, many of the technical details and references to similar work
have been excluded here, but are available from the original citations. In ad-
dition, video clips of Cog performing many of these tasks are available from
http://www.ai.mit.edu/projects/cog/.

5.1 Visual-motor Routines

Human eye movements can be classified into five categories: three voluntary
movements (saccades, smooth pursuit, and vergence) and two involuntary move-
ments (the vestibulo-ocular reflex and the opto-kinetic response)(Goldberg, Eg-
gers & Gouras 1992). We have implemented mechanical analogues of each of
these eye motions.
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Saccades: Saccades are high-speed ballistic motions that focus a salient object
on the high-resolution central area of the visual field (the fovea). In humans,
saccades are extremely rapid, often up to 900◦ per second. To enable our machine
vision systems to saccade to a target, we require a saccade function S : (x, e) �→
∆e which produces a change in eye motor position (∆e) given the current eye
motor position (e) and the stimulus location in the image plane (x). To obtain
accurate saccades without requiring an accurate model of the kinematics and
optics, an unsupervised learning algorithm estimates the saccade function. This
implementation can adapt to the non-linear optical and mechanical properties
of the vision system. Marjanović et al. (1996) learned a saccade function for
this hardware platform using a 17× 17 interpolated lookup table. The map was
initialized with a linear set of values obtained from self-calibration. For each
learning trial, a visual target was randomly selected. The robot attempted to
saccade to that location using the current map estimates. The target was located
in the post-saccade image using correlation, and the L2 offset of the target was
used as an error signal to train the map. The system learned to center pixel
patches in the peripheral field of view. The system converged to an average of
< 1 pixel of error in a 128× 128 image per saccade after 2000 trials (1.5 hours).
With a trained saccade function S, the system can saccade to any salient stimulus
in the image plane. We have used this mapping for saccading to moving targets,
bright colors, and salient matches to static image templates.

Smooth-Pursuit Tracking: Smooth pursuit movements maintain the image
of a moving object on the fovea at speeds below 100◦ per second. Our current
implementation of smooth pursuit tracking acquires a visual target and attempts
to maintain the foveation of that target. The central 7 × 7 patch of the initial
64 × 64 image is installed as the target image. In this instance, we use a very
small image to reduce the computational load necessary to track non-artifact
features of an object. For each successive image, the central 44 × 44 patch is
correlated with the 7 × 7 target image. The best correlation value gives the
location of the target within the new image, and the distance from the center
of the visual field to that location gives the motion vector. The length of the
motion vector is the pixel error. The motion vector is scaled by a constant (based
on the time between iterations) and used as a velocity command to the motors.
This system operates at 20 Hz. and can successfully track moving objects whose
image projection changes slowly.

Binocular Vergence: Vergence movements adjust the eyes for viewing ob-
jects at varying depth. While the recovery of absolute depth may not be strictly
necessary, relative disparity between objects are critical for tasks such as accu-
rate hand-eye coordination, figure-ground discrimination, and collision detection.
Yamato (1998) built a system that performs binocular vergence and integrates
the saccadic and smooth-pursuit systems described previously. Building on mod-
els of the development of binocularity in infants, Yamato used local correlations
to identify matching targets in a foveal region in both eyes, moving the eyes to
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match the pixel locations of the targets in each eye. The system was also capable
of smoothly responding to changes of targets after saccadic motions, and during
smooth pursuit.

Vestibular-ocular and Opto-kinetic Reflexes: The vestibulo-ocular re-
flex and the opto-kinetic nystigmus cooperate to stabilize the eyes when the
head moves. The vestibulo-ocular reflex (VOR) stabilizes the eyes during rapid
head motions. Acceleration measurements from the semi-circular canals and the
otolith organs in the inner ear are integrated to provide a measurement of head
velocity, which is used to counter-rotate the eyes and maintain the direction of
gaze. The opto-kinetic nystigmus (OKN) compensates for slow, smooth motions
by measuring the optic flow of the background on the retina (also known as the
visual slip). OKN operates at much lower velocities than VOR (Goldberg et al.
1992). Many researchers have built accurate computational models and simula-
tions of the interplay between these two stabilization mechanisms (Lisberger &
Sejnowski 1992, Panerai & Sandini 1998). To mimic the human vestibular sys-
tem, Cog has three rate gyroscopes mounted on orthogonal axis (corresponding
to the semi-circular canals) and two linear accelerometers (corresponding to the
otolith organs).

A simple OKN can be constructed using a rough approximation of the optic
flow on the background image. Because OKN needs only to function at relatively
slow speeds (5 Hz is sufficient), and because OKN only requires a measurement
of optic flow of the entire field, our computational load is manageable. The
optic flow routine calculates the full-field background motion between successive
frames, giving a single estimate of camera motion. The optic flow estimate is a
displacement vector for the entire scene. Using the saccade map that we have
learned previously, we can obtain an estimate of the amount of eye motion we
require to compensate for the visual displacement.

A simple VOR can be constructed by integrating the velocity signal from
the rate gyroscopes, scaling that signal, and using it to drive the eye motors.
This technique works well for transient and rapid head motions, but fails for two
reasons. First, because the gyroscope signal must be integrated, the system tends
to accumulate drift. Second, the scaling constant must be selected empirically.
Both of these deficits can be eliminated by combining VOR with OKN.

Combining VOR with OKN provides a more stable, robust system (Peskin
& Scassellati 1997). The OKN system can be used to train the VOR scale con-
stant. The training routine moves the neck at a constant velocity with the VOR
enabled. While the neck is in motion, the OKN monitors the optical slip. If the
VOR constant is accurate for short neck motions, then the optical slip should
be zero. If the optical slip is non-zero, the VOR constant can be modified in the
appropriate direction. This on-line technique can adapt the VOR constant to an
appropriate value whenever the robot moves the neck at constant velocity over
short distances. The combination of VOR and OKN can also eliminate gradual
drift. The OKN will correct not only for slow head motions but also for slow
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Fig. 5. Orientation to a salient stimulus. Once a salient stimulus (a moving hand) has
been detected, the robot first saccades to that target and then orients the head and
neck to that target.

drift from the VOR. We are currently working on implementing models of VOR
and OKN coordination to allow both systems to operate simultaneously.

5.2 Eye/Neck Orientation

Orienting the head and neck along the angle of gaze can maximize the range of
the next eye motion while giving the robot a more life-like appearance. Once the
eyes have foveated a salient stimulus, the neck should move to point the head in
the direction of the stimulus while the eyes counter-rotate to maintain fixation
on the target (see Figure 5). To move the neck the appropriate distance, we must
construct a mapping N : (n, e) �→ ∆n which produces a change in neck motor
positions (∆n) given the current neck position (n) and the initial eye position
(e). Because we are mapping motor positions to motor positions with axes that
are roughly parallel, a simple linear mapping has sufficed: ∆n = (kė − n) for
some constant k.2

There are two possible mechanisms for counter-rotating the eyes while the
neck is in motion: the vestibulo-ocular reflex or an efference copy signal of the
neck motion. VOR can be used to compensate for neck motion without any
additions necessary. Because the reflex uses gyroscope feedback to maintain the
eye position, no communication between the neck motor controller and the eye
motor controller is necessary. This can be desirable if there is limited bandwith
between the processors responsible for neck and eye control. However, using VOR
to compensate for neck motion can become unstable. Because the gyroscopes
are mounted very close to the neck motors, motion of the neck can result in
additional vibrational noise on the gyroscopes. However, since the neck motion
is a voluntary movement, our system can utilize additional information in order
to counter-rotate the eyes, much as humans do (Ghez 1992). An efference copy
signal can be used to move the eye motors while the neck motors are moving. The
neck motion signal can be scaled and sent to the eye motors to compensate for
the neck motion. The scaling constant is simply 1

k , where k is the same constant

2 This linear mapping has only been possible with motor-motor mappings and not
sensory-motor mappings because of non-linearities in the sensors.
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Fig. 6. Schematic of the oscillator. Black circles correspond to inhibitory connections,
open circles to excitatory. The βvi connections correspond to self-inhibition, and the
ωyi connections give the mutual inhibition. The positive and negative parts of the input
gj are weighted by the gain hj before being applied to the neurons. The two outputs
yi are combined to give the oscillator output yout.

that was used to determine ∆n. Just as with the vestibulo-ocular reflex, the
scaling constants can be obtained using controlled motion and feedback from
the opto-kinetic nystigmus. Using efference copy with constants obtained from
OKN training results in a stable system for neck orientation.

5.3 Dynamic Oscillator Motor Control

Neural oscillators have been used to generate repetitive arm motions. The cou-
pling between a set of oscillators and the physical arm of the robot achieves
many different tasks using the same software architecture and without explicit
models of the arm or environment. The tasks include swinging pendulums at
their resonant frequencies, turning cranks, and playing with a slinky.

Using a proportional-derivative control law, the torque at the ith joint can
be described by:

ui = ki(θvi − θi)− biθ̇i (1)

where ki is the stiffness of the joint, bi the damping, θi the joint angle, and
θvi the equilibrium point. By altering the stiffness and damping of the arm, the
dynamical characteristics of the arm can be changed. The posture of the arm
can be changed by altering the equilibrium points (Williamson 1996). This type
of control preserves stability of motion. The elastic elements of the arm produce
a system that is both compliant and shock resistant, allowing the arm to operate
in unstructured environments.

Two simulated neurons with mutually inhibitory connections drive each arm
joint, as shown in Figure 6. The neuron model describes the firing rate of a
biological neuron with self-inhibition (Matsuoka 1985). The firing rate of each
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neuron is governed by the following equations:

τ1ẋ1 = −x1 − βv1 − ω [x2]
+ −Σj=n

j=1 hj [gj]
+ + c (2)

τ2v̇1 = −v1 + [x1]
+ (3)

τ1ẋ2 = −x2 − βv2 − ω [x1]
+ −Σj=n

j=1 hj [gj]
− + c (4)

τ2v̇2 = −v2 + [x2]
+ (5)

yi = [xi]
+ = max(xi, 0) (6)

yout = y1 − y2 (7)

where xi is the firing rate, vi is the self-inhibition of the neuron (modulated by
the adaption constant β), and ω controls the mutual inhibition. The output of
each neuron yi is the positive portion of the firing rate, and the output of the
whole oscillator is yout. Any number of inputs gj can be applied to the oscilla-
tor, including proprioceptive signals and signals from other neurons. Each input
is scaled by a gain hj and arranged to excite one neuron while inhibiting the
other by applying the positive portion of the input ([gj]

+) to one neuron and the
negative portion to the other. The amplitude of the oscillation is proportional
to the tonic excitation c. The speed and shape of the oscillator output are de-
termined by the time constants τ1 and τ2. For stable oscillations, τ1/τ2 should
be between 0.1 and 0.5. The stability and properties of this oscillator system
and more complex networks of neurons are analyzed in Matsuoka (1985) and
Matsuoka (1987).

The output of the oscillator yout is connected to the equilibrium point θv.
One neuron flexes the joint and the other extends it about a fixed posture θp,
making the equilibrium point θv = yout + θp. The inputs to the oscillators are
either the force (τ) or the position (θ) of the joint.3 The interaction of the
oscillator dynamics and the physical dynamics of the arm form a tightly coupled
dynamical system. Unlike a conventional control system, there is no “set-point”
for the motion. The interaction of the two coupled dynamical systems determines
the overall arm motion.

The oscillators have two properties which make them suitable for certain
types of repetitive motions. First, they can entrain an input signal over a wide
range of frequencies. In the entrained state, the oscillator provides an output at
exactly the same frequency as the input, with a phase difference between input
and output which depends on frequency. Second, the oscillator also becomes
entrained very rapidly, typically within one cycle. Figure 7 shows the entrainment
of an oscillator at the elbow joint as the shoulder of the robot is moved. The
movement of the shoulder induces forces at the elbow which drive the elbow in
synchrony with the shoulder.

3 These signals in general have an offset (due to gravity loading, or other factors).
When the positive and negative parts are extracted and applied to the oscillators, a
low-pass filter is used to find and remove the DC component.
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Fig. 7. Entrainment of an oscillator at the elbow as the shoulder is moved. The joints
are connected only through the physical structure of the arm. Both plots show the
angle of the shoulder (solid) and the elbow (dashed) as the speed of the shoulder is
changed (speed parameter dash-dot). The top graph shows the response of the arm
without proprioception, and the bottom with proprioception. Synchronization occurs
only with the proprioceptive feedback.

Slinky: The entrainment property can be exploited to manipulate objects, such
as a slinky. As the slinky is passed from hand to hand, the weight of the slinky
is used to entrain oscillators at both elbow joints. The oscillators are completely
independent, and unsynchronized, in software. With the slinky forming a physi-
cal connection between the two systems, the oscillators work in phase to produce
the correct motion. The adaptive nature of the oscillators allows them to quickly
recover from interruptions of motion and changes in speed. An example of the
coordination is shown in Figure 8.

Cranks: The position constraint of a crank can also be used to coordinate the
joints of the arm. If the arm is attached to the crank and some of the joints are
moved, then the other joints are constrained by the crank. The oscillators can
sense the motion, adapt, and settle into a stable crank turning motion.

In the future, we will explore issues of complex redundant actuation (such as
multi-joint muscles), utilize optimization techniques to tune the parameters of
the oscillator, produce whole-arm oscillations by connecting various joints into a
single oscillator, and explore the use of postural primitives to move the set point
of the oscillations.

5.4 Pointing to a Visual Target

We have implemented a pointing behavior which enables Cog to reach out its
arm to point to a visual target (Marjanović et al. 1996). The behavior is learned
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Fig. 8. The robot operating the slinky. Both plots show the outputs from the oscil-
lators as the proprioception is turned on and off. With proprioception, the outputs
are synchronized. Without proprioception, the oscillators move out of phase. The only
connection between the oscillators is through the physical structure of the slinky.

over many repeated trials without human supervision, using gradient descent
methods to train forward and inverse mappings between a visual parameter space
and an arm position parameter space. This behavior uses a novel approach to
arm control, and the learning bootstraps from prior knowledge contained within
the saccade behavior (discussed in Section 5.1). As implemented, the behavior
assumes that the robot’s neck remains in a fixed position.

From an external perspective, the behavior is quite rudimentary. Given a
visual stimulus, typically by a researcher waving an object in front of its cam-
eras, the robot saccades to foveate on the target, and then reaches out its arm
toward the target. Early reaches are inaccurate, and often in the wrong direction
altogether, but after a few hours of practice the accuracy improves drastically.

The reaching algorithm involves an amalgam of several subsystems. A motion
detection routine identifies a salient stimulus, which serves as a target for the
saccade module. This foveation guarantees that the target is always at the center
of the visual field; the coordinates of the target on the retina are always the
center of the visual field, and the position of the target relative to the robot is
wholly characterized by the gaze angle of the eyes (only two degrees of freedom).
Once the target is foveated, the joint configuration necessary to point to that
target is generated from the gaze angle of the eyes using a “ballistic map.” This
configuration is used by the arm controller to generate the reach.

Training the ballistic map is complicated by the inappropriate coordinate
space of the error signal. When the arm is extended, the robot waves its hand.
This motion is used to locate the end of the arm in the visual field. The distance
of the hand from the center of the visual field is the measure of the reach error.
However, this error signal is measured in units of pixels, yet the map being
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trained relates gaze angles to joint positions. The reach error measured by the
visual system cannot be directly used to train the ballistic map. However, the
saccade map has been trained to relate pixel positions to gaze angles. The saccade
map converts the reach error, measured as a pixel offset on the retina, into an
offset in the gaze angles of the eyes (as if Cog were looking at a different target).

This is still not enough to train the ballistic map. Our error is now in terms
of gaze angles, not joint positions — i.e. we know where Cog could have looked,
but not how it should have moved the arm. To train the ballistic map, we also
need a “forward map” — i.e. a forward kinematics function which gives the gaze
angle of the hand in response to a commanded set of joint positions. The error
in gaze coordinates can be back-propagated through this map, yielding a signal
appropriate for training the ballistic map.

The forward map is learned incrementally during every reach: after each
reach we know the commanded arm position, as well as the position measured
in eye gaze coordinates (even though that was not the target position). For the
ballistic map to train properly, the forward map must have the correct signs in
its derivative. Hence, training of the forward map begins first, during a “flail-
ing” period in which Cog performs reaches to random arm positions distributed
through its workspace.

Although the arm has four joints active in moving the hand to a particular
position in space (the other two control the orientation of the hand), we re-
parameterize in such a way that we only control two degrees of freedom for a
reach. The position of the outstretched arm is governed by a normalized vector
of “postural primitives.” A primitive is a fixed set joint angles, corresponding
to a static position of the arm, placed at a corner of the workspace. Three such
primitives form a basis for the workspace. The joint space command for the arm is
calculated by interpolating the joint space components between each primitive,
weighted by the coefficients of the primitive-space vector. Since the vector in
primitive space is normalized, three coefficients give rise to only two degrees of
freedom. Hence, a mapping between eye gaze position and arm position, and
vice versa, is a simple, non-degenerate R2 → R2 function. This considerably
simplifies learning.

Unfortunately, the notion of postural primitives as formulated is very brit-
tle: the primitives are chosen ad-hoc to yield a reasonable workspace. Finding
methods to adaptively generate primitives and divide the workspace is a subject
of active research.

5.5 Recognizing Joint Attention Through Face and Eye Finding

The first joint attention behaviors that infants engage in involve maintaining
eye contact. To enable our robot to recognize and maintain eye contact, we have
implemented a perceptual system capable of finding faces and eyes (Scassellati
1998c). The system first locates potential face locations in the peripheral image
using a template-based matching algorithm developed by Sinha (1996). Once a
potential face location has been identified, the robot saccades to that target using
the saccade mapping S described earlier. The location of the face in peripheral
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image coordinates (p(x,y)) is then mapped into foveal image coordinates (f(x,y))
using a second learned mapping, the foveal map F : p(x,y) �→ f(x,y). The location
of the face within the peripheral image can then be used to extract the sub-image
containing the eye for further processing.

This technique has been successful at locating and extracting sub-images that
contain eyes under a variety of conditions and from many different individuals.
Additional information on this task and its relevance to building systems that
recognize joint attention can be found in the chapter by Scassellati.

5.6 Imitating head nods

By adding a tracking mechanism to the output of the face detector and then
classifying these outputs, we have been able to have the system mimic yes/no
head nods of the caregiver (that is, when the caretaker nods yes, the robot
responds by nodding yes). The face detection module produces a stream of face
locations at 20Hz. An attentional marker is attached to the most salient face
stimulus, and the location of that marker is tracked from frame to frame. If
the position of the marker changes drastically, or if no face is determined to be
salient, then the tracking routine resets and waits for a new face to be acquired.
Otherwise, the motion of the attentional marker for a fixed-duration window is
classified into one of three static classes: the yes class, the no class, or the no-
motion class. Two metrics are used to classify the motion, the cumulative sum
of the displacements between frames (the relative displacement over the time
window) and the cumulative sum of the absolute values of the displacements
(the total distance traveled by the marker). If the horizontal total trip distance
exceeds a threshold (indicating some motion), and if the horizontal cumulative
displacement is below a threshold (indicating that the motion was back and
forth around a mean), and if the horizontal total distance exceeds the vertical
total distance, then we classify the motion as part of the no class. Otherwise,
if the vertical cumulative total trip distance exceeds a threshold (indicating
some motion), and if the vertical cumulative displacement is below a threshold
(indicating that the motion was up and down around a mean), then we classify
the motion as part of the yes class. All other motion types default to the no-
motion class. These simple classes then drive fixed-action patterns for moving
the head and eyes in a yes or no nodding motion. While this is a very simple
form of imitation, it is highly selective. Merely producing horizontal or vertical
movement is not sufficient for the head to mimic the action – the movement
must come from a face-like object.

5.7 Regulating Interactions through Expressive Feedback

In Section 4.2, we described ongoing research toward building a robotic “in-
fant” capable of learning communicative behaviors with the assistance of a hu-
man caretaker. For our purposes, the context for learning involves social ex-
changes where the robot learns how to manipulate the caretaker into satisfying
the robot’s internal drives. Ultimately, the communication skills targeted for
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learning are those exhibited by infants such as turn taking, shared attention,
and pre-linguistic vocalizations exhibiting shared meaning with the caretaker.

Towards this end, we have implemented a behavior engine for the develop-
ment platform Kismet that integrates perceptions, drives, emotions, behaviors,
and facial expressions. These systems influence each other to establish and main-
tain social interactions that can provide suitable learning episodes, i.e., where the
robot is proficient yet slightly challenged, and where the robot is neither under-
stimulated nor over-stimulated by its interaction with the human. Although we
do not claim that this system parallels infants exactly, its design is heavily in-
spired by the role motivations and facial expressions play in maintaining an
appropriate level of stimulation during social interaction with adults.

With a specific implementation, we demonstrated how the system engages
in a mutually regulatory interaction with a human while distinguishing between
stimuli that can be influenced socially (face stimuli) and those that cannot (mo-
tion stimuli) (Breazeal & Scassellati 1998). The total system consists of three
drives (fatigue, social, and stimulation), three consummatory behaviors
(sleep, socialize, and play), five emotions (anger, disgust, fear, happiness,
sadness), two expressive states (tiredness and interest), and their corre-
sponding facial expressions. A human interacts with the robot through direct
face-to-face interaction, by waving a hand at the robot, or using a toy to play
with the robot. The toys included a small plush black and white cow and an or-
ange plastic slinky. The perceptual system classifies these interactions into two
classes: face stimuli and non-face stimuli. The face detection routine classifies
both the human face and the face of the plush cow as face stimuli, while the
waving hand and the slinky are classified as non-face stimuli. Additionally, the
motion generated by the object gives a rating of the stimulus intensity. The
robot’s facial expressions reflect its ongoing motivational state and provides the
human with visual cues as to how to modify the interaction to keep the robot’s
drives within homeostatic ranges.

In general, as long as all the robot’s drives remain within their homeostatic
ranges, the robot displays interest. This cues the human that the interac-
tion is of appropriate intensity. If the human engages the robot in face-to-face
contact while its drives are within their homeostatic regime, the robot displays
happiness. However, once any drive leaves its homeostatic range, the robot’s
interest and/or happiness wane(s) as it grows increasingly distressed. As this
occurs, the robot’s expression reflects its distressed state. In general, the facial
expressions of the robot provide visual cues which tell whether the human should
switch the type of stimulus and whether the intensity of interaction should be
intensified, diminished or maintained at its current level.

For instance, if the robot is under-stimulated for an extended period of time,
it shows an expression of sadness. This may occur either because its social
drive has migrated into the “lonely” regime due to a lack of social stimulation
(perceiving faces near by), or because its stimulation drive has migrated into
the “bored” regime due to a lack of non-face stimulation (which could be pro-
vided by slinky motion, for instance). The expression of sadness upon the robot’s
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Fig. 9. Experimental results for Kismet interacting with a person’s face. When the
face is present and moving slowly, the robot looks interested and happy. When the face
begins to move too quickly, the robot begins to show disgust, which eventually leads
to anger.

face tells the caretaker that the robot needs to be played with. In contrast, if
the robot receives an overly-intense face stimulus for an extended period of time,
the social drive moves into the “asocial” regime and the robot displays an ex-
pression of disgust. This expression tells the caretaker that she is interacting
inappropriately with the robot – moving her face too rapidly and thereby over-
whelming the robot. Similarly, if the robot receives an overly-intense non-face
stimulus (e.g. perceiving large slinky motions) for an extended period of time,
the robot displays a look of fear. This expression also tells the caretaker that
she is interacting inappropriately with the robot, probably moving the slinky
too much and over stimulating the robot.

These interactions characterize the robot’s behavior when interacting with
a human. Figure 9 demonstrates how the robot’s emotive cues are used to reg-
ulate the nature and intensity of social interaction, and how the nature of the
interaction influences the robot’s social drives and behavior. The result is an
ongoing “dance” between robot and human aimed at maintaining the robot’s
drives within homeostatic bounds. If the robot and human are good partners,
the robot remains interested and/or happymost of the time. These expressions
indicate that the interaction is of appropriate intensity for learning.
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6 Future Research Directions

Human beings are the most complex machines that our species has yet examined.
Clearly a small effort such as that described in this paper can only scratch the
surface of an understanding of how they work.We have concentrated on a number
of issues that are well beyond the purely mechatronic ambitions of many robotic
projects (humanoid and other). Our research has focused on exploring research
issues aimed at building a fully integrated humanoid, rather than concentrating
on building an integrated humanoid for its own sake.

Our ultimate goal is to understand human cognitive abilities well enough to
build a humanoid robot that develops and acts similar to a person. To date, the
major missing piece of our endeavor is demonstrating coherent global behavior
from the existing subsystems and sub-behaviors. If all of these systems were
active at once, competition for actuators and unintended couplings through the
world would result in incoherence and interference among the subsystems. The
problem is deeper than simply that of multi-modal systems discussed in section
4.4.

6.1 Coherence

We have used simple cues, such as visual motion and sounds, to focus the visual
attention of Cog. However, each of these systems has been designed indepen-
dently and assumes complete control over system resources such as actuator
positions, computational resources, and sensory processing. We need to extend
our current emotional and motivational models (Breazeal & Scassellati 1998) so
that Cog might exhibit both a wide range of qualitatively different behaviors,
and be coherent in the selection and execution of those behaviors.

It is not acceptable for Cog to be repeatedly distracted by the presence of
a single person’s face when trying to attend to other tasks such as grasping
or manipulating an object. Looking up at a face that has just appeared in the
visual field is important. Looking at what the object being manipulated is also
important. Neither stimulus should completely dominate the other, but perhaps
preference should be given based upon the current goals and motivations of
the system. This simple example is multiplied with the square of the number of
basic behaviors available to Cog, and so the problem grows rapidly. At this point
neither we, nor any other robotics researchers, have focused on this problem in
a way which has produced any valid solutions.

6.2 Other Perceptual Systems

We have a small number of tactile sensors mounted on Cog, but nothing near
the number that occur in biological systems. Furthermore, their capabilities are
quite limited when compared to the mammalian somatosensory system.

Cog does have kinesthetic sensors on some joints to provide a sense of how
hard it was working, but we have not yet found a useful way to use that informa-
tion. Nor have we made use of the force sensing that is available at every joint of
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the arms beyond direct use in feedback control — there has been no connection
of that information to other cognitive mechanisms.

Finally, we have completely ignored some of the primary senses that are used
by humans, especially infants; we have ignored the chemical senses of smell and
taste.

Physical sensors are available for all these modalities but they are very crude
compared to those that are present in humans. It may not be instructive to try
to integrate these sensory modalities into Cog when the fidelity will be so much
lower than that of the, admittedly crude, current modalities.

6.3 Deeper Visual Perception

So far we have managed to operate with visual capabilities that are much sim-
pler than those of humans, although the performance of those that we do use are
comparable to the best available in artificial systems. We have concentrated on
motion perception, face detection and eye localization, and content-free sensory
motor routines, such as smooth pursuit, the vestibular-ocular reflex, and ver-
gence control. In addition to integrating all these pieces into a coherent whole,
we must also give the system some sort of understanding of regularities in its
environment.

A conventional approach to this would be to build object recognition systems
and face recognition systems (as opposed to our current face detection systems).
We believe that these two demands need to be addressed separately and that
neither is necessarily the correct approach.

Face recognition is an obvious step beyond simple face detection. Cog should
be able to invoke previous interaction patterns with particular people or toys
with faces whenever that person or toy is again present in its environment. Face
recognition systems typically record detailed shape or luminance information
about particular faces and compare observed shape parameters against a stored
database of previously seen data. We question whether moving straight to such
a system is necessary and whether it might not be possible to build up a more
operational sense of face recognition that may be closer to the developmental
path taken by children.

In particular we suspect that rather simple measures of color and contrast
patterns coupled with voice cues are sufficient to identify the handful of people
and toys with which a typical infant will interact. Characteristic motion cues
might also help in the recognition, leading to a stored model that is much richer
than a face template for a particular person, and leading to more widespread
and robust recognition of the person (or toy) from a wider range of viewpoints.

We also believe that classical object recognition techniques from machine
vision are not the appropriate approach for our robot. Rather than forcing all
recognition to be based on detailed shape extraction we think it is important
that a developmental path for object recognition be followed. This will include
development of vergence and binocularity, development of concepts of object
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permanence, and the early development of color perception that is robust to
varied lighting.4

6.4 A Sense of Time

Currently, Cog has no sense of time. Everything is in the present, with the
exception of some short term state implemented via the emotional levels present
in the Kismet platform. These emotional states can act as the keys to K-line
like indexing into associative memory, but this is not sufficient to produce the
richness of experience and subsequent intelligence that humans exhibit.

A key technical problem is how to relate the essentially static and timeless
aspects of memory that are present in neural networks, registration maps, self-
organizing maps, nearest neighbor approximations, and associative memory, to
the flow of time we as human beings experience.

This is a real technical challenge. A conventional AI system has separate
program and data, and the program has a natural flow of time that it can then
record in a data structure. Our models do not make this sort of distinction; there
is neither a sequential place in memory nor a process to capitalize on it. Given
that we have rejected the conventional approaches, we must find a solution to
the problem of how episodic memory might arise.

This chapter has focused on the current capabilities of our humanoid robotic
systems and the future directions that our research will address. These problems
are simply the beginning of what we hope will be a rich source of both new
research questions and innovative solutions to existing problems.
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