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Abstract

We are exploring the idea that early lan-
guage acquisition could be better modelled on
an artificial creature by considering the prag-
matic aspect of natural language and of its de-
velopment in human infants. We have imple-
mented a system of vocal behaviors on Kismet
in which “words” or concepts are behaviors in
a competitive hierarchy. This paper reports
on the framework, the vocal system’s archi-
tecture and algorithms, and some preliminary
results from vocal label learning and concept
formation.

1. Introduction

We are exploring the idea that early language acqui-
sition could be better modelled on an artificial crea-
ture by considering the pragmatic aspect of natural
language and its development in human infants. We
believe that this will contribute to a solution to the
“Grounding Problem” (Harnad, 1990) by providing
a new level of grounding in intentions and function.

The pragmatic approach to language acquisition is
to consider first of all the intentions of a speech act.
Language is not viewed as a denotational symbolic
system for reference to objects and relationships be-
tween them, as much as a tool for communicating
intentions. The utterance is a way to manipulate
the environment through the beliefs and actions of
others.

We develop a system of vocal behaviors for the
robot Kismet (Breazeal, 2000) which exemplifies the
approach we believe should be taken to natural lan-
guage acquisition by machines. The robot’s youthful
appearance dictates the sort of interaction that hu-
mans will have with it: scenarios of social scaffolding
similar to the kinds of interactions that teachers have
with human infants.

One step forward is to enable the robot to use
the scaffolded environment to its advantage in order
to learn to perform tasks and behave appropriately.
Learning to communicate with the teachers using a

shared semantic basis is one aspect of learning to be-
have in the world and manipulate it. We augment
the existent motivational and behavioral systems of
the robot with a set of vocal behaviors, regulatory
drives, and learning algorithms, which together con-
stitute Kismet’s Protolanguage Module.

In what follows, we first take a look at previous
work in robotics in Section 2., and in human lan-
guage development in Section 3. Then we present
the architecture of Kismet’s protolanguage module
in Section 4. and the algorithms in Section 5. Some
preliminary results from experiments with the new
system can be found in Section 6., and a discussion
in Section 7.

2. Previous Work

The current work was inspired by and built upon
results and ideas in robotic language acquisition and
adaptable behavior-based robotic architectures.

2.1 Robots acquiring natural language

(Roy, 1999) and (Oates et al., 2000), approached the
problem of acquisition of natural categories and la-
bels by robots from the point of view of perceptual
grounding. The robot analyzes the visual scene and
the speech stream into segments, the best correlation
between which will form a perceptual concept-label
pair which is acquired by the robot, as for example in
the development of CELL (Roy, 1999). CELL is em-
bodied in an active vision camera and acquires lexical
units from the following scenario: a human teacher
places an object in front of the robot and describes it.
The visual system extracts color and shape proper-
ties of the object, and CELL learns on-line a lexicon
of color and shape terms grounded in the represen-
tations of objects. The terms learned need not be
pertaining to color or shape exclusively - CELL has
the potential to learn any words. Associations be-
tween linguistic and contextual channels are chosen
on the basis of maximum mutual information.



2.2 Robots creating linguistic systems

Others have applied the principle of grounding word
semantics in perceptual inputs of robots to acqui-
sition and evolution of artificial languages, e.g. in
(Steels, 1999) and (Steels and Kaplan, 2001). Those
languages are used by populations of software agents
which teleport themselves into active vision heads so
they may perceive the scenes they describe to each
other. These experiments are demonstrations of a
computational model of language evolution. The
resulting languages are not natural; they are con-
structed specifically and exclusively for the purpose
of playing the naming game and not intended for
interaction with humans. Therefore, a human in-
teracting with an agent from the experiment must
learn the new language in order to engage in com-
munication, which will be restricted by the rules of
the game.

Also interesting is the work of Holly Yanco
(Yanco, 1994), where a team of robots must collec-
tively perform an atomic task by following a desig-
nated leader (human or robot). Based on certain as-
sumptions about the task and the environment, e.g.,
perfect communication, no inference of goals, and the
simplicity of tasks, the robots create an artificial lan-
guage to assist their collaborative effort. Again, the
development of this language reflects its very spe-
cific purpose, which is not necessarily human-robot
interaction.

2.3 Adaptable behavior-based architectures

We combine the task of word and concept acquisi-
tion with the behavior-based approach to robotics
(Brooks, 1986) by conceiving of a concept as a
kind of behavior, a process in a competitive hier-
archy. However, traditionally behavior-based sys-
tems have fixed architectures of behaviors designed
in advance for a specific purpose. Our purpose, on
the contrary, is to build and modify an architecture
of protoverbal behaviors at runtime, as the robot
learns to extract them from experience. We there-
fore take an approach similar to that of certain re-
cent expansions in behavior-based robotics, which
have included adaptive architectures. For example,
in (Nicolescu and Matarić, 2001) scenarios are de-
scribed, in which humans act as teachers and col-
laborators for robots. Robots learn to combine ex-
isting behaviors into control networks from human
demonstrations of tasks.

The work reported here builds on the Lateral be-
havior architecture (Fitzpatrick, 1997), which was
extended and modified to enable adaptable behav-
ioral architectures in (Varchavskaia, 2002).

2.4 Novel approach of reported work

The problem we are attempting to address in the cur-
rent work is that of demonstrating the development
of a communicative system by an artificial creature
in a social environment populated by benevolent hu-
mans. This communicative system finds expression
in strings of natural language. However, the em-
phasis of the current approach is not on learning an
extensive vocabulary or a verisimilar grammar, but
on acquiring words with functional meanings. In-
deed, the questions of grammar development are not
addressed here at all, hence we refer to the task as
“protolanguage”, meaning the presyntactic stage in
language development. Reported here are very pre-
liminary results obtained by taking this pragmatic
approach to language acquisition. The main novelty
of this research is the framework proposed here, in
which concepts have procedural as well as declara-
tive meaning. Concepts (i.e., words with meanings)
are processes in a concurrent “mental” architecture
which compete to be expressed by the creature. To
the best of our knowledge, this approach has not yet
been explored in machine learning of natural lan-
guage.

This work was most influenced and inspired by
certain results in developmental linguistics, to which
we now turn.

3. Development of Meaning and Lan-
guage in Humans

Human infants are surprisingly adept at learning
about the structure of the environment, how to be-
have in it, and how to express themselves and un-
derstand others all at once, in the space of a few
years. Bloom (Bloom, 2000) has shown that chil-
dren are good at innately facilitated learning of so-
cially transmitted information. This means that one
of the most important attributes of the spoken lan-
guage in the infant’s environment is that it fulfills a
social function, to which the infant is sensitive and
which enables her to acquire a new word or concept
after a very limited number of examples, perhaps
even one (see also (Pinker, 1999) for overview of ex-
periments suggesting extremely fast word learning by
young children and infants).

In a seminal work (Halliday, 1975), most inspira-
tional for the design of Kismet’s Protolanguage Mod-
ule, Halliday makes the very important distinction
between what he calls the mathetic and the prag-
matic functions of human natural language. The
mathetic function is to provide an encoding of in-
formation channelled through speech or text. When
designing robots who develop their abilities in a man-
ner similar to humans, we cannot simply focus on the
mathetic function of language and neglect its prag-
matic aspect, which is to provide the speaker with a



means of manipulating the behavior of other humans.
When one person makes a speech act, in addition to
communicating a piece of information, that person
may have intentions to change the state of the world
and especially the behavior of those who hear the ut-
terance, in a particular way. “It has started to rain
outside” often really means something like “Close the
window, please”. The speaker expects the hearer to
react in a certain way as a result of hearing the ut-
terance, which then becomes the speaker’s tool for
manipulation of others and of her surroundings.

This pragmatic view of the function of language
is extremely important in trying to explain, or de-
vise, an ability for early language acquisition, be-
cause infants and young children specifically learn to
use speech as a tool. Halliday identifies three main
stages of linguistic development: (I) the child’s initial
closed proto-linguistic system, (II) the transitional
stage to that of adult language, and (III) the learn-
ing of the adult language. In the first stage, the
child has a finite number of meanings to convey and
to that effect uses self-generated labels that may or
may not resemble adult words for similar occasions.
Halliday posits six initial functions of a developing
proto-linguistic system that may be expressed in the
first stage:

1. Instrumental - satisfying the child’s needs

2. Regulatory - controlling the behavior of others

3. Interactional - engaging in a social situation

4. Personal - asserting own unique self

5. Heuristic - exploring the environment

6. Imaginative - pretending and playing

These six functions of the child’s phase I proto-
language seem to develop in that sequence and repre-
sent the child’s growing cognitive ability and aware-
ness. They also present a great starting point and
timeline for an artificial system that would acquire
a natural language in a way similar to human chil-
dren. The infant’s protolanguage during Phase I is
finite and formulaic (see also (Wray, 2000) for a dis-
cussion of formulaic systems in the evolution of lan-
guage), as will be the first part of Kismet’s language
development module (see Table 1).

Note that we make no claims of faithfully following
the developmental schedule of human infants. Nei-
ther do we achieve a complexity of development that
would approach that of an infant. The preceding
summary shows the main source of inspiration for
our pragmatics-based approach to language acqui-
sition by an artificial creature, designed to exhibit
certain properties of human infants. As can be seen
in the next two sections, learning in the artificial sys-
tem results from similar scenarios of, e.g., frustration

of a goal-directed behavior and an intuitive drive for
vocalization.

4. Kismet’s Protolanguage Module

In order to achieve communication between humans
and a sociable robotic creature, words must be a tool
used by the robot to manipulate its physical and so-
cial world and they must be interpreted by humans
as having such a pragmatic functional meaning. In
Kismet’s case, it will start with proto-language and
proto-verbal behaviors. The “proto” terms refer to
the pre-grammatical early stage of development.

4.1 The robotic platform

Kismet is an expressive robotic head, designed to
have a youthful appearance and perceptual and
motor capabilities tuned to human communication
channels. The robot receives visual input from four
color CCD cameras and auditory input from a micro-
phone. It performs motor acts such as vocalizations,
facial expressions, posture changes, as well as gaze
direction and head orientation.

Kismet’s control architectures run on a complex
network of processors in real time (approaching 30
Hz for visual signals, and 8 kHz sample rate with
frame windows of 10 ms for auditory signals), with
minimal latencies (less than 500 ms). Low-level vi-
sual processing and eye/neck motor control is per-
formed by 12 networked 400 MHz PCs running QNX.
The high-level perceptual system, the motivation
and behavior systems, the motor skill system and
the face motor control run on four Motorola 68332
microprocessors running L, a multi-threaded Lisp de-
veloped in our lab. Expressive speech synthesis and
vocal affect recognition execute on a dual 450 MHz
PC running NT, and the speech recognition system
(ViaVoice) and protolanguage module run on two
500 MHz PCs running Linux.

Although not a mobile robot and with all compu-
tation off-board, Kismet is an autonomous agent in
that it pursues its own agenda by engaging in spe-
cific behaviors which are tuned to the satisfaction
of its own “goals” and “desires”. The motivation is
provided by a set of internal homeostatic variables
called “drives”, such as the level of engagement with
the environment or the intensity of social play, which
must be maintained within certain normal bounds in
order for Kismet’s system to be at equilibrium.

“Emotions” constitute another facet of Kismet’s
motivational system. The robot’s emotional state is
modelled, after Ekman, cited in (Breazeal, 2000), as
a point in three-dimensional space, where the axes
represent arousal, valence, and stance. The choice
of emotion depends on simple appraisals of the per-
ceptual stimuli. The robot has a 15 DoF face that
mirrors its internal “emotional” state expressively.



Figure 1: Kismet: the robotic head.

The behavior system provides structure and an ar-
biter for the robot’s multiple behaviors. The lat-
ter are all self-interested mechanisms which compete
with each other to be active at any one time. The
activation of a particular behavior will depend on the
current state of the robot’s motivational system, as
well as considerations of coherency, persistence and
opportunism.

There are four lip actuators, and a single DoF jaw
that together work to lip-synch to the speech pro-
duced by a synthesizer. The synthesizer software is
DECTalk v4.5, based on the Klatt synthesizer, cited
in (Breazeal, 2000), which models the physiological
characteristics of the human articulatory tract. This
enables the robot to speak in a youthful tone of voice,
and to vary the parameters of the synthesizer to ac-
count for variation in its emotional state.

4.2 Proto-verbal behaviors

We have designed and implemented a new vocal be-
havior system on Kismet which we call protoverbal
for two reasons. On the one hand, the behavior ex-
hibited by the system, if observed in a human in-
fant, would be called a precursor to language devel-
opment. The goal of the system is to produce the
kind of vocal output that a prelinguistic infant may
produce in the age range of 10-12 months, namely
emotive grunts, canonical babblings, and a formulaic
protolanguage (see Table 1) similar to that described
in (Halliday, 1975). On the other hand, we believe
that this foundation of vocal behaviors can serve as
the pragmatic basis for more sophisticated natural
language acquisition by the robot.

The system consists of two new drives (the Speech
and Exploration drives), and an architecture of vocal
behaviors shown in Figure 2. The new system is
based on the following components:

• Releasers are global variables which respond
to certain conditions in the environment, as re-
ported by the robot’s perceptual system, or in the
internal state of the robot

Emotion Behavior Proto-linguistic
Function

anger, complain regulatory
frustration

disgust withdraw instrumental
or regulatory

fear, distress escape –

calm engage interactional

joy display pleasure personal or
interactional

sorrow display sorrow regulatory
or personal

surprise startle response –

boredom seek –

Table 1: Correspondence between Kismet’s nonverbal be-

haviors and proto-linguistic functions (Halliday, 1975).

In some fields, – indicates that there is no clear corre-

spondence. In this case, the grunting behaviors may be

active.

• Drives are global objects with a changing level
of activation, which regulate the likelihood of ac-
tivation of certain behaviors, and are reset when
these behaviors achieve their goals

• Vocal Behaviors are behavior objects which
consist of receptors, gains, elicitors which be-
have like complex releasers, a level of activation,
a state machine, a vocal label, a measure of
confidence, and output ports for propagation
of their activation and label. Details of a base
behavior are shown in Figure 3.

[ activation ]

[ <vocal label> ]INPUTS

SPREAD

LABEL

SPREAD

BEHAVIOR

STATE MACHINE

LOCAL 

VARIABLES

CONFIDENCE

INHIBITION

Figure 3: Representation of a single pro-

toverbal behavior.

The design of protoverbal behaviors presented here
fits the description of a behavior as a a self-contained,
self-interested and goal directed entity. All of them
compete to establish which mode of vocal expression
the robot is to engage in, and what phonemic string
it is to produce.

• Self-interest. Each vocal behavior computes its
activation locally and attempts to overwrite its
connections to other behaviors and to the Say

This buffer containing the string that the robot
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Figure 2: Overall architecture of Kismet’s protoverbal behaviors, where rounded boxes

represent instances of behaviors and circles represent connections between behaviors. Con-

nections between HeardThis and individual Concepts are not shown for clarity (see section

5.1

will say next. A single vocal behavior does not de-
pend on the operation of others. Behaviors may
communicate indirectly by receiving each other’s
confidence signal as input.

• Goal-directedness. The goal of each vocal be-
havior is to assuage the robot’s Speech drive by
making it say something. Different kinds of vo-
calizations may satisfy different drives, e.g., the
Exploration drive grows when there are no people
present in the robot’s environment, and is satis-
fied by canonical babbling.

• Competition. The competition between vocal
behaviors is regulated by a priority scheme in the
Lateral architecture (Fitzpatrick, 1997). Each
behavior assigns its own priority locally to its
computed activation level. Implementation de-
tails can be found in (Varchavskaia, 2002); they
correspond closely to the original implementation
of behavior activation on Kismet.

The system consists of grunting behaviors, a single
canonical babbling behavior, and a number of con-
cept behaviors (this number may grow or shrink at
runtime). All of the above execute and interact in
the overall architectural framework shown in Figure
2. There are two specialized behaviors, Reader and
Hearer, which interface with Kismet’s perceptual sys-
tem and procure global releasers for vocal behaviors.
A single Speaker behavior is responsible for sending
a speech request over to the robot.

All of the protoverbal behaviors (rounded boxes
on the figure) have access to the global releasers and
the currently heard string of phonemes.

The nature of the speech request is determined by
competition among individual protoverbal behaviors
implemented through the Lateral priority scheme.

To that effect, relevant behaviors write their vocal
labels to connection objects, shown as small circles
on the figure. The behavior with the highest activa-
tion, and therefore the highest priority, will succeed
in overwriting all other request strings with its own,
which Speaker will end up passing on. A speech re-
quest may be a request for a grunt, a babble, or a
“word” - i.e., a phonemic string that is attached to
one of the concept behaviors. Competition happens
in two stages. First, the most active grunt writes its
request to the Grunt buffer and the most active con-
cept writes its label to the Say This buffer. Then,
the most active of the three types of request buffers
writes its output to Speaker. Any of these behav-
iors only produce output when activation is above a
threshold (determined empirically), so some of the
time, the Protolanguage Module does not produce
an output, and the robot remains silent.

The vocal behaviors are influenced by data on the
robot’s current perceptual, emotional, and behav-
ioral state. Figure 4 represents the way data and
control flow between existing software components
of Kismet’s architecture and the vocal behaviors de-
veloped here.

The Perception, Behavior, and Motor Systems
communicate the current values of Simple Releasers,
implemented as variables of global scope, to which
any component of Vocal Behaviors has access.
Complex Releasers are computed by combining in-
formation from these and also become inputs to the
new Vocal Behaviors. Finally, the outputs of the sys-
tem are written directly to the speech stream, over-
writing any existing value with the one determined
by Vocal Behaviors and requesting a new speech act.

The entire protoverbal system shown on the right
of figure 4 includes the implementation of algorithms
for concept and vocal label acquisition and updates.
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Figure 4: Control and data flow between vocal and other behaviors in Kismet’s architec-

ture. Dark arrows indicate combined control and data flow between old components of the

architecture. Light arrows follow the data flows only.

5. Structures and Algorithms for Pro-
tolanguage Development

The development of the robot’s formulaic proto-
lexicon hinges on two mechanisms: one for the up-
date of the vocal label of an existing concept (or
“word”), the other one for the creation and man-
agement of novel concepts.

5.1 Acquisition of labels

The Concept class implements the functionality of a
single vocal behavior. Its overall architecture was
briefly explained in Figure 3, and its state machine
is presented in more detail in figure 5. After ini-
tialization, the behavior can be in one of the seven
states. On the figure, two non-default transitions
are shown from the Decide state: to Activate1 and
Hear states. They are determined as follows: after
the OutputLabel state has executed, the transition
goes to Activate1 unless the behavior receives a sig-
nal that there is a new speech input, in which case
the transition goes to Hear.

Initial

Activate1

Update
Label

Output
Label

Update 
Gains

Activate2
Hear

Decide

Figure 5: State machine of a Concept behav-

ior.

Activate1 computes the behavior activation. If
the activation is above a threshold, it transitions to

OutputLabel, whence the vocal label of the behav-
ior is sent out. Otherwise, the next state remains
the same, unless the condition for label update is
satisfied. Then the transition function leads to the
UpdateLabel state.

5.1.1 Attribution of label

When new speech input arrives, this activates the
Hear state of every Concept, which attempts to match
the heard phonemic string to the behavior’s vocal la-
bel. The match value is computed based on the vocal
label as a template against which to match, the con-
fidence value for the behavior’s own vocal label, and
an empirically determined global phoneme confusion
matrix:

BestMatch(in, template) = max(M(in, template)) (1)

where M(in, template) is a vector whose elements are
best matches given a certain window size (window
size is measured in phonemes and not in single char-
acters):

M(in, template) =
1

n

[
Mm(in, template) ·m
Mm+1(in, template) · (m + 1)
· · ·
Mn(in, template) · n

]
(2)

where m is the minimum allowed window size and

n = min(MAX WINDOW SIZE, length(template))

The minimum window is set so that spurious one-
phoneme matches are discarded. The matching mea-
sures returned by Mi() are scaled by the window size
in order to bias in favor of longer substrings. Mi()

itself uses the standard brute-force string searching
algorithm.

Hear automatically transitions to Activate2 which
computes the activation level of the behavior based
on the match determined earlier and the values of the
behavior’s receptors. If a discrepancy between the
response to receptor values and the response to the
speech input is above a threshold, and the confidence



in the vocal label is high, Concept transitions to the
UpdateGains state.

If the activation level reaches above a threshold,
the behavior transitions to the OutputLabel state,
which sets the behavior’s priority to a value de-
pendent on its activation and the confidence of the
match, sets the output priority to the behavior’s pri-
ority, and outputs an inhibitory signal at that pri-
ority level. The inhibitory outputs of each concept
connect back to the HeardThis behavior. Such a
signal received by HeardThis propagates further to
ConceptMap and inhibits the default creation of a new
Concept when a new string of phonemes is heard (see
section 5.2).

5.1.2 Updating of label and confidence

Whether or not the vocal label of a Concept should
be updated is determined by a combination of con-
ditions on the Concept’s confidence C, the confidence
Cheard in the accuracy of the heard phonemic string,
the value of the best match between them and the
current activation A of the Concept. The update la-
bel value UL is compared against a threshold to de-
cide whether an update should take place (where k is
a scaling constant, chosen arbitrarily, and θ the acti-
vation threshold, d is the distance measure between
the two strings in the result of the BestMatch() call):

UL =

{
k Cheard

C
d : A > θ , C 6= 0
0 : otherwise

(3)

If the Concept is active, then UL will be proportional
to the confidence attached to the heard string, and
inversely proportionate to the goodness of the match
and to the level of the Concept’s own confidence. If it
is not active, there is no reason to update the label.

These computations depend on the confidence
measure on the input speech string. This is com-
puted inside HeardThis in the following way:

Cheard = default − 1

n

∑
n

1

dn + 1
Cn (4)

where default is a constant, dn is a distance mea-
sure of the match between heard and the n’th tem-
plate, Cn is the confidence for the n’th template,
and the sum is taken over all templates that had at
least a minimal match to the heard string. The in-
dividual Cn and dn are transmitted to the HeardThis

behavior through incoming connections. N of these
connections are created and we then let the active
Concept behaviors compete to overwrite those con-
nections only.

Note that Cn are used to compute Cheard but
Cheard is needed to determine the update rule for
the vocal label of concept n. However, this situation
does not start an infinite regression in our implemen-
tation, as there is a clear time difference between
the activation of the two connections, so that when

Cheard is received back at Concept, the behavior has
switched to another state as shown in figure 6.

5.1.3 Updating of parameters

When a behavior is created, the gains are set to
default values, which must be updated in state
UpdateGains to arrive at some consistent represen-
tation of releaser properties for that behavior. The
signals that the Concept has access to at this point
in the state machine include:

• its activation A

• the result of the matching process between its
vocal label and the input phonemic string

• its confidence in its vocal label C

• a measure of confidence in the accuracy of the
string heard Cheard

• the current presence or absence of relevant re-
leasers

From this information the behavior derives a rein-
forcement signal UG computed as follows, where d
is the distance measure returned by BestMatch(),
which is equal to 0 when the match is perfect:

UG =

{
− k Cheard C d : A > θ

Cheard C
d + 1

: otherwise
(5)

This rule allows for both Type I and Type II errors:
when the behavior is active even though something
other than its label is heard, and when the behavior
remains inactive and its label was heard. However,
in the first case reinforcement should be weaker since
it is quite often the case that the speech the robot
hears is not describing any immediate features of the
environment. Therefore we scale this type of signal
by a smaller k. This does not eliminate the problem,
but biases the computation in a simple way. UG is
then used in the update rule for each of the gains in
the vector:

Gi
t+1 = Gi

t + α Ri
t Gi

t UG (6)

This will not change the value of Gi (the ith element
of the gains vector G) if its corresponding Receptor

Ri was not responding.

cc

a2

heardC

mon

a2

inhibition

t t+1 t+2 t+3 t+4 t+5

ndnC

HeardThis

Concept hear

hear

ol

sendmon

ug
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Figure 6: The timings of information transfer between

HeardThis and any Concept. The state transitions ensure

that confidence measures are only computed once.



Figure 7: Activation of Kismet’s motorskill internal variable (solid line) and the “orient” fixed concept (ragged

line). Motorskill = 0 corresponds to the activation of the orienting behavior.

The simplicity of the update rules is possible be-
cause of the finite and very precisely described set of
pre-existing releasers on Kismet. For a more scalable
system, if we wish to maintain natural-time respon-
siveness, we will want to consider more sophisticated
techniques.

5.2 Acquisition of novel concepts

ConceptMap is the single behavior which acts as a
very high-level manager of concepts. Described as
such it sounds like precisely the homunculus which
we are trying to avoid by creating this distributed
architecture of behaviors. However, the functional-
ity of ConceptMap is very tightly tied in with that
of HeardThis and should perhaps be implemented as
two extra states within that behavior. That would
perhaps be more acceptable in terms of the spirit of
the project. The current implementation has singled
out ConceptMap mainly for the sake of readability.

The vocal labels of concepts serve also as the key in
the ConceptMap and may be used to remove a concept
by finding the vocal label key. The map stores point-
ers to all Concept behaviors, i.e., all non-grunting,
non-babbling protoverbal behaviors. The map is ini-
tialized to contain a small set of fixed concepts, which
correspond to Kismet’s existing behaviors.

Every time a new spoken input is heard, a new
Concept will be generated by ConceptMap, with the
heard phonemic string as its vocal label, unless in-
hibitory signals are received by HeardThis via any of
its N input connections. When a new protoverbal be-
havior is automatically generated from ConceptMap,
its vector of Receptors is initialized to include one for
every kind of releaser that is present in the system.
All receptor gains are set to a default value. This
exhaustive assignment will be remedied later as the
gains are updated individually within each behavior.

6. Preliminary Experiments

In (Varchavskaia, 2002), evaluation of ConceptMap

workings, the acquisition and labeling of concepts
was hindered by poor phoneme recognition and the
often unpredictable nature of the robot’s behaviors.
Here we have attempted to remove some of these

obstacles. We have created an initial small vocabu-
lary of 20 words, chosen arbitrarily as most often
used in interactions with the robot. This vocab-
ulary was transcribed phonemically and used with
ViaVoice exclusively for the purposes of more con-
sistent phoneme recognition. This initial vocabulary
was augmented with novel phonemic strings when-
ever novel concepts were added to the map. In this
way, the robot is biased to hear the “words” it knows
again, and we can eliminate much of the spurious
creation of new concepts.

6.1 Labeling an existing behavior

During a 15 minute interaction, the human teacher
attempted to teach Kismet labels for some of its
original behaviors, such as orienting, search, and ex-
pressing an emotion. The words used for this pur-
pose were not present in the initial ViaVoice vocab-
ulary. Figure 7 shows the correspondence between
the activation pattern of the “orient” concept and
the robot’s internal variable representing current mo-
torskill. The table below shows the progression of la-
bel updates within the “orient” concept; the teacher
wanted Kismet to associate the phrase “look here”
with the orienting behavior.
cycle: last heard: label: C: d:

200: h uh k ih h uh k iy 0.3 3.3

400: h uh k iy l uh k iy h 0.9 1.2

600: l uw h uh k ih 1.1 2.8

............

A cycle refers to one scan cycle of the vocal behav-
iors system, in which each behavior has exectuted for
one state, and takes an average of about half a sec-
ond. Figure 9 shows that appropriate labels were
associated with fixed concepts, e.g., /l uh k iy h/
with “orient”, /w ah n/ with “seek” (in this case,
the robot was taught the label “wanna” for the seek-
ing behavior).

6.2 Acquiring a perceptual category

During another 15 minute interaction, the human at-
tempted to teach Kismet the English words for the
colors green and yellow through the following sce-
nario. The teacher shows a toy of the corresponding
color and says the word when Kismet’s attention is



Figure 8: Partial screenshot of an interaction. ConceptMap on the right shows current protoverbal behaviors

colored by their priority value. Details of winning behavior also in the main window.

Figure 9: Partial screenshot of an interaction. Highlighted

concept won the priority competition.“orient”, “seek” and

“express” are fixed concepts mirroring the activaiton of

the robot’s nonverbal behaviors. “yehlow” and “griyn”

are new concepts created by the system.

focused on it. Then the toy is removed and only
shown again if the robot shows a seeking behavior
and vocalizes a “request” which sounds similar to
the color label. The words used were transcribed
as strings of phonemes for ViaVoice. Figures 9 and
8 show that the concepts with corresponding labels
were created. However, we do not at present have
a satisfactory evaluation method that would demon-
strate that the labels correspond precisely to that
perceptual category.

7. Discussion

The scope of the project was to provide a frame-
work and a pragmatic, behavior-based approach to
the problem of early concept and vocal label acqui-
sition. Therefore, emphasis was placed on the archi-

tecture of the system rather than on the learning al-
gorithms involved. Consequently, the methods used
are often meant as placeholders for more sophisti-
cated models.

Nevertheless, the preliminary results show that
this approach may be fruitful. We have created a
system of protoverbal behaviors, which operate for
a purpose, namely the satisfaction of the robot’s
drives, including a drive for communication. The
framework allows the “words” in the robot’s pro-
tolanguage to have grounded function and meaning.

Currently we are focusing on developing ap-
propriate evaluation methods to test the system.
Future research will also involve integration of
better phoneme recognition, through incorpora-
tion of the out-of-vocabulary model reported in
(Varchavskaia et al., 2001), and a mechanism for
word segmentation from spoken utterances. We
should also conduct more experiments, including
those with naive subjects to test claims of natural-
ness and meaningfulness of interaction.
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