
First Contact: an Active Vision Approach to Segmentation

P. Fitzpatrick
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge MA 02139, USA
paulfitz@ai.mit.edu

Abstract— How a robot should grasp an object depends on
its size and shape. Such parameters can be estimated visually,
but this is fallible, particularly for unrecognized, unfamiliar
objects. Failure will result in a clumsy grasp or glancing
blow against the object. If the robot does not learn something
from the encounter, then it will be apt to repeat the same
mistake again and again. This paper shows how to recover
information about an object’s extent by poking it, either
accidentally or deliberately. Poking an object makes it move,
and motion is a powerful cue for visual segmentation. The
periods immediately before and after the moment of impact
turn out to be particularly informative, and give visual
evidence for the boundary of the object that is well suited to
segmentation using graph cuts. The segmentation algorithm
is shown to produce results consistent enough to support
autonomous collection of datasets for object recognition,
which enables often-encountered objects to be segmented
without the need for further poking.

I. INTRODUCTION

Object recognition and image segmentation are inter-
twined problems, since each is far easier to do if we
can perform the other. Yet it is important to be able
to segment unfamiliar objects – for example, to guide a
manipulator to grasp them. Rather than simply failing in
visually ambiguous situations, an active robotic platform
has the potential to perform experiments on its environ-
ment that resolve the ambiguity (see Figure 1). Methods
for characterizing the shape of an object through tactile
information have been developed, such as shape from
probing [3], [8] or pushing [6], [7]. In this paper, we
show that the visual feedback generated when the robot
moves an object is highly informative, even when the
motion is short and poorly controlled, or even accidental.
This opens the door to extracting information from failed
actions such as a glancing blow to an object during an
attempt at manipulation, potentially giving the robot the
data it needs to do better next time. We adopt the term
“poking” (as opposed to “probing”) for such actions, to
convey the idea of a quick jab to evoke visual data instead
of an extended grope for tactile data. Although tactile and
visual information could usefully be combined, no tactile
or proprioceptive information is assumed in this paper –
not even to determine whether the robot is in contact with
an object.

But how useful is a segmentation method that relies on
action, in practice? It would be cumbersome to always

Fig. 1. A motivating scenario. The robot (left) reaches towards an object
in its environment while fixating it with a camera. The robot’s view is
shown on the right. The boundary between the cube and the table it is
sitting on is clear to human eyes, but too subtle to be reliably segmented
by current automatic methods. But once the robot arm comes in contact
with the object, it can be easily segmented from the background using
the motion due to the impact.

have to poke around to segment an object each time it
comes into view. But the cleanly segmented views of
objects generated by poking are exactly what is needed to
train up an object recognition system, which in turn makes
segmentation without further poking possible. So the kind
of active segmentation proposed here can serve as an
online teacher for passive segmentation techniques. Anal-
ogously, while an experienced adult can interpret visual
scenes perfectly well without acting upon them, linking
action and perception seems crucial to the developmental
process that leads to that competence [4].

II. FIRST CONTACT

If the object is to be segmented based on motion, we
need to differentiate its motion from any other sources in
the scene – particularly that of the robot itself. A high-
quality opportunity to do this arises right at the moment
of first contact between the robot and the object. This
contact could be detected from tactile information, but it is
also straightforward to detect visually, which is the method
described here. The advantage of using visual information
is that the same techniques can be applied to contact events
about which the robot has no privileged knowledge, such
as a human hand poking an object (see Section VI).

For real-time operation, the moment of contact is first
detected using low-resolution processing, and then the



1 2 3 4 5

9876 10

Fig. 2. The moment of (ground) truth – detecting the point of impact
between the robot’s arm and an object. As the arm swings in, its motion
is tracked frame by frame and aggregated within relatively low-resolution
bins (highlighted squares). When an implausibly large spread in motion
is detected across these bins, higher resolution processing is activated
and segmentation begins.

images before and after the contact are subjected to more
detailed (and slower) analysis as described in the following
section. Figure 2 shows a visualization of the procedure
used. When the robot is attempting to poke a target, it
suppresses camera movement and keeps the target fixated
for maximum sensitivity to motion. A simple Gaussian
model is maintained for the (R,G,B) color values of each
pixel, based on their value over the last ten frames (one
third of a second) received. Significant changes in pixel
values from frame to frame are detected and flagged as
possible motion. As the arm moves in the scene, its motion
is tracked and discounted, along with its shadow and any
background motion. Any area that the arm moves through
is marked as “clear” of the object for a brief period –
but not permanently since the arm may cross over the
object before swinging back to strike it. An impact event
is detected through a signature explosion of movement that
is connected with the arm but spread across a much wider
distance than the arm could reasonably have moved in
the time available. Since the object is stationary before
the robot pokes it, we can expect the variance of the
Gaussians associated with the individual pixel models to
be low. Hence they will be very sensitive to the pixel
value changes associated with the sudden motion of the
object. Once the impact is detected, we can drop briefly
out of real-time operation for a few seconds and perform
the detailed analysis required to actually cleanly segment
the object based on the apparent motion.

III. FIGURE/GROUND SEPARATION

Once the moment of contact is known, the motion visi-
ble before contact can be compared with the motion visible
after contact to isolate the motion due to the object. Since
we observe pixel variation rather than true motion, we can
also factor in how we expect them to relate – for example,
a highly textured region with no observed change over
time can be confidently declared to be stationary, while a
homogeneous region may well be in motion even if there is
little observed change. In general, the information we have

is sparse in the image and can be framed as probabilities
that a pixel belongs to the foreground (the object) or
the background (everything else). Let us first look at a
simpler version of this problem, where for those pixels
that we do have foreground/background information, we
are completely confident in our assignments.

Suppose we have some information about which pixels
in an image I(x,y) are part of the foreground and which
are part of the background. We can represent this as:

A(x,y) =







−1, I(x,y) is background
0, I(x,y) is unassigned
1, I(x,y) is foreground

We now wish to assign every pixel in the image to
foreground or background as best we can with the sparse
evidence we have. One approach would be to create a cost
function to evaluate potential segmentations, and choose
the segmentation with minimum cost. If we are willing
to accept constraints on the kind of cost function we can
use, then there is a family of maximum-flow/minimum-cut
algorithms that can provide good approximate solutions to
this problem [2]. To apply them, we need to translate our
problem into the form of a graph, as shown in Figure 3.
Each pixel maps to a node in the graph, and is connected
by edges to the nodes that represent neighboring pixels.
There are two special nodes corresponding to the labels we
wish to assign to each pixel (foreground or background).
The problem the minimum-cut algorithms can solve is
how to split this graph into two disjoint parts, with the
foreground node in one and the background node in the
other, such that the total cost of the edges broken to
achieve this split is minimized. So our goal should be
to assign costs to edges such that a minimum cut of the
graph will correspond to a sensible segmentation.

Let N(x,y) be the node corresponding to pixel I(x,y).
Let N+1 be the node representing the foreground, and
N−1 be the node representing the background. If we
are completely confident in our classification of pixel
I(x,y) into background or foreground, we may encode
this knowledge by assigning infinite cost to the edge from
N(x,y) to NA(x,y) and zero cost to the edge from N(x,y)
to N

−A(x,y).

C (N(x,y),N+1) =

{

∞, A(x,y) = 1
0, otherwise

C (N(x,y),N−1) =

{

∞, A(x,y) = −1
0, otherwise

This will force the minimum-cut algorithm to assign
that pixel to the desired layer. In practice, the visual
information will be more ambiguous, and these weights
should be correspondingly “softer”.

Costs also need to be assigned to edges between pixel
nodes. Suppose we expect foreground information to be
available most reliably around the edges of the object,



foreground
node

background
node

pixel nodes

allegiance to 
foreground

allegiance to 
background

pixel-to-pixel
allegiance

foreground
node

background
node

pixel nodes

allegiance to 
foreground

allegiance to 
background

pixel-to-pixel
allegiance

Fig. 3. For a two-label problem on a 2D image, the input to a
minimum-cut algorithm is typically as shown on the left. There is a
node for each pixel, and two special nodes corresponding to the labels
(foreground/background). Visual evidence is encoded on edges between
the nodes. The output of the algorithm is shown on the right. The
graph is cut into two disjoint sets, each containing exactly one of the
special nodes, such that the total cost of the edges cut is (approximately)
minimized.

as is in fact the case for motion data. Then a reasonable
goal would be to use the minimum cut to minimize the
total perimeter length of segmented regions, and so merge
partial boundary segments into their bounding region. To
do this, we could simply assign the actual 2D Euclidean
distance between the pixels as the cost. This is not quite
sufficient if our edge information is noisy, because it
permits almost “zero-area” cuts around individual isolated
foreground pixels. We need to place an extra cost on
cutting around a foreground pixel so that it becomes
preferable to group near-neighbors and start generating
regions of non-zero area. For this example, we simply
double the cost of cutting edges that are connected to
pixels known to be foreground or background.

C (N(x0,y0),N(x1,y1)) =







D,

A(x0,y0) = 0,

A(x1,y1) = 0
2D, otherwise

where D =
√

(x0 − x1)2 +(y0 − y1)2

Edges are only placed between neighboring pixel nodes,
to prevent an explosion in connectivity. A neighborhood
is defined as shown in Figure 4.

Figure 5 shows examples of minimum-cuts in operation.
The first image (top left) has two (noisy) lines of known
foreground pixels, of length w. The minimum cut must
place these pixels inside a foreground region. If the regions
are disjoint, the total perimeter will be at least 4w. If
the the lines are instead placed inside the same region,
the cost could be as little as 2w + 2h where h is the
distance between the two lines, which is less than w. The
figure shows that this is in fact the solution the minimum-
cut algorithm finds. The next two examples show what
this minimum perimeter criterion will group and what it
will leave separate. The fourth example shows that by
introducing known background pixels, the segmentation
can change radically. The patch of background increases
the perimeter cost of the previous segmentation by poking
a hole in it that is large enough to tip the balance in

2
5

1

Fig. 4. The segmentation algorithm is sensitive to the length of the
perimeters around foreground regions. It is important that the local pixel
connectivity not be so sparse as to introduces artifacts into that perimeter.
For example, suppose we just used 4-connected regions. The cost of a
zig-zag approximation to a diagonal edge would be

√

2 = 1.41 times
what it ought to be. 8-connected regions are better, but still distort the
perimeter cost significantly, up to a factor of 1+

√

2
√

5
= 1.08. The neighbor-

hood shown here, which is 8-connected plus “knight moves”, introduces
a distortion of at most 1+

√

5
√

10
= 1.02. Further increases in neighborhood

size increases computation time without bringing significant benefit.

Known 
background 

pixels

known 
foreground 

pixels

Proposed 
segmentation

Fig. 5. Some simple segmentation examples. Input images are shown
on the upper row, output is shown as filled regions on the lower row. In
the first three cases, the border of the image is set to be background, and
the dark pixels are foreground. In the fourth case, a small extra patch of
pixels known to be in the background is added, which splits the large
segmented region from the previous case in two. The final case shows
that the algorithm is robust to noise, where 1% of the pixels are assigned
to foreground or background at random. This is in fact a very harsh kind
of noise, since we have assumed complete certainty in the data.

favor of individual rather than merged regions. This basic
formulation can be extended without difficulty to natural
data, where foreground/background assignments are soft.

IV. BEFORE AND AFTER

The previous section showed that if there is some
evidence available about which pixels are part of the
foreground and which are part of the background, it is
straightforward to induce a plausible segmentation across
the entire image. Figure 6 shows an example of how
the necessary visual evidence is derived in practice. The
statistical significance of changes in pixel values (the
“apparent motion”) is measured in the frames directly fol-
lowing the contact event, using the continuously updated
Gaussian models. The measurements are combined over
two frames to avoid situations where the contact event
occurs just before the first frame, early enough to generate
enough motion for the contact event to be detected but late
enough not to generate enough motion for a successful



Aligned motion 
from before 
impact

Motion in frame 
immediately 
after impact

Result of 
segmentation

Largest 
connected 
region found

Refinement of 
segmentation

Masking out 
prior motion

Fig. 6. Collecting the motion evidence required for segmentation.
The apparent motion after contact, when masked by the motion before
contact, identifies seed foreground (object) regions. Such motion will
generally contain fragments of the arm and environmental motion that
escaped masking. Motion present before contact is used to identify
background (non-object) regions. This prevents the region assigned to
the object motion from growing to include these fragments. The largest
connected region, with a minor post-processing clean-up, is taken as the
official segmentation of the object.

Fig. 7. Challenging segmentations. The example on the right, a blue and
white box on a glossy poster, is particularly difficult since it has complex
shadows and reflections, but the algorithm successfully distinguishes the
white part of the box from the background.

segmentation. The frames are aligned by searching for
the translation that best matches the apparent motion
in the two frames (rotation can be neglected for these
very short intervals). A similar measurement of apparent
motion from immediately before the contact event is
also aligned, and is used to partially mask out motion
belonging to the robot arm, its shadow, and unrelated
movement in the environment. The remaining motion is
passed to the segmentation algorithm by giving pixels
a strong “foreground” allegiance (high cost on edge to
special foreground node). Importantly, the motion mask
from before contact is also passed to the algorithm as
a strong “background” allegiance (high cost on edge to
background node). This prevents the segmented region
from growing to include the arm without requiring the
masking procedure to be precise. The maximum-flow
implementation used is due to [2].

Perimeter-minimization seems particularly appropriate
for the kind of motion data available, since for textureless
objects against a textureless background (the worst case
for motion segmentation) motion is only evident around
the edges of the object, with a magnitude that increases
with the angle that edge makes to the direction of motion.
A textured, cluttered background could only make life
simpler, since it makes it easier to confidently assert that
background regions are in fact not moving.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.04

0.08

0.12

0.16

0.2

area

(s
qu

ar
e 

ro
ot

 o
f)

 s
ec

on
d 

H
u 

m
om

en
t

cube
car
bottle
ball

Fig. 8. A large collection of segmentations are clustered by color his-
togram, assigned human-readable labels based on the object that occurs
most frequently in each cluster, and then plotted (area versus second Hu
moment). The enlarged markers show hand-segmented reference values.
The segmentations are quite consistent, although area tends to be a
fraction smaller than in the hand-segmented instances.

V. EXPERIMENTAL RESULTS

How well does active segmentation work? The segmen-
tation in Figure 6 is of the object shown in the introduction
(Figure 1), a cube with a yellow exterior sitting on a
yellow table. Active segmentation has a clear advantage in
situations like this where the color and texture difference
between object and background would be too small for
conventional segmentation but is sufficient to generate
apparent motion when the object is poked (see Figure 7
for more examples).

Active segmentation was recruited as a developmentally
plausible means of initiating early integration of vision and
manipulation as part of a large-scale experiment aimed
at implementing a robotic analogue of the mirror-neuron
system found in primates [4]. The robot was given a
poking behavior so that it would extend its arm to swing
near anything reachable that its attention system was
directed towards. A human caregiver brought interesting
objects to the robot to poke. The objects differed in how
they rolled, and the robot learned to exploit that fact.
Active segmentation played two roles in this experiment:
collecting data for later object recognition and localiza-
tion, and providing a good segmentation for tracking the
motion of the object after contact. End to end performance
of the system was described in [4]. Here we report on
the performance of the active segmentation component in
isolation.

By clustering segmented views of objects based on
color histograms, the robot collected about 100 views of
each object. Since the segmented shape was not used in



Fig. 9. The top row shows the four objects used in this experiment, seen
from the robot’s perspective. The middle row shows prototypes derived
for those objects using a naı̈ve alignment procedure. None of the pro-
totypes contain any part of the robot’s manipulator, or the environment.
These prototypes are used to find the best available segmentations of the
objects (bottom row).

clustering, it can be used as an independent measure of
cluster quality. A simple way to characterize shape is
with area and the Hu moments [5], which are invariant
to translation and in-plane rotation. Figure 8 shows the
area plotted against the second Hu moment (a measure of
anisotropy) for all the segmentations recorded. The second
Hu moment Φ2 for a region R with centroid (x0,y0) and
area µ00 is:

Φ2 = (ν20 −ν02)
2 +4ν2

11

νpq =
1

µ2
00

∫ ∫

R
(x− x0)

p(y− y0)
qdxdy

Leave-one-out cross validation on a simple nearest neigh-
bor classifier gives a classification accuracy of 90.8%. So
the shape information is a good predictor of the color
histogram labelling, presumably because they are both
reliable functions of object identity. If the quality of
the clusters generated is sufficiently good, it should be
possible to extract reliable consensus prototypes for each
object. This is in fact the case, as Figure 9 shows. Using
the most naive alignment procedure and averaging process
possible, a blurry “mean” view of the objects can quickly
be derived. This could be sharpened by better alignment
procedures, or just used to pick out the best single match to
the mean view for each object. Of course, this paper is not
proposing that Hu moments and simple color histograms
are how recognition should be done – there are better
ways (for example, see [9]), rather it is giving evidence
that active segmentation can generate data of sufficient
quality to train up a recognizer.

Fig. 10. The robot manipulator (top left) was automatically segmented
during 20 poking sequences. The segmentations were aligned and
averaged, giving the mask and appearance shown in the adjacent images.
The best matching view is shown on the top right. A similar result for
the human hand is shown on the bottom, based on much less data (5
poking sequences, hands of two individuals).

VI. OPERATIONAL VISION

In a sense, poking provides the robot with an opera-
tional definition of what objects are by giving it an effec-
tive procedure for learning about them. It is not perfect –
for example, the robot is effectively blind to objects that
are too small or too large – but for objects at an appropriate
scale for manipulation, it works well. Once the robot is
familiar with a set of such objects, we can go further
and provide an operational definition of a manipulator
as something that acts upon these objects. We can create
an effective procedure for learning about manipulators by
simply giving the robot a predisposition to fixate familiar
objects. This enables the same machinery developed for
active segmentation to operate when a foreign manipulator
(such as the human hand) pokes the fixated object. Of
course the robot can easily distinguish segmentations of
its own arm from that of others simply by checking
whether it was commanding its arm to move towards the
target at the time. The manipulator can be segmented
by hypothesizing that it moves towards the object at a
constant velocity in the period immediately preceding the
moment of contact. Estimating the velocity from the gross
apparent motion allows the segmentation problem to be
expressed in the form introduced in Section III, where
the foreground is now taken to be regions moving at the
desired velocity, and the background is everything else.
Figure 10 shows preliminary results for this procedure.
The results are based on relatively little data, yet are
already sufficient to pick out good prototype views for
the robot and human manipulator. A procedure like this
could be used to autonomously train a recognizer for the
human hand, which could then be included in further
operational definitions, expanding the robot’s domain of
grounded knowledge ever outwards – but this is very much
future work.



VII. SUMMARY AND CONCLUSIONS

While it has long been known that motor strategies can
aid vision [1], work on active vision has focused almost
exclusively on moving cameras. There is much to be
gained by recruiting a manipulator to aid perception. This
paper has shown that unfamiliar objects can be reliably
segmented by simply tapping them and watching how they
move. Many extensions to this strategy are possible. For
example, a robot might try to move an arm around behind
the object, to reveal its occluding boundary.

Active segmentation gives clear results for a rigid object
that is free to move. What happens for non-rigid objects
and objects that are attached to other objects? Here the
results of poking are likely to be more complicated to
interpret – but in a sense this is a good sign, since it
is in just such cases that the idea of an object becomes
less well-defined. Poking has the potential to offer an
operational theory of “object-hood” that is more tractable
than a vision-only approach might give, and which cleaves
better to the true nature of physical assemblages.

VIII. ACKNOWLEDGEMENTS

Funds for this project were provided by DARPA un-
der contract number DABT 63-00-C-10102, and by the
Nippon Telegraph and Telephone Corporation.

IX. REFERENCES

[1] J.Y. Aloimonos, I. Weiss, and A. Bandopadhay. Active
vision. International Journal on Computer Vision, 2:333–
356, 1987.

[2] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. In Energy Minimization Methods in Computer Vision
and Pattern Recognition, pages 359–374, 2001.

[3] R. Cole and C. Yap. Shape from probing. Journal of
Algorithms, 8(1):19–38, 1987.

[4] P. Fitpatrick and G. Metta. Towards manipulation-driven
vision. In IEEE/RSJ Conference on Intelligent Robots and
Systems, 2002.

[5] M. K. Hu. Visual pattern recognition by moment invariants.
In IRE Transactions on Information Theory 8, pages 179–
187, 1962.

[6] Yan-Bin Jia and Michael Erdmann. Observing pose and
motion through contact. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, May
1998.

[7] M. Moll and M. A. Erdmann. Reconstructing shape from
motion using tactile sensors. In Proc. 2001 IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, Maui, HI,
October/November 2001.

[8] E. Paulos. Fast construction of near optimal probing strate-
gies. Master’s thesis, University of California, Berkeley,
1999.

[9] B. Schiele and J. L. Crowley. Recognition without cor-
respondence using multidimensional receptive field his-
tograms. International Journal of Computer Vision,
36(1):31–50, January 2000.


