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Abstract— The goal of this work is to build perceptual and Furthermore, a general strategy should apply to any olject t
motor control systems for a humanoid robot, starting from an  robot interacts with, and for any task executed, such as ham-
infant's early ability for detecting repetitive or abruptly vary- mering or painting. Other research work [9] described riabot
ing world events from human-robot interactions, and walking - . . . i
developmentally towards robust perception and learning. tasks such as a robot juggling or playing with a devil stick

This paper presents strategies for learning task sequences from (hard tasks even for humans). However, the authors assumed
human-robot interaction cues. Demonstration by human teaches  off-line specialized knowledge of the task, and simplifiad t

facilitates robot learning to recognize new objects, such as tools perception problems by engineering the experiments.
or toys, and their functionality. Self-exploration of the world

extends the robot's knowledge concerning object properties.
Multi-modal percepts are then acquired and recognized by
robotic manipulation of toys and tools.

I. INTRODUCTION

There is a large spectrum of applications for flexible raboti
tool handling in industrial environments or for service ot
Children start learning and developing such competenges b
playing with toys. Hence, toys are widely used throughoig th
work as learning aids. The operation of handling tools, sagh
hammers or swiping brushes, requires not only object lonatirig. 1. The humanoid robot Cog has two, six degree-of-free@érdof)
and recognition algorithms, but also algorithms to leask$a arms and a 7-d.o.f head. Each joint is driven by a series elastuator [7].
executed with such tools. Therefore, task sequences will B&ce: this compliant arm is designed for human/robot intierac

learned on-line from the visual observation of human teexhe . . . .
. . . This paper describes an embodied approach for learning
Previous approaches for transferring skills from human {o

robots rely almost exclusively on haptic interfaces [1]] [2 ask models while simultaneously extracting informatibouat

" . . objects. Through social interactions of a robot with an in-
for detecting human motion. Environments are often over;

simplified to facilitate the perception of the task sequdid¢e structor (gee F_lgure 2), the latter facilitates robotscppnon_ .

. ; and learning, in the same way as human teachers facilitate
[4]. Other approaches based on human-robot interactions cg, . . : : .
; . ; e . -y . children perception and learning during child development
sist of visually identifying simple guiding actions (suck a

direction following, or collision), for which the structeirand phases. The robot will then be able to further develop its

goal of the task are well known [5]. Throughout this pape\Flctlon competencies (as introduced in Section 1V), to learn

. e . : s rhore about objects (Section Ill), and to act on them using
task identification and object segmentation/recognitiocuos . : . . ) .

X . . snpple actions such as shaking (described in Section V).
while tasks are being executed by a human teacher withou

any perceptual over-simplification or environmental setup [1. EXTRACTING TASK KNOWLEDGE

The work presented in this paper was developed on therne world surrounding us is full of information. A critical

humanoid robot Cog [6], shown in Figure 1 sawing a pieG&pability to an intelligent system is filtering task releva

of wood using neural oscillators to control the rhythmigaformation. Figure 3 shows events detected from the demon-
movements, [7]. According to [7], the robot did not know howration of a repetitive task — hammering a nail.

to grab the saw or the underlying task sequence. The neural ) )

oscillator parameters need to be inserted off-line, usitga A Tasks as Hybrid Markov Chains

and-error approach. An automatic approach for selectieg th Tasks are modelled through a finite Markov Decision
parameters was proposed in [8]. But it remains necessaryRmcess (MDP), defined by five sets S, A, P,R,O >.
recognize the object - a saw, identify it with the correspngd Actions correspond to discrete, stochastic state-tiansita
action, and learn the sequence of events and objects that\={Periodicity, Contact, Release, Assembling, Invariant
characterize the task of sawing (described in Section IBet, Stationarity from an environment’s state; € S to the




TABLE |
CATEGORIES OF DISCRETESPATIAL EVENTS

Type of onta Release
InteraCtion €J. POKINg/granning a 0D & eg O g Or dropping a
assemo g O ano e OD| & 0D] X or arsassemo o)
Moving ~overlap of two entities *two moving entities loose contact
objects «large a priori velocities «large apriori velocities
G ‘ / d — - 7 «abrupt grow of the actuator's | largeinitial velocity of ensemble
O = N motion area elarge a posteriori velocities for at
and Recognition 7 2.7 Stationary | *large actuator velocity least one of the entities
~ : objects «abrupt velocity rise for emotion flow of assembled region
previously stationary object separates into two digoint regions

Fig. 2. At initial stages, object properties (e.g. appeegarsize or shape)
are unknown to the robot. As a human teacher manipulates epjbetrobot
build object models and learn the teacher actions. Robonilgamay then
continue autonomously.

intervals (and hence small window sizes) provide more pre-

cise spatial, local information, while larger windows iease

next states;,,, with probability P2, =~ € P, where P is frequency resolution.

a set of transition probabilite®?, = P.{s;,; = s'|s,t}. A grid of points homogeneously sampled from a moving

Task learning consists therefore on determining the sthtgs region in the image is initially tracked over a time interedl

characterize a task and mapping such states with probedilittpproximately 2 seconds (65 frames). The motion trajectory

of taking each possible action. for each point over this interval is determined by Lucas-
Kanade pyramidal algorithm. A Short-Time Fourier Transfor

Periodic (STFT) is applied to each point’s motion sequence. Periiydic

is estimated from a periodogram determined for all signals

from the energy of the STFTs over the spectrum of frequen-

cies. These periodograms are processed by a collection of

narrow bandwidth band-pass filters. Periodicity is found if

compared to the maximum filter output, all remaining outputs

are negligible [11].

2) Perceiving Discrete Actions: Time information is lost by

transforming a signal to the frequency domain. Howevek, sig

, nals generated by most interesting moving objects and sactor

Fig. 3. Hammering task. This task is both characterized byogrimotions, contain numerous transitory characteristics, which atenof

and also by spatial, discrete events. Through observaticheotask being the most important part of the signal, and Fourier analysis

executed, the robot learns the sequence of events that ceragask, as well . . s .

as the objects being acted on. is not suited to detect them. Therefore, it is imperative to
detect events localized over the temporal sequence. Idatan
video compressing systems, only changes with a significant

B. Sate Space content over a stationary scene are stored from a sequence of

States correspond to the continuous dynamics of a Systém{ages._From Fhls p?r;]pep tve, Q{EO? shpatlal evle nt_tcamhdat'i
and are defined as a collection of objeets O (O={hammer, '€ MoVing regions of the image that change velocity abyup

nail, actuator,etf) and a set of relations € R between under contapt, as shown in Figure 3 .

then (R<not assembled, assembled, in corlfactindergoing The algorithm to detect such variations works as follows.
work is extending this set to account for kinematic conatsai A Mmotion mask is first derived by subtracting gaussian fitlere
between objects, such as revolution or prismatic joints). jversions of successive images. A region filling algorithm is

formation concerning assembling properties among objects‘app“ed to separate the mask into regions of dI.SjO.Int moving
used to build hierarchical object relationships. non-convex polygons (using a 8-connectivity criteriona.c
of these regions is used to mask a contour image computed

C. Transitions by a Canny edge detector. The contour points are then tracked

Sequence of images are analvzed at multiple time/freque ucsing the Lucas-Kanade algorithm. An affine model is built
d 9 y P qUENEY each moving region from the position and velocity of the

scales for the detection of periodic or discrete eventsezhu . C )
, : e . . tracked points. The motion is then used to test for categorie
by an agent’s actions [10]. Transition statistics are olsdi . .
0; discrete transitions (see Table I).

by executing a task several times. An action’s frequency o
occurrence from a given state gives the transition protgbil

1) Perceiving Repetitive Actions: The detection of periodic
transitions created by human teachers, such as hammerinhe Markov chain jumps to a final state whenever the
a nail, is applied at multiple, logpolar scales. Long spati@nvironment is stationary, or else whenever an invariaht se

D. Goal Inference



is reached. Invariant sets are defined as a sequence oftra -
tions which are repeatedly executed along the Markov chal
Invariant sets are detected by tracking sequences of adiuh
testing them for loops. All states that belong to an invdrial
set jump to a final state, as shown in Figure 4.

Fig. 5. Samples of object segmentations. (left) Top row shoviginal
images, while bottom row shows segmentations (right) Segriiensafrom a
large corpora consisting of tens of thousands of computectheegtions.

Q) - TInitial State
@ - Final State

c
- p P —Periodic event
N 4 C — Contact event
Ivd
"E“—-—@ R —Release event
A — Objects*Assembling

IvS — Invariant Set Color: Input features consist of groups of connected regions
Hammering Hammering anail S - Stationarity with similar color

Luminance: Input space consists of groups of connected

¢ c
( : ) ! m- regions with similar luminance
® o o 0 Shape: A Hough transform algorithm is applied to a contour
5 ‘ . o B image (which is the output of a Canny edge detector).

Line orientation is determined using Sobel masks.
Pairs of oriented lines are then used as input features

Fig. 4. Hybrid Markov chains for different tasks. The chaor Simply . . . .

waving an hammer contains just two states. But an error oatimeone Geometric hashing [15] is a rather useful technique for

of the experiments in which an additional state, arising frwontact event high-speed performance. In this method, quasi-invariangs

with the hammer's own shadow, is created. Since tasks are @xefwm  qmpyted from training data in model images, and then stored

different locations and light conditions, this error is mtatistically relevant. - . . .

For the task of hammering a nail, contact between the hammer ard a #N hash tables. Recognition consists of accessing and iogunt

creates a transition from state 0 to state 1, while a rele@sstes an opposite the contents of hash buckets. An adaptive Hash table (a hash

transition. An additional state is created whenever amahgiator is holding table with variable-size buckets) was implemented to store

the nail. The other graphs correspond to simple, non-otmijlaactions. . . . . . .
affine color, luminance and shape invariants (which are view
independent for small perspective deformations) (see fid2]

. L EARNING ABOUT OBJECTS this algorithm’s details and experimental results).

Ivd

Dropping Poking Grabbing

Both object segmentation and recognition problems are IV. CONTROL INTEGRATION
casted under a developmental framework [12]. This strategyT
permits learning models of objects first from experimentfﬁlo
human/robot manipulation, and their a-posteriori idecHifion
with or without the agent’s actuation.

he multi-scale time-frequency analysis developed in Sec-
n 1I-C offers an elegant solution for integrating osill
tory and non-oscillatory tasks, or mixtures of both. Indeed
tasks can be communicated to the robot with simultaneous
A. Extracting The Appearance of Objects and its Boundaries frequency and spatial desired contents. The integratidootf

The set of non-skin moving points tracked over time alr@ythmic.and non'-oscillatory' control movementg is thenedmi
sparse, and hence an algorithm is required to group then iffiSuch information stored in the task description.
a meaningful template of the object, as follows. First, a ; ; -
affine flow-model is applied to the flow data to recruit othe’g' Learnmg Propr|0c§pt|ve Maps )
points within uncertainty bounds. Clusters of points mgvin Controlling a robotic manipulator on the cartesian 3D space
coherently are then covered by a non-convex polygon — tkR8- O reach out for objects) requires learning its kinersat
union of a collection of locally convex polygons [11]. This~ theé mapping from joint space to cartesian space — as well
algorithm is much faster than the minimum cut algorithm [13fS the inverse kinematics mapping. _
and outputs segmentations (Figure 5) of similar qualityne t 1) Visual Maps: The Intel Calibration Library is used to
active min-cut approach in [14]. Boundaries extractiofiofgs  Poth detect the corners of a calibration object insertedhat t
straightforward, by taking edge gradients from a binary- sefPbot's end-effector, and to compute the intrinsic andiesic
mentation mask. A deformable contour is then attractedeo thamera parameters. Data for computing the camera intrinsic
object’s boundary to improve segmentation quality. parameters is collected by moving both the arm grip and
camera (see Figure 6-1) over a sequence ef 20 images.

A calibrated camera enables the extraction of the extrinsic

Recognition of objects has to occur over a variety of sceparameters from the calibration object on the robot’s anp. gr
contexts. This led to the development of an object recagmiti Inverting such transformation gives the transformatioonfr
scheme to recognize objects from color, luminance and shape camera’s focal center relative to the world referertial
cues, or from combinations of them. The recognition strateghe grid(R,», P.1). Hence, by moving the 7-dof robotic head
consists of three independent algorithms. The input spaice &round a stationary arm grip (see Figure 6-2), a map from head
each of these algorithms consists of different features: joints configurations to the 3D cartesian topological spiace

B. Object Recognition



TABLE I
MEAN SQUARE ERRORS 1300VALIDATION POINTS (50% OF TOTAL).

mse | Inverse Arm Kinematics
3 116
Mse |Head | Arm J, 45
Map | Kinematics 3 1741
X (cm?) | 177 224 ’
3 10.17
Y (cm2) | 75 173 N 032
Z(cm?) | 74 381 '
J; 263
L,norm | 326 778
‘ L, norm 61.64
Pitch 5.81 17.15
Fig. 6. Learning proprioceptive maps. (lefyv}orld, {A}rm and {H}ead Yaw 5.75 62.78 mse | Retinal plane (240 x 320)
frames, and transformations among these frames k&g, stands for the roll 2.46 16.35 X 117.73
orientation of frame{A} relative to {W}). (right) Motor behaviors for L VA S5 y 215.78
calibrating the camera (1), learning the head kinematicsi¢ayning the arm pfnorm | 24 : :
kinematic models (3) and the arm dynamics (4). L TR 215.88

acquired. T’he calibration object on the arm gr_ip is kept QRteraction [10]. But it is equally necessary to not onlyqesve
the camera’s field of view by visually tracking it's centroidipe repetitive motions that facilitate the robust percaptf

A PD controller controls the eyes, while inertial data isdis&pese objects, but also to control such rhythmic motions for
to stabilize the robotic head and for VOR compensation. ohot tasking.

The Forward Kinematics mapping the head joints’ config-
uration (given by 6 parameters — just one eye is required)
to the cartesian position and orientation of the camerasalfo
center relative to a world referential, is estimated usowally
affine models. Learning of these models was carried out
by applying a modified version of memory-based Locally
Weighted Regression [9].

2) Sensory-Motor Maps: A calibrated camera and a head
kinematic map enable the estimation of both the arm forward
and inverse kinematics. This is accomplished by moving the
robotic arm over the joint configuration space, while vigual
tracking it's grip (see Figure 6-3). The cartesian location
(6 parameters) is determined from two transformations: oE't%'S;'g
from the grip to the camera’s focal centeRy.., Pr.), given
by the camera’s extrinsic parameters, and the other fromoscillatory motions are therefore controlled using Matsuo
the focal center to the world referential, given by the heagbural oscillators, consisting of two mutually inhibitimgu-
forward kinematicy R, Pun). This data, together with the rons. These neural oscillators are able to entrain the émou
6 joint angle measurements, generates training data td bk input signals or resonance modes of dynamical systems
locally affine models using memory-based Locally Weighteghinimizing the cost of the actuator energy. We proposed
Regression [9] (off-line, batch minimum least squares ov@r mathematical analysis for multiple nonlinear oscillator
|Oca”y linear mOdeIS). Statistical results are shown oblddl. connected to a (non)"near multi-variable dynamic Systby{'h

a) Locating the Arm on the Retinal Plane: Detection ysing multiple input describing functions [8]. As a restite
of the robotic arm’s end-effector on the retinal plane foframework developed provides estimates for the frequency,
lows from both head and arm forward kinematics. From th@mplitudes and/or parameters of oscillation of the cokeeol
head/arm joint configurations, the maps predi&,, Pur) system, as well as an error bound on the estimates, using
and(Rya, Puwa), respectively, from whicliRy, Ph.) follows.  algebraic equations [16]. Such framework is used to design
The grip location on image coordinates is then just th@e robot's oscillatory motions, as shown in Figure 7 for the
perspective projection afy,,. Table Il presents statistical dataplaying musical instruments: a tamborine and a rattle.
from building all these sensory-motor mappings. 2) diding Modes Controller: The dynamics of an arm
manipulator is strongly nonlinear, and its nonlinear dyitam
poses challenging control problems. Especially for mecha-

1) Neural Oscillators: Tools and toys are often used innisms with small gear transmission ratios or low-reduction
a manner that is composed of some repeated motioncable-driven systems or direct-drive connections, nealin
consider hammers, drums, saws, brushes, files, rattlds, balynamic effects may not be neglected. The state space of
etc. Section II-C.1 introduced a framework to detect simpléog'sn = 6-linked articulated manipulator is described by the
repeated visual events at frequencies relevant for robotam n dimensional vectorg and ¢ of joint angles and velocities,

Cog playing musical instruments — a rattle (a) and a taimbédb)
neural oscillators with proprioceptive feedback.

B. Controllers



respectively. Its actuator inputs consist of an dimensional V. ROBOT TASKING

can be written as the system [17]: of objects, even without acting on them. However, the com-
) o petencies required for such perceptual capability arenéshr
H(q)i+C(q,4)q+9(q) =T (1) developmentally by linking action and perception. Acti@me

where H(q) is the manipulator inertia matrix (which is Sym_rather useful for an embodied actor, through the use of its ow
metric positive definite)(’(q, ¢)q is the vector of centripetal body, to generate autonomously cross-modal percepts (e.g.
and Coriolis torques, ang(q) is the vector of gravitational Visual and auditory) for automatic object categorizatidhis
torques_ The feedback Contro' prob'em for SUCh system |$s|n contrast with non-embodied techniques such as stdndar
to determine the actuator inputs required to perform desirgupervised learning requiring manual segmentation ofiidf-
tasks from the measurements of the system statg of joint data, imposing thus constraints on an agent’s ability tonlea
velocities and angles, in the presence of uncertainty.

As described in detail by [18], [17], control theories that ):
are most often applied to such systems are Sliding Mode:L
Controllers, PD and Computed Torque Controllers. Theratte 53
two are often used to reach desired positions. Sliding mode
becomes rather useful to follow desired trajectories $ipeci
by (g4, 44, da), the position, velocity and acceleration for each
manipulator joint, under model uncertainty. P

A sliding Modes control law [18] was implemented, given 1%
by equations 2 and 3, wheeis a weighted sum of position
(¢ = q — qq4) and velocity errors.

7= H(q)ir + C(q,9)ir +(a) = K(qa)sat(®71s) )

=7 — K(qq)sat(®1s) Fig. 8. Reaching to and shaking a child’s toy (a Castonete})(A human
actor attracts Cog’s attention to the toy, by creating aeséalstimulus to

d m=2 . its attentional system. (3-4) The robot reaches to the objeéeedback

s = ( + A> qg=q4—Aq (3) control applying a sliding mode controller. (5-6) Cog shatkestoy. Feedback

dt proprioceptive signals are sent into a neural oscillatdmjctv entrains the

T . . . _inQatural frequency of the dynamic system to which its couptbe ¢obot's
The non-linear d}’”am'cs IS_ learned adaptively on lmgrm), producing rhythmic sounds. (7) Visual and auditory segat®ns by
These non-parametric locally affine models are used to @redtog’s perceptual system. It shows two segmented images - ona kow

the feedforward ternmv. The reference velocity is given byresolution sound spectrogram over one period of oscitiaémd the other for
g = ¢ — A, and A is a symmetric positive definite ma,[rixthe toy’s visual template extracted from the periodic movemeithe toy.
(assumption can be relaxed td Hurwitz). The matrix ®

defines the boundary layer thickness, Figure 8 shows the humanoid robot Cog executing a task

requiring the integration of both reaching movements and
. rhythmic motions. The task consists of having the robot
¢+ A% = K(qa) ) playing rhythmic sounds with a Castonete by first reaching
leading to tracking to within a guaranteed precision= its grip to the Castonete and therefore shaking it.Suclor&ti
®/\™m=2. Three factors impose upper bounds bm \p ~ enable Cog's perceptual system not only to extract visual
As &= Ap: structural resonant nodes £ \g); time delays descriptions of the Castonete, but also the acoustic péatiat

(A < A\p = 1/Tp), whereT}, is the largest unmodeled timeit produces (auditory segmentation and recognition deedri
delay (which was set to one sampling interval - 5 ms); arelsewhere [19]). Percepts from these two different madalit
sampling rate X < A\ = 1/5Vsqmpiing = 40H2). are linked by correlating amodal features — timing and syn-
chrony — through cross-modal processing [19].

) Similarly to object segmentations from human demonstra-
Standard controllers, such as the PID controller typlcalkyon, both the robot’s grip and the poked objects are segesent
used in industry, do not require a dynamic model of the syst§fam the robot's actions. Indeed, some segmentation =sult
being controlled. But performance is lost at high frequesci (e.g., the robot’s grip or the lego’s brick) shown in Figure 5

and instability might occur for very compliant systems. Howyere obtained by having the robot poking at objects.
ever, the dynamic model of the manipulator is often unknown

or else known with a large uncertainty. The non-parametrfe Human-Robot Skill Transfer

learning of the arm dynamics was therefore implementedWe now show how learning a very simple model (just a
using an on-line, iterative version of Receptive Field Viiéggl machine with one internal state) for the task of hammering on
Regression [9], using as input spa@gq, ¢, G-) (sinceq is a table enables the robot to generate autonomously infenenat
unknown), and output spaee The algorithm compensates forpercepts by itself. Consider again Figure 2. These images
the unknown nonlinear terms (specially gravity terms). correspond to real experiments. We have shown before how

C. Non-parametric Learning of the Manipulator Dynamics



object recognition and robot experimental manipulatioohsy
developmentally from human demonstration. By transfgrrin
the manipulation skill from human to robot, the latter can
generate equally training data to the object recognitigo-al
rithm, as demonstrated by the experiment in Figure 9. This
figure shows that by having the robot hammering on a table,
the perceptual system extracts visual templates of thecbbje
which is thereafter recognized as the same object preyiousl
segmented from human demonstration.

Fig. 9. Human-robot skill transfer, from an on-line experimer) Hammer
visual segmentation by having the robot hammering on a tabjelrézking
multiple objects — the robot grip and the hammer — based on thas:uc [1]
Kanade pyramidal tracker algorithm. (c) It shows two segmantat One first
obtained from human demonstration (on the left). The secondHe right),
was segmented from robot actuation, and it was recognizealasding to
the same category as the first (otherwise it would not appeahersame
window during the experiment). d) Several segmentationsimddeby human
demonstration and by the robot's experimental manipulation.

(2]

(3]
B. Human-Robot Cooperation

Input from one perceptual modality can also be useful t(l)4]
extract percepts from another perceptual modality. This is
corroborated by an experiment (see Figure 10) consisting &f
feeding the energy of the acoustic signal into the feedback
loop of the neural oscillator, instead of proprioceptivgnsils.
Therefore, the goal is to have the robot to play drums usinf§!
sound feedback. The task rhythmic is imposed by a human
actor, which cooperates with the robot for drumming with
sticks. Since it is difficult for the neural oscillator to egge  [7]
initially in a rhythmic pattern without a coherent source ofjg
repetitive sound, the human guides the process by providing
such information. While executing the task, the robot is thef?!
able to learn the visual appearance of the drumming stiﬁl@]
(shown in Figure 10), together with the sound it produces.

VI. CONCLUSION -

In this paper we introduced both humans and the robgt!
into the learning loop to facilitate robot perception. Theg)
experiments carried out underline the importance of |egrtd
interpret actions. There is a lot to be gained when intraayic
a human teacher in the loop that guides the robot’s learning
process. This knowledge is grounded as the robot acts Hfy itsg5]

(16]

i[14]
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Fig. 10.
entraining rhythms provided by a human actor, who drums togetith the
robot. The neural oscillator receives as feedback sigrelattoustic energy.
The robot is then able to extract a visual segmentation of tibk. s
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Human-Robot cooperation. Playing with a stick fourdming,
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