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Abstract— The goal of this work is to build perceptual and
motor control systems for a humanoid robot, starting from an
infant’s early ability for detecting repetitive or abruptly vary-
ing world events from human-robot interactions, and walking
developmentally towards robust perception and learning.

This paper presents strategies for learning task sequences from
human-robot interaction cues. Demonstration by human teachers
facilitates robot learning to recognize new objects, such as tools
or toys, and their functionality. Self-exploration of the world
extends the robot’s knowledge concerning object properties.
Multi-modal percepts are then acquired and recognized by
robotic manipulation of toys and tools.

I. I NTRODUCTION

There is a large spectrum of applications for flexible robotic
tool handling in industrial environments or for service robots.
Children start learning and developing such competencies by
playing with toys. Hence, toys are widely used throughout this
work as learning aids. The operation of handling tools, suchas
hammers or swiping brushes, requires not only object location
and recognition algorithms, but also algorithms to learn tasks
executed with such tools. Therefore, task sequences will be
learned on-line from the visual observation of human teachers.
Previous approaches for transferring skills from human to
robots rely almost exclusively on haptic interfaces [1], [2]
for detecting human motion. Environments are often over-
simplified to facilitate the perception of the task sequence[3],
[4]. Other approaches based on human-robot interactions con-
sist of visually identifying simple guiding actions (such as
direction following, or collision), for which the structure and
goal of the task are well known [5]. Throughout this paper,
task identification and object segmentation/recognition occurs
while tasks are being executed by a human teacher without
any perceptual over-simplification or environmental setup.

The work presented in this paper was developed on the
humanoid robot Cog [6], shown in Figure 1 sawing a piece
of wood using neural oscillators to control the rhythmic
movements, [7]. According to [7], the robot did not know how
to grab the saw or the underlying task sequence. The neural
oscillator parameters need to be inserted off-line, using atrial-
and-error approach. An automatic approach for selecting the
parameters was proposed in [8]. But it remains necessary to
recognize the object - a saw, identify it with the corresponding
action, and learn the sequence of events and objects that
characterize the task of sawing (described in Section II).

Furthermore, a general strategy should apply to any object the
robot interacts with, and for any task executed, such as ham-
mering or painting. Other research work [9] described robotic
tasks such as a robot juggling or playing with a devil stick
(hard tasks even for humans). However, the authors assumed
off-line specialized knowledge of the task, and simplified the
perception problems by engineering the experiments.

Fig. 1. The humanoid robot Cog has two, six degree-of-freedom(6-dof)
arms and a 7-d.o.f head. Each joint is driven by a series elastic actuator [7].
Hence, this compliant arm is designed for human/robot interaction.

This paper describes an embodied approach for learning
task models while simultaneously extracting information about
objects. Through social interactions of a robot with an in-
structor (see Figure 2), the latter facilitates robot’s perception
and learning, in the same way as human teachers facilitate
children perception and learning during child development
phases. The robot will then be able to further develop its
action competencies (as introduced in Section IV), to learn
more about objects (Section III), and to act on them using
simple actions such as shaking (described in Section V).

II. EXTRACTING TASK KNOWLEDGE

The world surrounding us is full of information. A critical
capability to an intelligent system is filtering task relevant
information. Figure 3 shows events detected from the demon-
stration of a repetitive task – hammering a nail.

A. Tasks as Hybrid Markov Chains

Tasks are modelled through a finite Markov Decision
Process (MDP), defined by five sets< S,A, P,R,O >.
Actions correspond to discrete, stochastic state-transitions a
∈ A={Periodicity, Contact, Release, Assembling, Invariant
Set, Stationarity} from an environment’s statesi ∈ S to the
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Fig. 2. At initial stages, object properties (e.g. appearance, size or shape)
are unknown to the robot. As a human teacher manipulates objects, the robot
build object models and learn the teacher actions. Robot learning may then
continue autonomously.

next statesi+1, with probability P a
sisi+1

∈ P , where P is
a set of transition probabilitiesP a

ss′ = Pr{si+1 = s′|s, t}.
Task learning consists therefore on determining the statesthat
characterize a task and mapping such states with probabilities
of taking each possible action.

Release

Periodic Contact

Fig. 3. Hammering task. This task is both characterized by periodic motions,
and also by spatial, discrete events. Through observation of the task being
executed, the robot learns the sequence of events that compose a task, as well
as the objects being acted on.

B. State Space

States correspond to the continuous dynamics of a system,
and are defined as a collection of objectso ∈ O (O={hammer,
nail, actuator,etc}) and a set of relationsr ∈ R between
then (R={not assembled, assembled, in contact} - undergoing
work is extending this set to account for kinematic constraints
between objects, such as revolution or prismatic joints). In-
formation concerning assembling properties among objectsis
used to build hierarchical object relationships.

C. Transitions

Sequence of images are analyzed at multiple time/frequency
scales for the detection of periodic or discrete events caused
by an agent’s actions [10]. Transition statistics are obtained
by executing a task several times. An action’s frequency of
occurrence from a given state gives the transition probability.

1) Perceiving Repetitive Actions: The detection of periodic
transitions created by human teachers, such as hammering
a nail, is applied at multiple, logpolar scales. Long spatial

TABLE I

CATEGORIES OF DISCRETE, SPATIAL EVENTS

•abrupt grow of the actuator's 
motion area

•large actuator velocity

•abrupt velocity rise for 
previously stationary object

•overlap of two entities

•large a priori velocities

Contact

eg. poking/grabbing an object, 
assembling it to another object.

•large initial velocity of ensemble

•large a posteriori velocities for at 
least one of the entities

•motion flow of assembled region 
separates into two disjoint regions

Stationary 
objects

•two moving entities loose contact

•large a priori velocities

Moving 
objects

Release

eg. throwing or dropping an 
object, or disassembling it

Type of 
Interaction

Dropping

intervals (and hence small window sizes) provide more pre-
cise spatial, local information, while larger windows increase
frequency resolution.

A grid of points homogeneously sampled from a moving
region in the image is initially tracked over a time intervalof
approximately 2 seconds (65 frames). The motion trajectory
for each point over this interval is determined by Lucas-
Kanade pyramidal algorithm. A Short-Time Fourier Transform
(STFT) is applied to each point’s motion sequence. Periodicity
is estimated from a periodogram determined for all signals
from the energy of the STFTs over the spectrum of frequen-
cies. These periodograms are processed by a collection of
narrow bandwidth band-pass filters. Periodicity is found if,
compared to the maximum filter output, all remaining outputs
are negligible [11].

2) Perceiving Discrete Actions: Time information is lost by
transforming a signal to the frequency domain. However, sig-
nals generated by most interesting moving objects and actors
contain numerous transitory characteristics, which are often
the most important part of the signal, and Fourier analysis
is not suited to detect them. Therefore, it is imperative to
detect events localized over the temporal sequence. In standard
video compressing systems, only changes with a significant
content over a stationary scene are stored from a sequence of
images. From this perspective, good spatial event candidates
are moving regions of the image that change velocity abruptly
under contact, as shown in Figure 3.

The algorithm to detect such variations works as follows.
A motion mask is first derived by subtracting gaussian filtered
versions of successive images. A region filling algorithm is
applied to separate the mask into regions of disjoint moving
non-convex polygons (using a 8-connectivity criterion). Each
of these regions is used to mask a contour image computed
by a Canny edge detector. The contour points are then tracked
using the Lucas-Kanade algorithm. An affine model is built
for each moving region from the position and velocity of the
tracked points. The motion is then used to test for categories
of discrete transitions (see Table I).

D. Goal Inference

The Markov chain jumps to a final state whenever the
environment is stationary, or else whenever an invariant set



is reached. Invariant sets are defined as a sequence of transi-
tions which are repeatedly executed along the Markov chain.
Invariant sets are detected by tracking sequences of actions and
testing them for loops. All states that belong to an invariant
set jump to a final state, as shown in Figure 4.

Fig. 4. Hybrid Markov chains for different tasks. The chain for simply
waving an hammer contains just two states. But an error occurred for one
of the experiments in which an additional state, arising froma contact event
with the hammer’s own shadow, is created. Since tasks are executed from
different locations and light conditions, this error is notstatistically relevant.
For the task of hammering a nail, contact between the hammer and a nail
creates a transition from state 0 to state 1, while a release creates an opposite
transition. An additional state is created whenever another actuator is holding
the nail. The other graphs correspond to simple, non-oscillatory actions.

III. L EARNING ABOUT OBJECTS

Both object segmentation and recognition problems are
casted under a developmental framework [12]. This strategy
permits learning models of objects first from experimental
human/robot manipulation, and their a-posteriori identification
with or without the agent’s actuation.

A. Extracting The Appearance of Objects and its Boundaries

The set of non-skin moving points tracked over time are
sparse, and hence an algorithm is required to group then into
a meaningful template of the object, as follows. First, an
affine flow-model is applied to the flow data to recruit other
points within uncertainty bounds. Clusters of points moving
coherently are then covered by a non-convex polygon – the
union of a collection of locally convex polygons [11]. This
algorithm is much faster than the minimum cut algorithm [13],
and outputs segmentations (Figure 5) of similar quality to the
active min-cut approach in [14]. Boundaries extraction follows
straightforward, by taking edge gradients from a binary seg-
mentation mask. A deformable contour is then attracted to the
object’s boundary to improve segmentation quality.

B. Object Recognition

Recognition of objects has to occur over a variety of scene
contexts. This led to the development of an object recognition
scheme to recognize objects from color, luminance and shape
cues, or from combinations of them. The recognition strategy
consists of three independent algorithms. The input space for
each of these algorithms consists of different features:

Fig. 5. Samples of object segmentations. (left) Top row shows original
images, while bottom row shows segmentations (right) Segmentations from a
large corpora consisting of tens of thousands of computed segmentations.

Color: Input features consist of groups of connected regions
with similar color

Luminance: Input space consists of groups of connected
regions with similar luminance

Shape:A Hough transform algorithm is applied to a contour
image (which is the output of a Canny edge detector).
Line orientation is determined using Sobel masks.
Pairs of oriented lines are then used as input features

Geometric hashing [15] is a rather useful technique for
high-speed performance. In this method, quasi-invariantsare
computed from training data in model images, and then stored
in hash tables. Recognition consists of accessing and counting
the contents of hash buckets. An adaptive Hash table (a hash
table with variable-size buckets) was implemented to store
affine color, luminance and shape invariants (which are view-
independent for small perspective deformations) (see [12]for
this algorithm’s details and experimental results).

IV. CONTROL INTEGRATION

The multi-scale time-frequency analysis developed in Sec-
tion II-C offers an elegant solution for integrating oscilla-
tory and non-oscillatory tasks, or mixtures of both. Indeed,
tasks can be communicated to the robot with simultaneous
frequency and spatial desired contents. The integration ofboth
rhythmic and non-oscillatory control movements is then driven
by such information stored in the task description.

A. Learning Proprioceptive Maps

Controlling a robotic manipulator on the cartesian 3D space
(eg. to reach out for objects) requires learning its kinematics
– the mapping from joint space to cartesian space – as well
as the inverse kinematics mapping.

1) Visual Maps: The Intel Calibration Library is used to
both detect the corners of a calibration object inserted at the
robot’s end-effector, and to compute the intrinsic and extrinsic
camera parameters. Data for computing the camera intrinsic
parameters is collected by moving both the arm grip and
camera (see Figure 6-1) over a sequence ofn = 20 images.

A calibrated camera enables the extraction of the extrinsic
parameters from the calibration object on the robot’s arm grip.
Inverting such transformation gives the transformation from
the camera’s focal center relative to the world referentialon
the grid(Rwh, Pwh). Hence, by moving the 7-dof robotic head
around a stationary arm grip (see Figure 6-2), a map from head
joints configurations to the 3D cartesian topological spaceis
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Fig. 6. Learning proprioceptive maps. (left){W}orld, {A}rm and{H}ead
frames, and transformations among these frames (eg.Rwa stands for the
orientation of frame{A} relative to {W}). (right) Motor behaviors for
calibrating the camera (1), learning the head kinematics (2),learning the arm
kinematic models (3) and the arm dynamics (4).

acquired. The calibration object on the arm grip is kept on
the camera’s field of view by visually tracking it’s centroid.
A PD controller controls the eyes, while inertial data is used
to stabilize the robotic head and for VOR compensation.

The Forward Kinematics mapping the head joints’ config-
uration (given by 6 parameters – just one eye is required)
to the cartesian position and orientation of the camera’s focal
center relative to a world referential, is estimated using locally
affine models. Learning of these models was carried out
by applying a modified version of memory-based Locally
Weighted Regression [9].

2) Sensory-Motor Maps: A calibrated camera and a head
kinematic map enable the estimation of both the arm forward
and inverse kinematics. This is accomplished by moving the
robotic arm over the joint configuration space, while visually
tracking it’s grip (see Figure 6-3). The cartesian location
(6 parameters) is determined from two transformations: one
from the grip to the camera’s focal center(Rha, Pha), given
by the camera’s extrinsic parameters, and the other from
the focal center to the world referential, given by the head
forward kinematics(Rwh, Pwh). This data, together with the
6 joint angle measurements, generates training data to build
locally affine models using memory-based Locally Weighted
Regression [9] (off-line, batch minimum least squares over
locally linear models). Statistical results are shown on Table II.

a) Locating the Arm on the Retinal Plane: Detection
of the robotic arm’s end-effector on the retinal plane fol-
lows from both head and arm forward kinematics. From the
head/arm joint configurations, the maps predict(Rwh, Pwh)
and(Rwa, Pwa), respectively, from which(Rha, Pha) follows.
The grip location on image coordinates is then just the
perspective projection ofPha. Table II presents statistical data
from building all these sensory-motor mappings.

B. Controllers

1) Neural Oscillators: Tools and toys are often used in
a manner that is composed of some repeated motion –
consider hammers, drums, saws, brushes, files, rattles, bells,
etc. Section II-C.1 introduced a framework to detect simple
repeated visual events at frequencies relevant for robot-human

TABLE II

MEAN SQUARE ERRORS. 1300VALIDATION POINTS (50% OF TOTAL).

96.2914.02L2 norm

16.352.46roll

62.785.75Yaw

17.155.81Pitch

778326L2 norm

38174Z (cm2 )

17375Y (cm2 )

224177X (cm2 )

Arm 
Kinematics

Head 
Map

Mse

61.64L2 norm

2.63J6

9.32J5

10.17J4

17.41J3

4.5J2

11.6J1

Inverse Arm Kinematicsmse

215.88L2 norm

215.78y

117.73x

Retinal plane (240 × 320)mse

interaction [10]. But it is equally necessary to not only perceive
the repetitive motions that facilitate the robust perception of
these objects, but also to control such rhythmic motions for
robot tasking.

a

b

Fig. 7. Cog playing musical instruments – a rattle (a) and a tamborine (b)
– using neural oscillators with proprioceptive feedback.

Oscillatory motions are therefore controlled using Matsuoka
neural oscillators, consisting of two mutually inhibitingneu-
rons. These neural oscillators are able to entrain the frequency
of input signals or resonance modes of dynamical systems
minimizing the cost of the actuator energy. We proposed
a mathematical analysis for multiple nonlinear oscillators
connected to a (non)linear multi-variable dynamic system,by
using multiple input describing functions [8]. As a result,the
framework developed provides estimates for the frequency,
amplitudes and/or parameters of oscillation of the controlled
system, as well as an error bound on the estimates, using
algebraic equations [16]. Such framework is used to design
the robot’s oscillatory motions, as shown in Figure 7 for the
playing musical instruments: a tamborine and a rattle.

2) Sliding Modes Controller: The dynamics of an arm
manipulator is strongly nonlinear, and its nonlinear dynamics
poses challenging control problems. Especially for mecha-
nisms with small gear transmission ratios or low-reduction
cable-driven systems or direct-drive connections, nonlinear
dynamic effects may not be neglected. The state space of
Cog’sn = 6-linked articulated manipulator is described by the
n dimensional vectorsq and q̇ of joint angles and velocities,



respectively. Its actuator inputsτ consist of an dimensional
vector of torques applied at the joints. The nonlinear dynamics
can be written as the system [17]:

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

whereH(q) is the manipulator inertia matrix (which is sym-
metric positive definite),C(q, q̇)q̇ is the vector of centripetal
and Coriolis torques, andg(q) is the vector of gravitational
torques. The feedback control problem for such system is
to determine the actuator inputs required to perform desired
tasks from the measurements of the system state(q̇, q) of joint
velocities and angles, in the presence of uncertainty.

As described in detail by [18], [17], control theories that
are most often applied to such systems are Sliding Modes
Controllers, PD and Computed Torque Controllers. The latter
two are often used to reach desired positions. Sliding modes
becomes rather useful to follow desired trajectories specified
by (qd, q̇d, q̈d), the position, velocity and acceleration for each
manipulator joint, under model uncertainty.

A sliding Modes control law [18] was implemented, given
by equations 2 and 3, wheres is a weighted sum of position
(q̃ = q − qd) and velocity errors.

τ = Ĥ(q)q̈r + Ĉ(q, q̇)q̇r + ĝ(q) − K(qd)sat(Φ−1s)
= τ̂ − K(qd)sat(Φ−1s)

(2)

s =

(

d

dt
+ Λ

)m=2

q̃ = ˙̃q − Λq̃ (3)

The non-linear dynamics is learned adaptively on-line.
These non-parametric locally affine models are used to predict
the feedforward term̂τ . The reference velocity is given by
q̇r = q̇ − Λq̃, and Λ is a symmetric positive definite matrix
(assumption can be relaxed to -Λ Hurwitz). The matrixΦ
defines the boundary layer thickness,

Φ̇ + λΦ = K(qd) (4)

leading to tracking to within a guaranteed precisionε =
Φ/λm=2. Three factors impose upper bounds onλ ≈ λR ≈
λs ≈ λD: structural resonant nodes (λ ≤ λR); time delays
(λ ≤ λD = 1/TD), whereTD is the largest unmodeled time
delay (which was set to one sampling interval - 5 ms); and
sampling rate (λ ≤ λs = 1/5νsampling = 40Hz).

C. Non-parametric Learning of the Manipulator Dynamics

Standard controllers, such as the PID controller typically
used in industry, do not require a dynamic model of the system
being controlled. But performance is lost at high frequencies
and instability might occur for very compliant systems. How-
ever, the dynamic model of the manipulator is often unknown
or else known with a large uncertainty. The non-parametric
learning of the arm dynamics was therefore implemented
using an on-line, iterative version of Receptive Field Weighted
Regression [9], using as input space(q, q̇, q̇r, q̈r) (since q̈ is
unknown), and output spaceτ . The algorithm compensates for
the unknown nonlinear terms (specially gravity terms).

V. ROBOT TASKING

Humans are pretty good in understanding visual properties
of objects, even without acting on them. However, the com-
petencies required for such perceptual capability are learned
developmentally by linking action and perception. Actionsare
rather useful for an embodied actor, through the use of its own
body, to generate autonomously cross-modal percepts (e.g.,
visual and auditory) for automatic object categorization.This
is in contrast with non-embodied techniques such as standard
supervised learning requiring manual segmentation of off-line
data, imposing thus constraints on an agent’s ability to learn.

Visual 
Segmentation

Sound Visual

Sound 
Segmentation

1 2

3 4

5 6
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Fig. 8. Reaching to and shaking a child’s toy (a Castonete). (1-2) A human
actor attracts Cog’s attention to the toy, by creating a salient stimulus to
its attentional system. (3-4) The robot reaches to the object– feedback
control applying a sliding mode controller. (5-6) Cog shakesthe toy. Feedback
proprioceptive signals are sent into a neural oscillator, which entrains the
natural frequency of the dynamic system to which its coupled (the robot’s
arm), producing rhythmic sounds. (7) Visual and auditory segmentations by
Cog’s perceptual system. It shows two segmented images - one fora low
resolution sound spectrogram over one period of oscillation, and the other for
the toy’s visual template extracted from the periodic movements of the toy.

Figure 8 shows the humanoid robot Cog executing a task
requiring the integration of both reaching movements and
rhythmic motions. The task consists of having the robot
playing rhythmic sounds with a Castonete by first reaching
its grip to the Castonete and therefore shaking it.Such actions
enable Cog’s perceptual system not only to extract visual
descriptions of the Castonete, but also the acoustic pattern that
it produces (auditory segmentation and recognition described
elsewhere [19]). Percepts from these two different modalities
are linked by correlating amodal features – timing and syn-
chrony – through cross-modal processing [19].

Similarly to object segmentations from human demonstra-
tion, both the robot’s grip and the poked objects are segmented
from the robot’s actions. Indeed, some segmentation results
(e.g., the robot’s grip or the lego’s brick) shown in Figure 5
were obtained by having the robot poking at objects.

A. Human-Robot Skill Transfer

We now show how learning a very simple model (just a
machine with one internal state) for the task of hammering on
a table enables the robot to generate autonomously informative
percepts by itself. Consider again Figure 2. These images
correspond to real experiments. We have shown before how



object recognition and robot experimental manipulation evolve
developmentally from human demonstration. By transferring
the manipulation skill from human to robot, the latter can
generate equally training data to the object recognition algo-
rithm, as demonstrated by the experiment in Figure 9. This
figure shows that by having the robot hammering on a table,
the perceptual system extracts visual templates of the object
which is thereafter recognized as the same object previously
segmented from human demonstration.

a b c

(2)

(1)
d

Fig. 9. Human-robot skill transfer, from an on-line experiment. a) Hammer
visual segmentation by having the robot hammering on a table. (b) Tracking
multiple objects – the robot grip and the hammer – based on the Lucas-
Kanade pyramidal tracker algorithm. (c) It shows two segmentations. One first
obtained from human demonstration (on the left). The second (on the right),
was segmented from robot actuation, and it was recognized as belonging to
the same category as the first (otherwise it would not appear onthe same
window during the experiment). d) Several segmentations obtained by human
demonstration and by the robot’s experimental manipulation.

B. Human-Robot Cooperation

Input from one perceptual modality can also be useful to
extract percepts from another perceptual modality. This is
corroborated by an experiment (see Figure 10) consisting of
feeding the energy of the acoustic signal into the feedback
loop of the neural oscillator, instead of proprioceptive signals.
Therefore, the goal is to have the robot to play drums using
sound feedback. The task rhythmic is imposed by a human
actor, which cooperates with the robot for drumming with
sticks. Since it is difficult for the neural oscillator to engage
initially in a rhythmic pattern without a coherent source of
repetitive sound, the human guides the process by providing
such information. While executing the task, the robot is then
able to learn the visual appearance of the drumming stick
(shown in Figure 10), together with the sound it produces.

VI. CONCLUSION

In this paper we introduced both humans and the robot
into the learning loop to facilitate robot perception. The
experiments carried out underline the importance of learning to
interpret actions. There is a lot to be gained when introducing
a human teacher in the loop that guides the robot’s learning
process. This knowledge is grounded as the robot acts by itself.
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Fig. 10. Human-Robot cooperation. Playing with a stick for drumming,
entraining rhythms provided by a human actor, who drums together with the
robot. The neural oscillator receives as feedback signal the acoustic energy.
The robot is then able to extract a visual segmentation of the stick.
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