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Abstract

This thesis describes work done at the MIT Artificial Intelligence Laboratory on the
humanoid robot platform, Cog. Humanoid research has long been concerned with
the quality of the robot’s movement. However, obtaining the elusive tempo and
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Chapter 1

Introduction

1.1 Overview

This thesis describes work done at the MIT Artificial Intelligence Laboratory on the

humanoid robot platform, Cog. Humanoid research has long been concerned with

the quality of the robot’s movement. However, obtaining the elusive tempo and

grace of the human motor system has proven to be a very difficult problem. The

complexity of controlling high degree of freedom (DOF) humanoid robots, combined

with insights provide by neurophysiological findings, has lead researchers to look at

motor primitives (Williamson 1996) as an organizing methodology. We propose a

data-driven approach to motor primitives in building a motor language for Cog. The

proposed model is implemented on Cog and applied to the task of human motor

mimicry.

1.2 Approaches to Humanoid Motor Control

In this chapter we describe the issues encountered when developing motor control

systems for robots and for humanoid robots in particular. The set of problems that

are posed by humanoid robotics are in some sense unique to the field in general.

These problems both constrain and complicate research in this area. The scope of

investigation for this thesis is motivated this set of problems.
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Humanoid robotics is an endeavor inherently concerned with realism. As re-

searchers in the field, we are attempting to model, simulate, and approximate what

may myopically be considered one of nature’s greatest accomplishments. In building

humanoid robots we are tacitly asserting the following: human level intelligence and

interaction with the world requires both a physical presence in the world and a human

morphology. As (Brooks, Brezeal et al. 1998) have noted, we have human intelligence

by virtue of having a human body.

However, it is not clear to what degree we need to model and mimic natural sys-

tems. The level at which we choose to approximate nature certainly varies depending

on the area of investigation and on the purpose of that investigation. In the domain

of humanoid motor control, this raises a number of issues.

Clearly, we would like our robots to move in a human-like manner. Nature’s

animals, regardless of our perception of native intelligence, never fail to astound

us with the grace and dexterity of their movements. This overarching motivation

has pushed researchers to a detailed study of biological motor control, ranging from

physiological examination, to biomechanical models, to cognitive theories.

Implementing a motor control system with a similar quality of movement on a

humanoid robot can be considered one of the grand challenges of the field. It is still

an open question, however, what method or approach is suitable for this goal.

Researchers working towards this end have recognized that a simple recreation

of human movement, as is done in the field of animatronics, is not enough in itself.

The aesthetic of robot movement is closely tied to the morphology of the robot, the

electro-mechanical dynamics of the robot, and most importantly, a tight coupling be-

tween the robot’s environment, perceptual system, and motor system. Naturalism for

humanoid robot movement must not just come from the well-coordinated execution

of movement trajectories, but also from movement that is in appropriate response to

the environment.

Unfortunately, the best of our attempts have been hampered by the physical

technologies available to us. Actuators such as DC servo motors are bulky, heavy,

and consume inordinate amounts of power. The sensorimotor feedback available on

9



our current systems pales in comparison to the massively parallel feedback employed

in nature.

Regardless of our current technical limitations, there is still an interesting set of

questions to explore. In fact, much of the grace and dexterity we admire in animals

may not be a direct result of sophisticated musculature and sensory systems. We

propose that a humanoid robotic system with limited sensorimotor faculties can still

exhibit interesting and naturalistic motor behavior given the following conditions:

• The system is tightly coupled to a complex environment.

• There exists an organizing principle for the motor systems whereby complex

movements can be generalized from simpler movements

The work in this thesis follows from this working assumption.

1.2.1 The Biological Motivation

The term “biologically motivated” has become widely used and perhaps overextended

within the field of humanoid robotics. Clearly there are advantages to looking to

nature for questions and for answers, particularly in a naturalistic domain such as

this. However, the human body has not been carefully engineered the way, say, a car

has, and it doesn’t lend easily to a clean decomposition. Studies in pyschophysics,

cognitive science, physiology, ethology, etc. can be illuminating as well as confusing.

It can be difficult to move from a set of results gained from studies of a system to

a well formed model of that system. Despite the insights that can be gained, it

is not clear what level of biomimicry is useful. A connectionist approach, starting

at the neural level, may leave one with a grossly simplified or intractable system.

On the other hand, traditional approaches that treat the natural system as a set of

compartmentalized boxes ignore the greater complexity of the whole, influenced in

part by hormones, the environment, and biomechanics of the complete system.

Because the physical substrate, actuators, and sensors on a robot are fundamen-

tally different than those in a natural system, a middle ground is perhaps necessary.
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For example, for the purposes of this thesis, the rich and complex musculature system

of the human body will be approximated by a spring and damper system (Williamson

1995). The true contribution of a biologically inspired approach to this work, however,

is that of presenting a plausible organizing principle for humanoid motor control.

1.2.2 An Organizing Principle

While the literature review in Chapter 2 provides the biological justification for this

approach, we find it instructive to begin with an overview of why, and for what, an

organizing principle is useful in humanoid motor control.

The difficulty of the posed problem comes in part from the complexity of the

human motor system. The human arm, for example, contains seven degrees of freedom

and 26 muscle groups (Berniker 2000). It is a highly redundant system. A task such

as pointing to an object in the world can yield an infinite number of solutions, yet

the human system utilizes just a few. This in itself suggests that it is necessary to

look for methods to simplify and structure the problem in such a way that it becomes

tractable.

Luckily, the domain of human movement represents a constraint on the problem,

limiting the large space of possible motor movements to those that are naturally

occurring.

Additionally, humans have the ability to generate a large range of novel movements

that adapt to the environment and task at hand. Models used in humanoid research

cannot predict or learn all possible outcomes. Instead, the models need to be built

upon an organizing principle which formalizes a method for generalizing movements

from one domain to another.

Implicit in the choice of an organizing principle is a choice of representation for

motor acts. If we construct an representational structure for motor actions, then

a central component of this representation involves assessing the similarity or dis-

similarity of its members. Such an ability requires that the relevant features of the

domain are selected, or perhaps learned. It also requires that an encoding for the

representative members of the domain be selected so that we can store, retrieve, and
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compare these elements.

Finding a good representation is a challenge and can be task dependent. For

example, human reaching in free space may lend itself to a Cartesian, exocentric

representation. Contradicting this representation, bipedal walking is largely param-

eterized in terms of forces exerted at the feet. Thus the two tasks demand different

forms of representation.

As both the kinematic and task complexity of a robot increase, a good represen-

tation of movement becomes necessary. A humanoid robot must be able to generalize

from a small set of movements to a large repertoire of possible motor acts. Not only

that, but it must be able to correlate the global nature of a motor act with perceptual

stimuli. But assessing the global nature of a motor act requires an abstraction away

from simple joint trajectories. It requires embedding the motor act in a structure

such that the perceptual stimuli can apply to related motor acts as well.

The approach taken in this work can be considered a variant of what are commonly

referred to as motor primitives (Bizzi, Accornero, Chapple & Hogan 1984). The crux

of this approach, supported by biological findings, is that we compose complex motor

acts out of a small set of simpler motor acts. This small set of motor primitives

provides the building blocks of our complete set of movements. It also provides a

means for representing movements such that they can be compared and categorized

in learning situations.

1.2.3 A Gestural Language

We use the term “gestural language” as a metaphorical means of conveying the intent

of our approach. It is used analogously to the way the written language utilizes alpha-

bets, verbs, nouns, and adverbs to formalize ideas. In a similar fashion, we can view

motor primitives as the canonical elements of an alphabet from which more complex

elements can be constructed. From this vantage, the problem can be decomposed

into the following subproblems:

• Determine a useful encoding for a movement primitive.
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• Specify, or learn, the basis members of a gestural alphabet corresponding to the

canonical movements used in human motor acts.

• Specify, or learn, a grammar for the language such that basis elements can be

combined in a meaningful manner to form more complex movements.

• Apply the language to a real world problem on the robot by using perceptual

stimuli to activate a viable gestural sentence in response to the given stimulus.

The effect of this model is that the robot can remain tightly coupled to the envi-

ronment yet still have a complex repertoire of motor actions with which to respond

and act. It is important to note that the application of this model allows us to create

a motor representation without creating any explicit models of the environment or

the motor system.

1.2.4 Related Approaches

The general structure of this approach can be found in application in many disciplines

of science. Clearly it is advantageous to decompose a problem in such a manner that

its complexity can be approximated with a collection of simpler and better understood

parts. The relationship of this organization to verbal language is direct, and there have

been proponents of the idea that our verbal language is built upon representational

structures originally used by the motor system (Allot 1995). This type of organizing

principle has also been investigated with respect to visual processing (Riesenhuber

& Poggio 1999). The work of (Arkin 1998) with behavior schemas is conceptually

similar but deals with a domain of a larger granularity: behavior integration and

representation.

1.3 Scope of Investigation

Humanoid motor control is a very broad and active area of research. For the purposes

of this thesis, a small subset of the problems found in this domain will be studied.
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Our approach is to propose a general framework for motor action organization based

on the concept of motor primitives. Within this framework we will investigate various

approaches to both learning basis elements of the gestural language and learning the

grammatical structure of the language. Finally, we experimentally test our proposal

through its application on the humanoid platform, Cog.

This work is done in the context of a larger problem: human motor mimicry

and imitation. Learning through imitation stems from a developmental approach to

humanoid robotics. It is essential to provide our humanoid platforms with the senso-

rimotor experiences necessary for the robot to learn motor tasks and the correlation

between motor action and its impact on the physical world. During the critical de-

velopmental phases of infants and young children, imitation is an important tool for

enabling exploration of the world through parental guidance.

A preliminary, yet essential, step towards human imitation is motor mimicry.

Motor mimicry is a simple and direct kinematic emulation of caregiver’s actions by

the robot. The intent of the action is not understood. This thesis applies the concept

of a gestural language to this task. Our goal is to implement a system which can

accomplish coarse mimicry of broad human gestures. This allows the mimicry to

occur without precise kinematic knowledge of the human. It also allows the robot to

construct general gestures out of the language while avoiding the problem of precise

trajectory formation needed in other domains such as manipulation.

The motor mimicry application can be more directly engineered through tradi-

tional approaches such as inverse kinematics (Craig 1989) or through the postural

primitive approach used by (Williamson 1996). However, these approaches do not

develop a representational structure. Consequently, they would be very difficult to

extend to the more general problem of imitation. Imitation requires not just the

ability to mimic motor actions, but also the ability to generalize the mimicry in the

context of a goal. In order to perform this type of generalization, the motor action

must be abstracted away from, and represented in a manner that allows it to be

related to the intent of the human initiator.
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1.4 Review of Thesis Contents

The thesis is organized as follows:

• Chapter 2 provides a survey of background material supporting this work,

including work in neuroscience, unsupervised learning, and humanoid motor

control.

• Chapter 3 describes in detail the implementation of the gestural language as

currently implemented.

• Chapter 4 describes an application of the gestural language to a specific do-

main: human motor mimicry.

• Chapter 5 describes experiments evaluating the performance of the system in

the motor mimicry task, and discusses the merits of the approach in general.

• Chapter 6 provides conclusions and directions in which to extend this work.
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Chapter 2

Literature Survey

2.1 Overview

This chapter surveys the wealth of literature that has provided the foundation for this

thesis. We start by looking at the imitation framework for humanoid robotics. Then

we discuss the split between dynamic and kinematic models of motor control as well

as the motor primitive model gained from neurophysiological findings. We describe

how these findings have been applied to the fields of graphical agents and humanoid

motor control. We conclude with a brief survey of unsupervised learning techniques

as they relate to this work.

2.2 Imitation and Motor Mimicry

The recent discovery of mirror neurons in macaque monkeys has spawned a swell of

interest in imitation, mainly because they provide a neural location for imitation.

Mirror neurons are distinguished by their activation due to the perception of a motor

action and also by the execution of the same motor action. A motor action is a more

holistic movement than a simple activation of a group of muscles. Instead it is tied

to categories of movement such as grasping, reaching, and manipulation. A good

introduction to this work can be found in (Gallese & Goldman 1998).

Imitation promises to be a powerful tool for teaching humanoid robots new skills.

16



The goal is to be able to teach by demonstration. There are a host of perceptual and

cognitive obstacles to reaching this goal (Breazeal & Scassellati 1998). The problem

from the motor control perspective is a bit more tractable.

There are a number of approaches to the motor mimicry problem. One method

is for the robot to gather the complete kinematic information of the agent from the

environment and then replicate it. This is a very difficult perceptual problem and

most approaches require specialized hardware to accomplish it (Ude, Man, Riley &

Atkeson 2000b). Another method is to use the 2D or 3D path of the end effector

as the feature for mimicry. The use of this feature has biological support (Berniker

2000, page 20). This is a simpler problem, adequate for capturing the general nature

of the movement. It benefits from not having to find the mapping from the kinematic

structure of the agent to that of the robot. A combination of these approaches may

prove to be the most robust.

2.3 Models of Motor Control

The nature of the controller used by natural systems to control motor actions is

debatable. The existence of mirror neurons suggest that the representation of motor

actions should be amenable to a representation of the perceived movement.

A primary problem in motor control is understanding the mechanisms used in

moving a limb from one spatial location to another. One of the most fundamental

distinctions that can be made in looking at control models is that between kinematic

and dynamics based models (Flash, Hogan & Richardson 2000). In a kinematic model,

the planning and representation of movements is in terms of joint angles, either in

an egocentric or an exocentric frame of reference. In a dynamic model, it is the

joint torques that provide the basis features of representation and planning. This

distinction has important ramifications as to the proper representational form needed

by the gestural language. Recent work has demonstrated that natural systems may

decompose the task hierarchically, with trajectory planning occurring in a kinematic

framework which is then used to compute the necessary joint torques.
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This type of decomposition lends nicely to a common assumption made when mod-

elling the musculature system. To a first order approximation, our muscles and indi-

vidual joints behave as force controlling spring-damper systems (Williamson 1995).

Consequently, we can model the controller as:

τ = K(θ − θsetpoint) +B(θ̇) (2.1)

where τ is the commanded force, θ is the joint angle, and θsetpoint is the equilibrium

setpoint of the spring-damper system. This can be interpreted as a standard PD

controller. This approximation is useful in that it provides a simple, linear method of

mapping joint angles to joint torques. The model proposes that humans are control-

ling the setpoint of a spring and damper system when they move their bodies through

a trajectory.

(Bizzi et al. 1984) supports the equilibrium point hypothesis with studies on rhe-

sus monkeys. In the equilibrium point hypothesis, the system is predicted to be

largely feed-forward. This holds especially for large inertia systems such as the arm

in which the spring-damper model is more viable. Given the relatively large feedback

latencies between the muscles controlling our limbs and our higher control centers,

this proposition makes sense.

Additionally, (Flash et al. 2000) demonstrates that in controlling arm movements,

we control our hand position from an exocentric frame of reference. They demonstrate

that the central nervous system appears to optimize the smoothness (i.e., minimizing

jerk), in Cartesian coordinates, of the movement over the course of its trajectory.

Finally, it interesting to look at the work of Cole and Gallagher (Cole, Gallagher

& McNeill 1998) as it relates to developing a gestural langauge. They studied an

individual, IW, who had lost all proprioceptive feedback from the neck down. IW

had severe difficulty with instrumental actions (i.e. locomotion, reaching tasks) and

depended almost completely on visual feedback to accomplish these tasks. However,

his gestural actions were largely unaffected. Cole and Gallagher draw a number of

interesting conclusions from this case:
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• IW seems to compose his gestures out of a repertoire of known gestures.

• Gesture can be performed without any type of feedback.

• Gesture may be under control of a system other than the controller used for

instrumental actions.

These conclusions suggest that gestural motor actions should provide a good match

to the organizational method we are proposing.

Stein (Stein 1982) provides a comprehensive treatment on the hypothesized muscle

parameters which may be controlled by the central nervous system. While there are

significant alternative points of view on this issue, the work reviewed by Stein lends

support to the premise that we can represent movement in a feed-forward kinematic

framework for our gestural language.

2.4 The Motor Primitive Approach

Motor primitives provides a simple and decomposable explanation for a complex

behavior. Though their appeal for humanoid robotics is clear, there are still questions

remaining as to the extent that they can cover the diverse behavior of natural motor

systems. In any case, motor primitives contribute a simple and decomposable model

for humanoid motor control.

The motor primitives approach is hierarchical, allowing control to remain mostly

local to the spinal cord. This type of local model has merit in that the long commu-

nication delays between the muscles and the brain do not need to be accounted for.

Work by (Bizzi, Mussa-Ivaldi & Gistzer 1991), (Mussa-Ivaldi 1997), and others have

attempted to understand this hierarchy.

Bizzi’s approach involved microstimulation of a deafferented frog’s premotor spinal

cord. The stimulation triggered a motor activation in the frog’s leg, and Bizzi recorded

the force vector from various points in the leg workspace. The results showed a smooth

force field across the workspace, drawing the leg to an equilibrium position. Different

convergent force fields (CFF) were found at different stimulation points. Through
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simultaneous stimulation Bizzi, found that the independent CFFs summed together

to create a novel CFF with a new equilibrium point.

(Mussa-Ivaldi 1997) provides a computational model for the superposition of non-

linear fields. This model explains the more complex movements we observe in natural

systems as the result of simple scalar summation of the fields. He proposes that motor

learning can be partially equated with the learning of these scalars.

More recently, (Thoroughman & Shadmehr 2000) have suggested that humans

learn the dynamics of reaching movements through primitives that include a gaussian

tuning function.

While support for the motor primitives model is growing, the debate continues

about what form the primitives actually take. Theories range from synergistic muscle

contractions, equilibrium postures, and simple movement strokes. This work inves-

tigates the application of the latter in the construction of a complex repertoire of

motor gestures.

2.5 The Application of Motor Primitives

At this point it is beneficial to survey the influence motor primitives have had in the

fields of robotics and computer graphics. In many cases, the work detailed here bears

a direct relation to the previously cited works; in some cases it is only the gestalt of

the model that has been utilized.

An early and influential application of motor primitives to a humanoid robot was

done by Williamson(Williamson 1996). This work, closely linked to the earlier work

of Bizzi (Bizzi et al. 1991), used a small set of equilibrium posture points as primi-

tives. The primitives spanned the corners of the arm workspace and summation of

the primitives provided a means to interpolate within the workspace. This charac-

terization of primitives was proven effective in its simplicity, yet that very simplicity

seems to have limited the ability to generate more complex motor behavior.

Mataric et al. have done the most extensive application of this approach to hu-

manoid robots and simulated avatars. This work, also done within an imitation

20



framework, bears the strongest relation to this thesis and deserves closer attention.

In (Fod, Mataric & Jenkins 2000), the group takes an unsupervised learning ap-

proach to deriving the motor primitives from actual human motion data. The col-

lected data was segmented into discrete motions and then projected onto a lower

dimensional space via Principle Components Analysis (PCA) (2.6.1). A k-means ap-

proach to clustering was then employed. In the end, a set of generic, prototypical

movements were discovered within the data. The quantitative results given are diffi-

cult to asses because they are highly dependent on the data set. However, the group

did report that the data set could be fairly represented with around 100 primitives

of 30 dimensions. The validation of this work was done in simulation and not on a

physical robot, making it difficult to compare with the work here.

(Mataric, Zordan & Williamson 1999) draws upon the previously described work

of Mussa-Ivaldi (Mussa-Ivaldi 1997) in formulating a joint-space force-field approach.

This promising approach utilizes a nonlinear joint space controller, as opposed to

the earlier work by Williamson with a linear controller. The nonlinearity reduces

torque at high errors, allowing smooth transitions between equilibrium points. The

controller primitive for joint i is defined as:

φi = −k(Θactual −Θdesired)e
−k(Θactual−Θdesired)2/2 − kdΘ̇actual (2.2)

This primitive defines a nonlinear force field attracting the joint to Θdesired. While

this primitive attracts to a static point in kinematic space, superimposing a second

primitive ψi allows modification of the trajectory followed to that static point. The

two primitives are weighted by smooth step function ωi and smooth pulse function

υi. This yields the joint space controller:

τi = ωi(t)φi(t,Θactual, Θ̇actual) + υi(t)ψi(t,Θactual, Θ̇actual) (2.3)

This work provides a worthwhile comparison between this type of controller, a linear

controller, and an impedance controller. The nonlinear approach, often called pulse-

step control, has strong neurophysiological support (Flash & Hogan 1985, Kositsky
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Figure 2-1: In the cluster chain model, trajectory transition points are clustered from
a data set. A task trajectory can be found by searching the cluster graph.

1998). The simplicity of the primitive encoding for this controller, combined with its

inherent interpolation between set points prove to be strong points of this approach.

Later work by this group places the primitive approach in an imitation framework

(Jenkins, Mataric & Weber 2000). The hand trajectory, projected onto a 2D plane,

is used as the fundamental unit of imitation. The primitives are hand coded with

simple trajectories and the input trajectory is represented in terms of a sequence

of primitives. An avatar is made to imitate this trajectory through an impedance

controller. Their work presents a strong initial problem domain for application of the

work described in the rest of this thesis. While their work is done entirely from an

exocentric frame, our approach uses an egocentric frame of reference.

(Kositsky 1998) presents a decomposition of the pulse-step primitive into a cluster

chain. A cluster chain is a method of specifying a generalized trajectory, as is depicted

in Figure 2-1 . A reaching movement from Θstart to Θend can be viewed as a series

of via points along the joint trajectory. In Kositsky’s model, a graph is built from a

movement data set generated from a 2-DOF planar arm simulation. Valid trajectories

for the arm are then encoded in the graph structure. Whether or not this approach

can extend to a high DOF robot without an inordinate amount of data is an area of

investigation for this thesis.

The computer graphics community has long been interested in simulating the elu-
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sive human tempo of movement. Aside from time-consuming hand animation tech-

niques, physical simulation and inverse-kinematic approaches bear on the work pro-

posed here. Of particular interest are data-driven approaches using motion-capture

techniques. (Bodenheimer & Rose 1997) presents a method of mapping motion cap-

ture to a wire-frame skeleton, and (Ude, Atkeson & Riley 2000a) extends this approach

to a humanoid robot using a B-Spline wavelet encoding. Closely related to the work

developed in this thesis is (Rose, Bodenheimer & Cohen 1998). Their work describes

an organizing methodology for motions based on verbs (motions) which are controlled

via adverbs (expressive parameterizations). By constructing extended motions using

a verb graph similar to Kositsky’s cluster chains, their work provides a framework for

formalizing expressive behaviors.

2.6 Unsupervised Learning Techniques

(Hinton & Sejnowski 1999) provides a good survey of the primary approaches in

unsupervised learning . As we will elaborate on later, the approach of this thesis is

to derive the gestural language from a human movement data set using unsupervised

learning techniques. In this manner the humanoid can learn the basis elements of the

language and the allowable grammar with which they can be utilized.

Unsupervised learning is a suitable tool for this type of problem. It is especially

useful in uncovering hidden features of a data set while not requiring prior knowl-

edge or labelling of the data. Through techniques of clustering and dimensionality

reduction, we can find the hidden features of a motor action data set. We would hope

that these features bear a relationship to the actual motor primitives used in natural

systems.

A disadvantage of this approach is that it typically requires a large data set,

especially if the data lies in a high dimensional manifold (Hinton & Sejnowski 1999,

Ch.1). Large human movement data sets are difficult to generate and hard to come

by.
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2.6.1 Dimensional Analysis

Dimensionality reduction is a standard statistical technique for obtaining compact

representations of data by reduction of statistically redundant dimensions in the data.

In general, this can viewed as a pair of maps:

g : �n → �m (2.4)

f : �m → �n

n > m

This allows a mapping from n dimensions to m and back. The normalized recon-

struction error, a measure of the success of the reduction on the data set, is:

εnorm =
Ex[‖x− f(g(x))‖2]

Ex[‖x−Exx)‖2]
(2.5)

The classic approach in this area is Principle Components Analysis (PCA). (Hinton

& Sejnowski 1999, Ch. 18) provide a succinct description of PCA:

In PCA, one performs an orthogonal transformation to the basis of cor-

relation eigenvectors and projects onto the subspace spanned by those

eigenvectors corresponding to the largest eigenvalues. This transforma-

tion decorrelates the signal components, and the projection along the

high-variance directions maximizes variance and minimizes the average

squared residual between the original signal and its dimension-reduced

approximation.

The simplicity of PCA has lead to its widespread application in engineering. However,

it is a linear technique. It finds the lower dimensional hyperplane that best fits the

higher dimensional data. Typically, even if the high dimensional manifold is smooth,

it most likely is not planar.

This limitation led to a locally linear approach to PCA (Hinton & Sejnowski 1999,

Ch. 18) which partitions the manifold into regions that can be better approximated as
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Figure 2-2: Linear and nonlinear dimensional analysis. The linear reduction maps
the data down to a planar surface (left). The nonlinear analysis can conform the
mapping to arbitrary smooth surfaces (right).

linear. The partitioning is typically done through some variation of clustering. Locally

linear PCA improves the reconstruction error on nonlinear manifolds. However each

subregion now has its own coordinate frame, and an attempt must be made to stitch

the lower dimensional manifold together.

Nonlinear approaches to dimensionality reduction also exist in the form of neural-

networks (Oja 1982) and the fitting of principle surfaces (Hastie & Stuetzle 1989).

Most recently, (Roweis & Saul 2000) introduced the Locally Linear Embedding (LLE)

technique. LLE has produced impressive results on smooth nonlinear manifolds.

Importantly, it retains the topological structure of the manifold and embeds the data

into a single global coordinate system. However, the reconstruction function f from

Equation 2.4 is not easily obtained in LLE.
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Figure 2-3: Clustering a data set. Given a distance metric, clustering iteratively
groups points in the set. A threshold ε can be set such that all points lie within a
hypersphere of diameter ε.

2.6.2 Clustering

Another unsupervised learning technique often used in conjunction with dimension-

ality reduction is clustering. Its goal is to group together similar inputs and let the

groupings characterize the similarities in the features. As seen in Figure 2-3, cluster-

ing reduces the number of data points by sequentially joining clusters based on their

similarity.

The success is highly dependent on the distance metric utilized and on the features

chosen. A Euclidian distance metric is typically used. However, two data points

may be qualitatively similar yet be far apart in their Euclidean distance (Hinton &

Sejnowski 1999).

A standard clustering technique is UPGMA (Ooyent 2001). UPGMA takes the

following approach: Take the cluster k which is formed by joining clusters {i, j}. The

dissimilarity between k and a test cluster l is:

Dk,l =
NiDl,i +NjDl,j

Ni +Nj
(2.6)

,where N denotes the number of members in the cluster and D is the dissimilarity. In

practice, a combination of clustering and dimensional analysis has proven effective in

finding the underlying structure in unlabelled data. As we will see in Chapter 3, this
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approach can be applied to a data set of human movements. However it is an open

question whether or not a smooth high dimension manifold is sufficient to capture

the motor primitives employed by nature.
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Chapter 3

Implementation

3.1 Overview

In this chapter we cover the details of the implementation. The general approach is

to create a large motion data set and learn the gestural language from it. As we will

describe, this is accomplished by:

• Acquisition of the motion data set using the humanoid robot.

• Segmentation and encoding of the data set into a form such that it can be

treated computationally.

• Decomposition of the motions into kinematic subspaces.

• Derivation of the base elements, or primitives, of the gestural language using

unsupervised learning techniques.

• Reconstruction of the data set in terms of the gestural language primitives.

• Development of the language grammar through transition graphs.

We are proposing a kinematic model of motor control. Accordingly, a gestural

primitive is a specification of joint trajectories over time. A joint trajectory is a

vector of equilibrium points moving a joint from Θstart to Θend. In this chapter, as we
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describe the implementation of the gestural language, we are essentially describing a

method of organizing these trajectory vectors in a meaningful and useful manner.

3.2 The Development Platform

The work in this thesis is implemented on a humanoid robot. The embodiment of the

robot in the physical world allows for a tight coupling to a complex environment not

available in simulation. It is our belief that this is a critical component to achieving

naturalistic movement.

The platform is a 26-DOF torso humanoid robot named Cog (Figure 3-1). Cog has

a 7-DOF active vision head with two foveal CCD cameras and two wide angle CCD

cameras. Each arm has 6-DOF: three in the shoulder, one at the elbow, and two at

the wrist. The 3-DOF torso has pitch and roll at the waist and yaw at the shoulders.

In addition, Cog has a pair of 2-DOF hands. All degrees of freedom are driven by

DC servo motors. The work done in this thesis involved an 8-DOF kinematic chain

starting at the hips and ending at the wrist of the right arm. The final wrist joint of

the arm is not used. This is illustrated in Figure 3-1. The bilateral symmetry of the

robot allows the gestural language to apply equally to both arms.

The force control hardware of Cog is critical for testing of biologically inspired

motor control hypotheses. While the active vision head has only position feedback

via optical encoders, the arms, torso, and hands all provide joint force feedback. The

force feedback in the arms and hands is provided through Series Elastic Actuators

(Pratt & Williamson 1995, Williamson 1995). The actuator places a spring element

in series with the motor. Deflection in the spring allows compliance in the joint and

provides a linear measure of force at the joint. Because the loads in the torso are much

higher than in the arms, the torso utilizes torsional load cells in series with the motor.

By using a standard PID controller on the force signal, we can control the force at

each joint. Feedback position of each joint is also available, allowing us to experiment

with control of joint position through many of the techniques described in Section 2.5.

The work in this thesis uses the spring-damper control law (Equation 2.1) to control
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Figure 3-1: (left) Cog, the humanoid research platform. (right) A kinematic schematic
of the 8-DOF used in this thesis.

position by setting the spring equilibrium point. Although we also investigated the

nonlinear control law of Equation 2.2, it did not yield a significant improvement in the

system performance. As of this writing, Cog’s computational system consists of a 24

Pentium processors networked together and running the real time operating system,

QNX4.

3.3 Dealing with the Data

We are taking an inherently data driven approach. We hope to learn the gestural

language from movement data, as opposed to deriving the primitives by hand or by

modelling the system as a complex controller. The quality of the data is critical

to the success of the system. The data we are interested in is a time series of joint

angles. This provides enough information to reconstruct joint velocities and Cartesian

coordinate trajectories using a forward kinematic model.
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3.3.1 Motion Capture

Acquiring the data invariably requires a motion capture system. There are number

of commercially available systems employed in the animation industry. The most

common technology is a suit, outfitted with optical or hall-effect position feedback

sensors, which is worn by a human performer (Bodenheimer & Rose 1997).

Another technique involves mounting an array of cameras around a staged area.

Markers placed on a performer allow tracking of limb position. A time series of joint

positions can then be calculated off-line.

(Ude et al. 2000b) take a vision based approach to motion capture. Using minimal

body markers, they automatically generate a kinematic model of the performer which

is mapped to the body of an avatar or humanoid robot. This type of system is ideal

from the imitation perspective. Unfortunately, the technology is not yet mature

enough to be used without a large research investment.

Some motion capture systems can be tailored to match the kinematics of the robot

or avatar. In most cases, a kinematic mapping between the performer and the avatar

must be constructed. This causes a loss in the complexity of the motion captured if

the kinematics of the robot are less complex than those of the performer.

To avoid these pitfalls and to simplify the process, we chose to use the robot itself

as a motion capture device. This technique has several advantages:

• The hardware is already in place.

• The data is already in terms of the robot’s kinematic structure.

• Physically unreproducible motions can’t be generated.

• It allows the possibility to learn or adapt the gestural language online.

The unique virtual spring control on the robot arms allows a human to interact

with the robot in a physical therapy type manner and consequently generate joint

trajectories that are recorded for the data set.

A time series of joint positions is obtained by guiding the robot’s hand through

a trajectory and recording the joint angles via a data acquisition board. We used a
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100Hz sampling rate of the joint position. Joint velocity was determined computa-

tionally and subjected to a low-pass filter.

The disadvantages of this approach will be discussed in Chapter 5.

3.3.2 Segmentation, Normalization, and Encoding

1. Θ denotes a joint angle and �Θk is a vector of joint angles.

2. n is the number of points used to specify a single joint trajectory.

3. Mi refers to a joint trajectory, encoded as a vector, in the data
set.

4. Sj refers to a continuous sequence of joint trajectories in the data
set.

5. DS refers to the entire motion capture data set.

6. D(X, Y ) is the Euclidean distance between vectors X and Y .

Given an 8-DOF kinematic chain, where the values of q and r are
dependent on the data set , we can say that:

�Θk = 〈Θ1,Θ2,Θ3, ...,Θn〉 (3.1)

Mi = 〈�Θ1, �Θ2, ..., �Θ8〉
Sj = 〈M1,M2, ...,Mq〉
DS = {S1, S2, ..., Sr}

Figure 3-2: Notation and variables used in the data set encoding.

In Figure 3-2 we provide a notational reference for the data set encoding.

A difficult step in the data acquisition process is motion segmentation. The stream

of joint positions needs to be segmented into individual motions. Because the gestural

primitives will be short movement strokes, we need to exclude protracted motions as

well as spurious short motions from the data set.

Ultimately, we want to be able to build protracted motion out of the primitives.

To do this we also need to ascertain which motion strokes are continuous and which
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are disjoint.

Several approaches to segmentation were tested: zero acceleration crossing (Bindi-

ganavale & Badler 1998), zero velocity crossing, and sum of squares velocity (Fod et

al. 2000). These methods assume that the segmentation point occurs when the trajec-

tory uniformly experiences a change in direction or comes to rest. The zero velocity

crossing approach provided the best results. For our 8-DOF movement, zero velocity

crossing is defined as:

Z(t) = Σi=1..8(|Θ̇i(t)|) < ε (3.2)

When a motion segment is distinguished, it is normalized to unit time and a standard

dimensionality n. This is accomplished by encoding the time sequence using a cubic

spline (Flannery, Teukolsky & Vetterling 1988). The spline is then evaluated at

n evenly spaced points along its length, resulting in the following encoding for a

movement Mi:

�Θk = 〈Θ1,Θ2,Θ3, ...,Θn〉 (3.3)

Mi = 〈�Θ1, �Θ2, ..., �Θ8〉

(3.4)

The n elements of �Θk can be viewed as a trajectory of via points for the kth joint,

occurring at evenly spaced time intervals. The spline encoding is beneficial in that it

allows for simple and smooth interpolation between the via points.

The unit time normalization makes the motion segments invariant to time. Joint

velocity was not included in the encoding because, it can be argued, velocity infor-

mation is redundantly included in the position vector.

The trajectory of a single joint is a vector of size n. We represent a 8-DOF move-

ment as a vector formed from the concatenation of the eight single joint trajectories.

For the work covered here, the number of via points per joint trajectory, n, is between

3 and 5. Thus, we can also view Mi as a vector of dimensionality between 24 and 40.

While Mi can represent a simple movement stroke, we also want to formalize a
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continuous sequence of movement strokes that occur in the data set. If the end-

ing kinematic configuration of Mi and the starting configuration Mi+1 match, then

〈Mi,Mi+1〉 is a continuous sequence. We represent a continuous sequence of q move-

ment strokes as:

S = 〈M1,M2, ...,Mq〉 (3.5)

Thus the entire data set of r disjoint motion sequences can be represented as:

DS = {S1, S2, ..., Sr} (3.6)

3.4 Learning the Gestural Language

3.4.1 Overview

Learning the gestural language from the data set is the central component of this

thesis. This involves two general steps: deriving the gestural primitives from the data,

and reconstructing the data set in terms of these primitives. The reconstruction step

places the data in a representational framework. The framework organizes the data

such that, given a perceptual stimulus, a suitable response gesture can be composed.

3.4.2 Kinematic Spaces

It is beneficial to describe the concept of kinematic spaces early on. In Figure 3-4 we

provide a reference for the notation employed in this description. Kinematic spaces

are a formalism we provide to decompose a complex kinematic chain into a hierarchy

of less complex chains. Thus a 8-DOF chain can be viewed as the concatenation of

two 4-DOF chains. A 4-DOF chain can be viewed as the concatenation of two 2-DOF

chains, and so on. Figure 3-3 illustrates this concept.

Recall that Mi is the vector concatenation of 8 individual joint trajectories, �Θk.

We can map Mi onto a kinematic subspace J (x:y) such that:

M
(x:y)
i = 〈�Θx, �Θx+1, ..., �Θy〉 (3.8)
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Figure 3-3: A hierarchical decomposition of the robot kinematic space. In the figure,
J (x:y) denotes the kinematic chain starting at joint x and ending at joint y. The leaf
nodes of the binary tree denote the single joint kinematic chains. We join adjacent
nodes in the tree such that the root of the tree corresponds to the full 8-DOF kinematic
chain.
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1. We use the superscript (x : y) to denote the kinematic chain from
joint x to joint y on the robot.

2. Thus M
(x:y)
i refers to the trajectory joints x through y take during

the trajectory Mi.

3. We use J (x:y) to denote a kinematic space. A kinematic space is
the workspace of joints x through y.

4. d is the dimensionality for a given kinematic space. For J (x:y),
d = (y − x+ 1)× n. a

In our implementation, we use 8-DOF. Consequently,Mi ≡ M
(1:8)
i .

Example: if n = 5, then for kinematic space J (4:6), d = 15 and:

M (4:6)
i = 〈�Θ4, �Θ5, �Θ6〉

(3.7)

an is defined in Figure 3-2

Figure 3-4: Notation and variables used in describing kinematics spaces.

For example: in our work, joints four through six are the first 3-DOF of the shoulder.

The kinematic subspace J (4:6) describes the kinematic workspace of the shoulder and

M
(4:6)
i is the trajectory that the shoulder takes in the course of movement Mi. In our

work, we use the 15 kinematic spaces described in Figure 3-3.

By decomposing Mi into a hierarchy of simpler movements, we can treat each

of the simple movements individually and then recombine them to reform Mi. We

illustrate this generalization process in Section 3.4.4. The intuition behind using

the kinematic space decomposition is that canonical trajectories can exist in subsets

of the entire kinematic chain. By finding these, we can use them to compose the

more complex motions made by the full kinematic chain. It allows us to reuse and

recombine the basic joint trajectory building blocks to create a motion instead of just

finding the canonical full body motions.

As a final note on kinematic spaces, we should mention that we constrained the

decomposition to match the morphology of the robot. We only allow consecutive
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joints in the kinematic chain to form a kinematic space. Additionally, we tailored the

decomposition to ensure that the 3-DOF shoulder, 3-DOF torso, and 2-DOF elbow

each formed a separate kinematic space.

3.4.3 Clustering

1. ε is the user specified clustering threshold.

2. ζ is the user specified reconstruction threshold.

3. ε̂ = ε×d is the effective clustering threshold in a kinematic space
of dimensionality d.a

4. ζ̂ = ζ × d is the effective reconstruction threshold in a kinematic
space of dimensionality d.

5. Pk refers to a short motion trajectory (i.e. primitive) in the ges-
tural language.

6. P
(x:y)
k is a primitive in kinematic space J (x:y).

7. Ti is a binary tree.

8. Γi is a set of binary trees for a given kinematic space J (x:y).

9. L is the gestural language.

We should note that each P
(x:y)
k is in fact a node on some tree Ti.

Our implementation uses a 8-DOF kinematic chain partitioned into 15
kinematic spaces. This gives the following, where q is dependent on the
data:

P
(1:8)
k = 〈�Θ1, �Θ2, ..., �Θ8〉

Γi = {T1, T2, ..., Tq}
L = 〈Γ1,Γ2, ...,Γ15〉

ad is defined in Figure 3-4

Figure 3-5: General notation and variables used in building the gestural language.

We use a clustering technique to find the initial gestural primitives in each kine-

matic space. As we will explain, the clustering approach represents each cluster as a

binary tree, Ti. The root node of Ti is the centroid of the cluster, and it represents a
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canonical gesture in the data set.

We begin the clustering process by first decomposing each trajectory M
(1:8)
i into

the 15 kinematic spaces described in Figure 3-3.

Now we look for canonical trajectories in each kinematic space by clustering the

data. If a group of data points lie near each other within the space, then group should

encompass similar types of motor actions. The assumption in clustering a kinematic

space is that there is an underlying regularity in the generative process that created

the data for the space, and therefore the distribution in the space is not uniform. The

biomechanics of human movement should confine the kinematic space trajectories to

small regions of the entire space. This is a hypothesis under investigation in this

work.

The clustering algorithm works by building a binary tree over the similarity of the

data elements in a particular kinematic space. It is described in Figure 3-6. The idea

behind the algorithm is to find the centroid of each cluster in a kinematic space J (x:y).

This is done by iteratively replacing each data element and its nearest neighbor with

a single element, on the condition that the distance between the two elements is less

than a threshold ε̂ . This new element is the average of its two children.

When the algorithm terminates, the data for the kinematic space J (x:y) has been

partitioned into a set of q binary trees:

Γ = {T1, T2, ..., Tq} (3.9)

If P (x:y)
r is the root node of a tree Ti, then the kinematic trajectory that P (x:y)

r encodes

is the canonical gesture for that cluster.

Although we can treat P (x:y)
r as the representative primitive of tree Ti, we can

also choose some P
(x:y)
k that is not a root node. As we will see in Section 3.4.4, this

allows us to subtly vary the primitive representation for some trajectory M
(x:y)
i . In

this manner we can adapt the representation to the task at hand.
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1. For a kinematic space J (x:y).

2. Let Ψ and be Ψ̄ be empty sets of binary tree nodes.

3. For each data set element M
(x:y)
i

(a) create trajectory P
(x:y)
i = M

(x:y)
i .

(b) let P
(x:y)
i be a leaf node and add it to Ψ.

4. do forever:

(a) set Ψ̄ to be the empty set

(b) for each P
(x:y)
i in Ψ

i. find a P
(x:y)
j in Ψ such that D(P

(x:y)
i , P

(x:y)
j ) is minimal

and i �= j

ii. if the dissimilarity D(P
(x:y)
i , P

(x:y)
j ) < ε̂

A. remove P
(x:y)
i and P

(x:y)
j from Ψ

B. create a new node Q and add it to Ψ̄

C. set the children of Q to be P
(x:y)
i and P

(x:y)
j

D. set the value of Q to be the average of its children:
(P

(x:y)
i + P

(x:y)
j )/2

(c) add the elements of Ψ̄ to Ψ

(d) if no new elements were created on the last iteration or Ψ
has only one element, terminate loop.

Figure 3-6: Algorithm for clustering of a given kinematic space J (x:y). The algorithm
creates a set of ordered binary trees such that the root node of each tree is the centroid
of a cluster in the data. Each cluster has a volume proportional to ε̂.
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This approach to clustering has the following characteristics:

• In contrast to mixture model clustering techniques such as Expectation Maxi-

mization, where the number of clusters is specified a priori, the cardinality of Γ

is dependent on the degree to which the data lies in clusters and therefore on

the clustering threshold ε̂.

• So long as ε̂ remains small compared to the range of the space, averaging ele-

ments has the effect of creating a smoother encoded motion that is a general-

ization of its children.

• It can be shown that the greatest distance between any two elements {P (x:y)
k , P

(x:y)
j }

in a tree of Γ, if the tree has a tree depth l, is l × ε̂.

• Any node in a tree is the average of its children. Consequently we only need to

store data for the leaf nodes of the trees. The vector values of the newly created

nodes can be inferred from their children.

3.4.4 Data Set Reconstruction

After clustering across the set of kinematic spaces, we want to reconstruct the data

set in terms of the discovered gestural primitives, or clusters. Recall that the data set

was initially decomposed into separate kinematic spaces. We can now use the data

set to link the spaces back together. In Figure 3-7 we provide a visualization of this

process, though the general idea may be best illustrated by the following example:

• Take an original trajectory, M
(1:8)
i , from the data set.

• Consider the sub-trajectories: M
(1:4)
i and M

(5:8)
i

• In each of the two kinematic spaces, we search the primitive trees to find the

closest matching trajectories within a threshold ζ̂. As we search down a tree, we

can think of it as shrinking the size of the cluster that we can use to approximate

the trajectory. Assume we find P
(1:4)
j and P

(5:8)
k .
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• Because M
(1:8)
i = 〈M (1:4)

i ,M
(5:8)
i 〉, we can now generalize this relationship by

linking the two clusters together with a new primitive P
(1:8)
l = 〈P (1:4)

j , P
(5:8)
k 〉.

Intuitively, the reconstruction can be thought of as taking the relationships of the

individual joint trajectories for an example motion and transferring those relationships

to a more general set of canonical joint trajectories.

To realize the intuitive goal, we first need a method for mapping an original

motor action onto a primitive. This algorithm is described in Figure 3-8. The process

amounts to searching the set of trees Γ = {T1, T2, ...} for the closest Euclidean distance

match within a specified threshold ζ̂. If ζ̂ = 0, then an exact match will be found

because the leaf nodes of Ti are in fact the original motion vectors. As ζ̂ increases we

are trade off a larger discrepancy in the mapping for a higher level of generalization.

If ζ̂ is very large, then we will only be mapping to the root nodes of Γ.

Now we can use this mapping to reconstruct the data. To do this, we simply

extend the previous example. The example linked together primitives in J (1:4) and

J (5:8) through the space J (1:8). We can use the same approach to all levels of the

hierarchy of kinematic spaces, starting with the single joint kinematic spaces J (i:i).

In doing so, we will link together the kinematic spaces in a manner that:

• Generalizes the motor action: If we link together primitives P (x:y)
j and P (y+1:z)

k

in space J (x:z), then we are also linking together all children nodes of P
(x:y)
j and

P
(y+1:z)
k . This allows novel movements not originally in the data set.

• Guarantees that this generalization is valid: The motion composed by 〈P (x:y)
j ,P

(y+1:z)
k 〉

is valid because it was formulated from actual movement data. The novel set

of movements formed by the generalization will also be valid because the chil-

dren of P
(x:y)
j and P

(y+1:z)
k must be similar to their parents by the method of

clustering.

At this point, by using the idiom of clusters and kinematic spaces, we have con-

structed the initial framework for the gestural language. Further implementation

details extend, optimize, and apply the framework.
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(a) (b) (c)

Figure 3-7: Reconstructing the data set. (a) A motor trajectory is decomposed into
its kinematic spaces. (b) An equivalent primitive (or cluster) for each trajectory is
found by searching the trees of the space. (c) We generalize the original trajectory to
the clusters by linking the clusters together.

1. Given M
(x:y)
i , a motor action in kinematic space J (x:y)

2. Given Γ = {T1, T2, ...}, the set of binary trees for J (x:y)

3. Let Ψ be the set of root nodes ∀Ti in Γ

4. do forever:

(a) find the P
(x:y)
j in Ψ such that D(M

(x:y)
i , P

(x:y)
j ) is minimal

(b) if D(M
(x:y)
i , P

(x:y)
j ) < ζ̂ or P

(x:y)
j is a leaf node, terminate

loop and return P
(x:y)
j

(c) else let Ψ be the children of P
(x:y)
j

Figure 3-8: An algorithm for mapping a motor action to a gestural primitive. It
performs an ordered binary tree search for P

(x:y)
j , the closest matching trajectory to

M
(x:y)
i within a threshold ζ̂ .

42



3.4.5 Dimensional Analysis

It was noted in Section 2.6.1 that dimensional analysis is often used in conjunction

with clustering techniques in unsupervised learning. Dimensional analysis is useful

in cases where the data lie on a smooth manifold. Otherwise, application of the

technique results in a loss of local topology.

In our domain, a technique such as PCA could be used in a couple of ways. One

application is to take the data set as a whole, lying in the highest kinematic space,

and use PCA to map down to a lower dimensional space. In this space we could then

build the gestural language. An interesting outcome of this approach would be to find

that the projection exaggerates the similarity and dissimilarity of the data, making

the derivation of the gestural primitives more exact.

Another approach is to apply PCA to each individual kinematic space after con-

struction of the gestural language. In this way the language can first be built without

any loss of topology. Successful construction of the language depends heavily on topo-

logical relationships in the data. Applying PCA post-hoc to each kinematic space

provides a means for reducing the dimensionality of the space. This increases the

speed of search through the space. Using PCA in this manner is similar to methods

developed for locally linear PCA.

We investigated both approaches and discuss the results in Chapter 5. Neither

approach changes the basic framework for the gestural language.

3.4.6 Transition Graphs

A second extension to the gestural language that has been explored is the construction

of transition graphs. Following the work of (Kositsky 1998), a transition graph is a

directed graph which encodes valid sequences of motions. This is a fairly simple

notion. If we have a continuous motion sequence:

Sj = 〈M1,M2, ...,Mq〉 (3.10)
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then we can map eachMi to a primitive Pk and form a graph with nodes 〈P1, P2, ..., Pq〉

and links between the nodes Pk and Pk+1 for 0 > k < q.

We can allow for repetitive and oscillatory motions by permitting cycles in the

graph. For example, if an arm extension is followed by arm contraction, then we

can represent this as a graph edge between the two representative primitives. The

edges are weighted according to their frequency in the data set. Kositsky’s work built

the graph around clusters in the arm workspace, using a velocity based encoding.

Consequently a motion in progress could terminate in a variety of locations depending

on the graph. In this work we are linking together larger motion strokes so that upon

completion of one primitive a naturally following second primitive may be executed.

To do this we use the approach detailed in Figure 3-9. The transition graph

links together the gestural primitives based on transitions found in the actual data.

However, because we are linking together clusters of trajectories and not individual

trajectories, we are essentially generalizing a single example from the data to all

members of the clusters.

3.4.7 Feature Search

The final step in the implementation is to perform a feature search on the gestural

language. This search constitutes the actual application of the language to a real

world task.

Feature searching is essentially the following idea: Given a perceptual feature gen-

erated by an external process, use the gestural language to construct an appropriate

motor action in response to the feature. The appropriate motor action is determined

by searching the binary trees of the gestural language for the primitive, or sequence

of primitives, that best match the perceptual input.

To begin the search, we want to enable, or activate, only those primitives which

have an initial joint configuration similar to the current joint configuration of the

robot. This prevents the robot from having to make large interpolations between the

current joint state and the primitive start state.

We use this criteria to activate the leaf node primitives in the 1-DOF kinematic
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1. Given data set DS = {S1, S2, ...}

2. Given the gestural language L = 〈Γ1,Γ2, ...,Γ15〉 over 15 kine-
matic spaces where Γj is the set of trees {T1, T2, ...}.

3. Given the empty graphs G = 〈Λ1,Λ2, ...,Λ15〉.

4. For each 〈M (1:8)
i ,M

(1:8)
i+1 〉 in Sk

(a) For each of the 15 kinematic spaces J (x:y)
r and r = 1...15

i. Map 〈M (1:8)
i ,M

(1:8)
i+1 〉 onto J (x:y)

r to get 〈M (x:y)
i ,M

(x:y)
i+1 〉

ii. Find the closest gestural primitives to 〈M (x:y)
i ,M

(x:y)
i+1 〉

to get 〈P (x:y)
l , P

(x:y)
l+1 〉

iii. Add P
(x:y)
l and P

(x:y)
l+1 to Λr if they are not already present

iv. Add an edge from P
(x:y)
l to P

(x:y)
l+1 with a weight of 1. If

the edge is already present, increment the weight by 1.

(b) Divide the weights of all edges in Λr by the number of edges
in Λr

Figure 3-9: Algorithm for building a weighted transition graph from the gestural
language.
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spaces. Only leaf node primitives which have an initial joint configuration close

to the current joint configuration of the robot are activated. This activation is then

trickled up the trees of the kinematic space through parent-child relationships. Recall

that the data set reconstruction step linked the kinematic spaces together. Thus we

can spread the activation across all kinematic spaces as well. After we trickle the

activations across the gestural language, we have a set of active primitives to search

against given the perceptual feature.

The search involves an evaluation metric F (Ai, Pk) which computes the response

of primitive Pk to perceptual feature Ai. This metric is task dependent. To limit the

size of the search, task specific heuristics are employed such as preference for larger

kinematic spaces, etc. In Chapter 4 we develop an evaluation metric for the motor

mimicry task.

An alternative method to generating the activation set entails using the current

robot state to index into the transition graph. Edges leaving the activated nodes lead

to the activation set.
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Chapter 4

Application of the Gestural

Language

4.1 Overview

At this point we describe the application of gestural language to a real task on the

humanoid robot Cog. It is fair to claim that the gestural language adds a level of

complexity to the robot that is not necessary for some tasks, and not appropriate

for others. For example, tactile manipulation is a task that requires a tight sensory

feedback coupling. The type of kinematic feed-forward representation proposed here

would not apply well to that domain. The postural reflexes used by the body to

maintain balance are another domain where a representational framework may not

be of use. However, there is an interesting and important set of problems where the

gestural language can be applied.

4.2 Application Domains

The power of a representational framework for motor actions is that it provides a level

of abstraction necessary for multi-modal learning. If the robotic system is to form a

correlation between perception and action, then providing a means to compare “apples

to oranges” is a necessary first step. Two areas of research where this representational
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power could be applied are nonverbal communication and imitation.

The appearance of nonverbal communication in young infants marks an important

developmental stage. (Shankar & King 2000) notes that at around four months old,

the infant passes into the“immediate social world”, a world of subtle communicative

gestures tightly coupled to the infant caregiver. Perception of the caregiver’s commu-

nicative gestures is an active area of research in humanoid robotics (Brezeal 2000).

The other side of the equation, the communication of the internal state and desires

of the robot, hasn’t received as full of a treatment. In this domain, the gestural lan-

guage can serve as a substrate to learn communicative behaviors based on perceptual

stimuli and caregiver reinforcement. As reinforcement signals are provided by the

caregiver, novel mappings between the perceptual features and the gestural primitive

can be formed. The gestural language can then provide a basis motor competency

from which perception-to-action learning can bootstrap.

In fact, the concept of a gestural language integrates well with the behavioral

decomposition of complex behavior that is predominant in humanoid robotics (Brooks

et al. 1998). It partitions the motor action space into subspaces of motor behaviors

which exhibit global similarity. We can think of the language providing a set of motor

behaviors such as “reach-in-direction” or “lean-forward”. This type of behavioral

decomposition lends well to developing a repertoire of gestural behaviors that could

be used by the robot in nonverbal communication.

A second interesting application domain is in imitation, and this is the domain

that we explore in this thesis. We have already discussed the imitation and motor-

mimicry framework in Section 2.2. Scassellati (Breazeal & Scassellati 1998) provides a

strong developmental framework for imitation in humanoid robotics. A fundamental

component of this work is the development of mechanisms for joint-attention between

the caregiver and the robot. As an outgrowth of this work , Scassellati has developed

a wide range of visual perceptual abilities for Cog. Of particular interest is the

theory of body module (ToBY)(Scassellati 2001). This module provides Cog with a

sense of naive physics about the world, and importantly, the ability to distinguish

between animate and inanimate trajectories. The ToBY module uses the spatial and
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temporal features of the visual input to perform the discrimination. Using motion

correspondence techniques, a moving object in the visual field of the robot provides

an initial trajectory for the system. Then, by applying a mixture of experts to detect

features such as trajectory energy, acceleration, and elastic collisions, the trajectory

is categorized as animate or inanimate. A complete description of this work can be

found in (Scassellati 2001).

Scassellati’s work provides an essential perceptual cue for imitation. By integrat-

ing this cue with the gestural language, we can develop a rudimentary form of motor

mimicry. The robot can then approximate animate trajectories with its own body.

Through the gestural language, the trajectory is no longer represented in terms of

the visual modality, but instead in terms of an egocentric framework: its body and

its ability to move its body in the world. This can be accomplished in the following

manner:

• The mimicry behavior receives a pixel-coordinate trajectory from the perceptual

system.

• Feature search (Section 3.4.7) is employed to find a gestural action that best

matches the trajectory.

• The gestural action is either executed or perhaps, in the service of a learning

task, inhibited.

4.3 Application to the Motor Mimicry Task

Applying the gestural language to the motor mimicry task involves developing the

evaluation metric F (Ai, P
(x:y)
k ) which computes the response of primitive P

(x:y)
k to

perceptual feature Ai (Section 3.4.7). Ai is an animate trajectory over time, in pixel

coordinates:

Ai = 〈 (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)〉 (4.1)

To find the gestural primitive that best matches Ai, we first must find P (x:y)
k in terms

of the pixel coordinate frame of Ai. This algorithm is explained in Figure 4-1.
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1. Given P
(x:y)
k , a gestural primitive in J (x:y).

2. Given �θR, the kinematic state of the robot at the current time.

3. Given FK(�θ), the forward kinematic function for the robot on

joint vector �θ.

4. Project P
(x:y)
k up to the full kinematic space J (1:8) by setting the

trajectories for joints 〈1, .., x − 1〉 and joints 〈y + 1, ..., 8〉 to be

constant at their current position, �θR, giving P
(1:8)
k

5. Evaluate FK(P (1:8)
k (t)) at each of the trajectory via points in

P
(1:8)
k , giving the 3-dimensional Cartesian trajectory Zk(t).

6. Project Zk(t) onto the 2-dimensional frontal plane in the direction

of the robot gaze, given by �θR. This gives Ẑk(t), the mapping of

P
(x:y)
k onto the robots visual coordinate frame.

Figure 4-1: Algorithm for projecting a gestural primitive onto a visual coordinate
frame.
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Our evaluation metric uses a forward kinematic model of Cog, which we specified

in Denavit-Hartenberg notation (Craig 1989). Using the forward kinematic model, we

can map the joint trajectory of a primitive to an end-effector trajectory in Cartesian

coordinates. However, doing this requires the full kinematic space to be specified.

Consequently, we use the current kinematic state of the robot to project lower kine-

matic spaces up to the full space.

The Cartesian space trajectory, Zk(t), obtained from the forward model is pro-

jected onto the two dimensional plane perpendicular to the robot’s line of sight, giving

us the trajectory Ẑk(t). Now Ẑk(t) and Ai lie in the same coordinate frame. The

next step is to normalize the two trajectories for comparison. This is accomplished by

time normalizing both to unit time using a spline encoding similar to the technique

described in Section 3.3.2. Then we subtract the mean from both and normalize the

size of both trajectories so that they lie within the unit circle. This normalization

scales Ẑk(t) by a factor α. The factor α will be used later as a means to heuristically

guide the search.

By taking the Euclidean distance between Norm(Ẑk(t)) and Norm(Ai), we come

upon our evaluation metric F (Ai, P
(x:y)
k ), determining the response of primitive P

(x:y)
k

to feature Ai.

At this point,the motor-mimicry task can be accomplished by the execution of

the feature search algorithm explained in Section 3.4.7. The search finds the closest

activated gestural primitive to the visual trajectory. As a means of guiding and

limiting this search, a few task specific heuristics are used. These are:

• Biasing the response F (Ai, P
(x:y)
k ) towards higher kinematic spaces. This is

because we prefer that the robot makes full bodied motions.

• Filter the primitives in the activated set based on the rescaling parameter α.

This biases the search away from short, small gestures and towards large, longer

gestures.

• Limiting the actual kinematic spaces searched so that we prefer full body ges-

ture, full arm gestures, or full torso gestures.
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We should note that by including all kinematic spaces in the evaluation metric,

we can satisfy the mimicry task through any given kinematic chain of the robot.

In addition, by exploiting the bilateral symmetry of the robot we are able to apply

the gestural language to either arm. These characteristics provide the interesting

property that Cog is able to mimic the perceptual input with either hand or by using

only the torso.

The final result of this application is that given a human facilitator generating a

random hand motion or some other animate trajectory in front of the robot, the robot

attempts to mimic the motion by executing a gestural primitive. We hope this basic

functionality will set the stage for more complex mimicry and learning possibilities.

We will look at the performance of the system in the next chapter.
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Chapter 5

Experiments and Discussion

5.1 Overview

At this point we are ready to move beyond a formulation of the motivation and the

framework. In this chapter we look at the implementation of the system and assess

its performance. We begin with an analysis of the robot-generated motion data set

and its accessibility to dimensionality reduction techniques. We describe experiments

to assess the formation of gestural langauge from this data set and we analyze the

gestural language in application. Finally, we conclude with a general discussion of

the issues uncovered during the experimentation process. In Figure 5-1 we provide

an overview of the system used in these experiments.

5.2 Looking at the Data

The approach described in this thesis is data driven, and as such, the nature of the

data is of critical importance to the success of this work. The overarching assumption

is that the data behave nicely in the following manner:
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Figure 5-1: Overview of the system employed for the motor mimicry task.
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• It exhibits local linearity and consequently global smoothness.

• It is derived from physical processes that exhibit strong regularity. This

allows for a more compact description of the data than provided by the

original space in which it was collected.

• There exists a set of features in the data that provide an encoding which

is amenable to generalization. The encoding allows a distance metric to

evaluate the similarity and dissimilarity of motions.

Using the method described in Section 3.3.1, we acquired approximately 500

unique gestural motions from the robot. The 8-DOF kinematic chain used in the

data capture was described by 15 kinematic spaces. This resulted in a data set of

7500 data points from which the gestural langauge was built. While the kinematic

space decomposition creates redundancy in the data, it is ultimately removed when

the data set is reconstructed (Section 3.4.4).

Unfortunately the high dimensionality of the data makes it difficult to assess in

terms of the qualitative objectives outlined. In Figure 5-2 we provide two and three

dimensional views of the data by representing each single joint trajectory in terms

of the start and end joint angle. Though the global motions are lost, this view does

suggest that the data lie in a well behaved distribution. In Figure 5-3 we look at

the standard deviation of the data set encoded as a 40 dimension vector. We see

that there is a large disparity in the relative standard deviations across joints. This

suggests that a subset of the 8-DOF kinematic chain may capture the predominant

aspects of the motions.

5.2.1 Dimensional Analysis

The effectiveness of linear dimensionality reduction techniques such as PCA are

largely dependent on the local or global linearity of the data. Following the approach

of (Fod et al. 2000) we used PCA globally across the entire data set to assess the

degree to which the data lie on a plane in a lower dimensional space. In Figure 5-4 we
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Figure 5-2: Plot of the entire data set (4016 single joint trajectories). (a) 2D projec-
tion of the start and end joint postions. (b) 3D projection including a trajectory via
point.
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Figure 5-3: The standard deviation of the data set. A motion is represented as a
40-dimensional vector, with five dimensions for each of the 8-DOF of the robot.
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look at the change in reconstruction error (Equation 2.5) as we vary the dimension-

ality of the data set encoding. The results suggest that our standard 40-dimensional

encoding of a motion can be projected, with minimal error, onto a 20-dimensional

space. We did not investigate a locally linear PCA approach because of the need for

a global coordinate frame.

We also investigated LLE (Section 2.6.1) as a means to find a lower dimensional

embedding of the data. The high PCA reconstruction errors found below a 20-

dimensional encoding suggested that below this threshold, the data set is inherently

nonlinear. LLE does not provide a simple mechanism for reconstructing the data. In

PCA, we simply multiply the lower dimensional vector by the transpose of the eign-

evector matrix to return to the higher dimensional space. For LLE, reconstruction

would involve learning the mapping from the lower to the higher dimension. We have

not attempted this and consequently were not able to compare LLE to PCA based

on the reconstruction error.

Instead we devised a comparison metric to measure the loss of local topology in

using each technique. To measure the retention of local topology we look at the

displacement of the nearest neighbors for each data point. For a data point X, we

want the k nearest neighbors of X, {β1, β2, ...βk}, to remain near X after it has been

mapped to X̂ in a lower dimension. Thus, if D(X, Y ) = Euclidean distance between

X and Y , and ε is the topological error, then:

τ =
∑

i=1..k

D(X, βi) (5.1)

τ̂ =
∑

i=1..k

D(X̂, β̂i)

ε = τ̂ /τ

Figure 5-5 compares PCA and LLE on the data set using this metric. This analysis

demonstrates a clear advantage, at least in terms of this metric, of LLE over PCA.

However, the difficulty in reconstructing the data with LLE remains a significant

obstacle.
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Figure 5-4: PCA reconstruction errors on the entire data set mapped into full kine-
matic space. (See Equation 2.5). Plotted are the errors at varying dimensional
encodings of the data set.
(a) 22 eigenvectors gave fair reconstruction for a 40-dimensional vector representa-
tion.
(b) 20 eigenvectors gave fair reconstruction for a 32-dimensional vector representa-
tion.
(c) 15 eigenvectors gave fair reconstruction for a 24-dimensional vector representa-
tion.
(d) 10 eigenvectors gave fair reconstruction for a 16-dimensional vector representation
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Figure 5-5: Analysis of the loss of topology in using LLE and PCA to reduce from 40
dimensions to 10 dimensions. The graph shows the induced change in the normalized
distance of each data point from its nearest neighbors. The error on the 500 data
points has been sorted in ascending order.
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5.3 Gestural Language Analysis

It is difficult to find a suitable measure with which to analyze the gestural language.

Perhaps the best method of analysis is to study the performance in application, which

we will do shortly in Section 5.4. However, it is instructive to try to tease out the

underlying structure of the gestural language that is formed from the data. The most

direct method of doing this is to look at the nature of the primitives found in the

data and how they vary as we vary the parameters used to build the language.

In Figure 5-6 we provide a visualization of some of the primitives found. They

are rendered in terms of the endpoint path formed through their trajectory. It is

important to keep in mind, however, that the gestural language is represented in

an entirely different space (i.e. egocentric) than the visualization provided. Thus,

two very similar trajectories in the figure may come from two very different types of

gestures. The primitives presented represent roughly a quarter of those found in the

highest kinematic space. Lower kinematic spaces are not depicted.

The primary parameter used in building the gestural language is the clustering

threshold, ε (Section 3.4.3). In varying ε we are varying the volume of the clusters

found in the data and consequently the number of clusters found. This effect can be

seen in Figure 5-7. The number of clusters found diminishes rapidly as ε is increased.

This allows for a more compact representation of the data. However, if ε is too large,

then we over-generalize the data. If we group two dissimilar motions together in this

case, then the resultant cluster is of little value.

Another experiment conducted was to analyze performance on a small, homoge-

nous test data set of similar motions. Because the motions (circular hand motions

is this case) were known to be similar, we could then asses the ability of the ges-

tural language to represent this similarity. The first experiment was to project the

cluster centroids into a three dimensional space for visualization using LLE (Figure

5-8). The clustering threshold ε was held constant. The figure shows that, in this

projection, the clusters lie in a highly segregated configuration, suggesting that ε can

be increased. Visual inspection shows that a small set of canonical gestures should
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Figure 5-6: Gestural primitive hand trajectories. The gestural language was built
using the complete data set. The hand trajectories displayed correspond to a subset
of the gestural primitives found in the largest kinematic space.
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Figure 5-7: The cardinality of the set of primitives in each kinematic space versus
clustering threshold. As the clustering threshold is increased, the number of primitives
found is shown to decrease.
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Figure 5-8: Clustering on a test data set. The primitive clusters for a set of circular
hand trajectories were found and projected, via LLE, into three dimensions

exist in the data set. In a second experiment, shown in Figure 5-9, we use the same

test data set. Here we decrease ε until the clustering converges to three canonical

gestures. We provide a visualization of the convergence process in terms of the hand

trajectory.

Another approach we took to assess the structure of the gestural language was to

again use LLE to create a three-dimensional visualization of the primitive clusters.

In Figure 5-10 we look at just the highest kinematic space corresponding to full body

motions. The cluster locations are superimposed on the original data set of motions.

We can see that they are fairly well-distributed across the large cluster of data. The

clearly segregated cluster on the left of the figure is the set of gestures that are

predominantly torso based. In Figure 5-11 we present the same type of visualization.

Here, however, we are looking at the set of clusters across all kinematic spaces. We

should note that a low ε is used in these graphs so that a large number of clusters

can be visualized.
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(a) (b)

(c) (d)

Figure 5-9: Hand trajectories of primitives. By increasing the clustering threshold, the
number of gestural primitives decreases. On a test data set of circular hand motions,
the clustering converges to three prototype gestures Note: Because the directionality
of the trajectory is not apparent, some primitives appear identical when in fact they
are not.
(a): Clustering threshold: 0.1. Roots: 19
(b): Clustering threshold: 0.2. Roots: 11
(c): Clustering threshold: 0.3. Roots: 5
(d): Clustering threshold: 0.4. Roots: 3
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Figure 5-10: The distribution of primitive clusters for the set of full body motions
(i.e., the largest kinematic space of the gestural language).
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Figure 5-11: The distribution of primitive clusters for the full data set of 500 motions,
across all kinematic spaces.
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5.4 Task Analysis

Analysis of the gestural language performance on a given task is more direct. In the

motor mimicry application, described in Chapter 4, it is simple enough to compare

the desired trajectory with the generated trajectory. The scope of this thesis is limited

to this application. However a full analysis of the gestural language’s viability as a

general organizational principle for motor control will require investigating additional

applications. We have broken this analysis into two parts: performance in a simulation

and performance on the physical robot. As we will see, the dynamics found in the

physical application create a discrepancy between the two.

5.4.1 The Simulated Task

For the simulated task we hand generated a series of 2D trajectories. These are

artificial approximations of the visually generated animate trajectories formed by the

sensory unit developed by Scassellati. Using the feature search techniques (Section

3.4.7) on the animate trajectory, the gestural language formulates a motor trajectory

in response. The motor trajectory is then executed on a graphical simulation of the

robot for evaluation purposes.

In Figure 5-12 we can see the performance of the system on the simulated task.

The figure demonstrates the adeptness of the language to replicate a variety of tra-

jectories. While these results are promising, they do not exploit the ability to dy-

namically combine primitives using transition graphs (Section 5.5).

When performing the feature search, the gestural language will only activate prim-

itives that are within a threshold of the robot’s current kinematic state. We found in

practice that the relative sparsity of the data required this threshold to be high. Con-

sequently, a linear interpolation from the current kinematic state to the primitive’s

starting kinematic state was necessary. A second interpolation was also implemented

to return the robot to a neutral posture at the end of the primitive execution.

As a second stage of the simulation task, we incorporated the real time animate

trajectories from the perceptual system. These were used to drive the graphical
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simulation via the gestural language. This experiment provided visual confirmation

that the system behaved appropriately when using the noisier perceptual data.

5.4.2 The Physical Task

Implementation of motor mimicry task on the humanoid platform is a critical com-

ponent of this work. While the simulation provides confirmation of the idealized

system’s ability, it is the physical implementation of the gestural language which

provides the final metric of success.

As we discussed in Section 3.2, Cog’s actuators introduce elasticity into the system

in order to provide force feedback. A position control loop, simulating the spring and

damper approximation to muscles, encloses the force control loop. For the robot to

precisely follow a kinematic trajectory provided by the gestural language, we would

want the joints of the robot to be very stiff. However, natural systems are not

stiff in the way an industrial robot arm is, and trajectory errors naturally occur.

Cog’s hardware prohibits simulating an unusually stiff spring at the joint and we

have not attempted to include a dynamic model in the controller. Consequently,

as Figure 5-13 demonstrates, discrepancies exist between the desired trajectory and

the realized trajectory. One approach to minimizing this error is to avoid high joint

velocities, as they incite oscillations in the spring-damper system. From the figure

we can see that the vertical range of the motion is compressed. This is due to the

influence of gravity in the robot dynamics. In moving to the physical system, it soon

became evident that for the robot to realize a natural quality of motion, the dynamics

of the system would have to be considered in greater detail.

Finally, we tested the system as a whole. Integrating a complex system such as

this into a real time platform is a challenge. Though the issues encountered do not

directly relate to the work of this thesis, it should be noted that the practical aspects

of the implementation certainly impact the model. For example, the latency incurred

by utilizing the gestural language prevents its inclusion in a tight feedback loop with

the environment. For this very reason, it is largely feed-forward. Noisy perceptual

information also posed problems. If the perceptual system captures only a portion of
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Figure 5-12: The simulated response of the gestural language to the motor mimicry
task. For each pair: the left plot is the 2D perceptual trajectory to be imitated; the
right plot is the 2D trajectory of the robot hand (simulated via a forward kinematic
model) in response to the input trajectory.
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Figure 5-13: The error between the simulated primitive and its physical realization.
Implementation on the humanoid introduces trajectory errors due to timing latencies
and physical dynamics. For each pair shown: the left plot is the simulated 2D tra-
jectory of the robot hand in response to a primitive; the right plot shows the actual
path taken by the humanoid hand.
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the facilitator’s movement, then the gestural response of the robot does not appear

to match well with the original motion. In Figure 5-14 we can see the original motion

trajectory, the gestural response trajectory, and the trajectory as executed. Because

we are using a normalized end point trajectory for feature comparisons, the mimicry

can only occur to a rough approximation. Mimicry based on perception of the joint

trajectories of the caregiver would certainly yield better results, though the perception

of this feature is very difficult. Additionally matching the scale of the trajectories

is important. While the robot may mimic a large circular arm motion with a small

circular hand motion, the mismatch of scale appears erroneous. One solution under

investigation is to build in assumptions about the scale of the perceived trajectories.

5.5 Discussion

Moving from the theory of motor primitives, garnered from neurophysiological data,

to the application of the theory on a humanoid robot, we uncovered a number of

unexpected issues and found numerous alternate paths to explore.

First, the overarching assumption is that if we encode motor actions and embed

them in a high dimensional space, then a distance metric will be sufficient to discern

the similarity of two points in the space. However, it can be the case that we would

want two motor actions to be judged as similar even though they appear very far

apart given the encoding. In addition, we may want to exploit invariance under

time or invariance under joint position depending on the task. This would require

separate encodings. Thus we cannot expect to find a static encoding that suffices for

all situations.

We found in practice that the search heuristics play a large role in the success

of the system. These heuristics guide the search towards an acceptable solution.

However, in doing so, they reduce the breadth of the search and thus the system

tends to find the same solution for multiple problems. In some situations, this can be

seen as desirable, yet often it is the diversity of responses to a complex environment

that gives the best results.
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Figure 5-14: The response of the gestural language to the motor mimicry task. The
response and perceptual input are displayed as the 2D projection of the end point
trajectory. For each triplet: (left) the perceptual input as animate trajectory; (mid-
dle) the selected gestural response based upon search through the gestural language;
(right) the actual response generated by the robot.
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The clustering threshold, ε, plays a critical role. Its value is hand tuned. If ε is too

small, then the number of gestural primitives is large. This results in large primitive

activation sets which are computationally expensive to evaluate. Increasing ε reduces

the size of the activation sets drastically. It also reduces the number of canonical

gestures in its repertoire. A small set of canonical gestures for the gestural language

is desirable if the gestures can be combined to form more complex gestures.

Much of the combinatorial aspect of the gestural language is derived from the

transition graphs. A number of issues were found in using transition graphs with the

language. These issues proved to be prohibitive in allowing the language to combine

primitives in a useful manner. The issues are:

• While the work of (Kositsky 1998) in this area allowed velocity based transi-

tions within a trajectory, the gestural language uses position based transitions

between trajectories. This requires the consecutive execution of discrete prim-

itives with an interpolation mechanism between them. A more flexible combi-

natorial method such as Kositsky’s may be necessary.

• The transition graphs need a high level of connectivity to be effective. High

connectivity allows for a diverse set of motions to be formed through the variety

of paths through the graph. To obtain a highly connected graph, the data set

needs to be large in comparison to the number of primitives in the graph. In

this work the data set was prohibitively small.

The complete system performed well on the motor mimicry task given the correct

circumstances. The relatively small size of the data set limited the diversity of prim-

itives and the ability to combine them effectively. Thus, the types of motor actions

that could be mimicked are fairly stereotypical. Although the perceptual system is

relatively robust, the human facilitator is forced to maintain a set distance from the

robot and execute deliberate motions to guarantee a fair perceptual feature.
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Chapter 6

Conclusion and Future Work

6.1 Review

This thesis describes research done on the humanoid robot platform Cog. We pro-

posed a data-driven approach to learning naturalistic gestures for humanoid motor

control. The proposed model develops an organizing principle for the representation

of motor actions. The representation was designed to allow for generalization of a

small repertoire of canonical motor actions into a broad set of complex motions.

The work was motivated by neurophysiological findings that suggest a similar type

of motor organization occurs in natural systems. We reviewed this research and the

impact the research has had in humanoid motor control. Additionally, we gave a brief

survey of unsupervised learning techniques that are applicable to the work done. We

also reviewed related approaches to motor control.

The work in this thesis was done in the context of a human-robot imitation frame-

work. As such, we discussed the imitation framework and how a representational

system such as the gestural langauge is a critical component of imitation.

The gestural language was built from a large data set of joint trajectories taken

from the robot as a facilitator guided the robot through a range of natural motions.

This approach was described and compared to other techniques of motion capture.

The gestural language itself is based on clustering the data set into sets of binary

trees. The data set is also decomposed hierarchically into kinematic spaces, so that
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a complex motion can be described in terms of the concatenation of motor actions of

lower kinematic spaces. These two structures are the key to the gestural language.

They allow the decomposition into kinematic spaces to be reversed to reconstruct

the complex motions. However, the reconstruction is done in terms of the gestural

primitives. This provides a means for stitching the primitive binary trees together so

that a generalized and novel set of gestures are created.

We also looked at dimensionality analysis and transition graphs as means to extend

the gestural language. Finally we described the application of the gestural language

to a real task: motor mimicry. We demonstrated how the proposed system could be

used in a real world application on a physical robot. The motor-mimicry task was

decomposed into a problem of a feature search through the gestural language. The

feature for this task was a two dimensional animate trajectory. We evaluated the

effectiveness of the system on this task, as well as the model as a whole, in Chapter 5.

6.2 Recommendations For Future Work

As is usually the case, a number of issues related to this work became apparent only

after the system had been built and tested.

First and foremost is the quality of the motion data set. As we have noted, the

size of the data set and the types of motor actions contained in it were problematic.

The data set is a critical component in any unsupervised learning approach and

exploring alternative means of motion capture should be the first course of action.

Two solutions under consideration are to build a motion capture suit tailored to the

robot and to investigate pre-existing motion capture data sets.

In this work we used a purely joint position based encoding. The disadvantages

of this encoding become evident when a small data set is used. The data set cannot

span the full range of the motor action space, requiring a heavy dependence on the

ability to generalize and combine the gestural primitives. A velocity or gradient based

encoding as used by (Kositsky 1998) and (Fod et al. 2000) may be a desirable avenue

to explore. In essence we need to consider methods to allow the continuous adaptation
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and combination of primitives.

A shift in direction that we hope to explore is the application of LLE to a new,

larger data set. If we can learn the inverse mapping to the higher dimensional space,

then we may be able to integrate this tool into the larger framework. This may prove

advantageous if we can use LLE to find a set of low dimensional orthogonal axes which

represent the space of gestures. If we can build the gestural language in this space,

then we can easily parameterize gestures in terms of their global characteristics.

A final direction of further work would be to explore alternative applications

of the gestural language. This would allow us to better assess its viability as an

organizational principle. Pointing and social gesturing are two domains that may be

well suited for exploration.

While there are many directions in which to extend and reevaluate this work, it has

been instructive in broaching the larger question of: How do we build representational

motor systems for robots? This work proposes a step towards answering that question,

and in doing so, opens up many new paths for exploration.
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