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Abstract

What could a robot learn in one day? This pa-
per describes the DayOne project, an endeavor
to build an epigenetic robot that can bootstrap
from a very rudimentary state to relatively so-
phisticated perception of objects and activities in
a matter of hours. The project is inspired by the
astonishingly rapidity with which many animals
such as foals and lambs adapt to their surround-
ings on the first day of their life. While such plas-
ticity may not be a sufficient basis for long-term
cognitive development, it may be at least neces-
sary, and share underlying infrastructure. This
paper shows how a sufficiently flexible perceptual
system begins to look and act like it contains cog-
nitive structures.

1. Introduction

Sometimes development is a rapid process. Con-
sider the first day in the life of a foal, which
can typically trot, gallop, groom itself, follow
and feed from its mare, all within hours of birth
(McCusker, 2003). Such precociousness is a com-
mon pattern for ungulates that evolved in habi-
tats with sparse cover, where the newborn needs
to (almost literally) hit the ground running or risk
becoming a sitting target for predators.

In epigenetic robotics, we seek to create a “pro-
longed epigenetic developmental process through
which increasingly more complex cognitive struc-
tures emerge in the system as a result of in-
teractions with the physical and social environ-
ment” (Zlatev and Balkenius, 2001). Should the
rapid development of the young of many species
give us hope that this process could be much
faster than we imagine? Perhaps not, since there
is a difference between the development of per-
ceptual and motor skills and the development of
cognitive structures. Cognitive structures exhibit
at least some flexibility of use and reuse, whereas
perceptual and motor structures are closely tied
to immediate sensing and actuation. But for

Figure 1: The humanoid robot Cog (Brooks et al., 1999).

those who see value in embodied, situated cog-
nition, this distinction may seem unconvincing.
Explicit in the work of Brooks was the suspicion
that techniques for dealing with the uncertainty
and ambiguity of perception and the subtleties of
appropriate actuation are the work-horses of in-
telligence, and are presumably then key to cogni-
tive structures: “This abstraction process is the
essence of intelligence and the hard part of the
problem being solved” (Brooks, 1991).

Work on the humanoid robot Cog (see Figure 1)
has focused very much on rapid perceptual de-
velopment. This paper describes the DayOne
project, which was an attempt to integrate much
of that work into a single, continuously running
system. We hope to demonstrate that sufficiently
advanced perceptual structures begin to look a
lot like cognitive structures, since there is much
flexibility in how they are constructed and used.

2. The stages of DayOne

The robot, upon startup, has the innate ability
to turn towards and track movements, and to
reach towards close objects, as described in ear-
lier work (Metta and Fitzpatrick, 2003) — other
research has shown the feasibility of developing
such behavior through experience (Metta, 2000,
Fitzpatrick et al., 2003). Development of new



perceptual skills begins in earnest right from the
beginning, in the following stages :-
Low-level vision — The robot’s low-level vision
system is not complete upon startup. It has a
filter which, by its construction, is fated to de-
velop into an edge orientation detector, but to do
so requires visual experience (Fitzpatrick, 2003b).
This is an alternative to using carefully con-
structed model-based filters such as those devel-
oped in (Chen et al., 2000).
Mid-level vision — Once the low-level fil-
ters have stabilized, the robot learns to differ-
entiate objects in its immediate surroundings.
Again, the object recognition modules involved
are fated to perform this task by their con-
struction, but the actual set of objects that the
robot learns to recognize is dependent on the
contents of its environment (Fitzpatrick, 2003b,
Metta and Fitzpatrick, 2003).
Mid-level audition — In parallel with visual
development, the robot learns to differentiate ut-
terances. This case is analogous to object dif-
ferentiation. The actual set of utterances that
the robot learns to recognize depends on what
the humans in its environment choose to say
(Fitzpatrick, 2003a).
High-level perception — As soon as the robot
is familiar with some objects and utterances, it
can begin to learn the causal structure of sim-
ple activities. The modules involved are fated to
perform this task, but the activities, the utter-
ances, and the objects involved are all a function
of the environment. Together they cover a very
rich space of structure, and the robot’s ability to
‘tune in’ to this structure and use it for prediction
and further learning begins to take on a cognitive
richness (Fitzpatrick, 2003a).

This last stage is the one this paper addresses,
along with the problem of integrating all the other
stages.

3. Coupled development

At any moment in time, Cog’s sensory input is
distilled into a distributed set of percepts. In
lower-level modules, these percepts are quantita-
tive in nature, and closely tied to the details of the
immediate sensor input — for example, the output
of the edge orientation detector. In higher level
modules, the percepts become more qualitative in
nature, and less sensitive to accidental or irrele-
vant details — for example, the output of object
recognition. Still higher-level percepts are even
more qualitative, such as a percept that corre-
sponds to seeing a familiar object, or hearing a
familiar sound.

imposed

filtered percepts modulation

——
111 l

Perceptual layer

AEARARAE

lower-level percepts

Figure 2: Each successively higher-level perceptual layer fil-
ters the one below it. For example, an object recognition
layer finds clusters in the feature space presented to it and
presents the clusters themselves as the features passed on to
the next level. Modulation signals flow in the opposite di-
rection to perception. They indicate when the output of the
layer is overly detailed, or on the contrary insufficiently nu-
anced — for example, when a distinction needed for a task
is not being made. If there is no way for the layer to make
such a distinction, it passes the request on as ‘trickle-down’
modulation.

Figure 2 shows an abstract view of each per-
ceptual layer. The primary direction of informa-
tion flow is from lower levels to higher levels, with
details being dropped along the way. A layer is
useful if it drops irrelevant details; each layer has
its own heuristics about what is relevant. For
example, the object recognition module attempts
to minimize the effects of pose. Of course, these
heuristics will not always be appropriate, and
only the overall task can determine that. Hence
there is a modulation signal that operates in the
reverse direction. It can request that more or less
detail be supplied for recently activated percepts,
or provide a training signal to drive differentia-
tion. This is somewhat analogous to the behavior
of neural networks.

The contract between each perceptual layer is
as follows :-

> The “semantics” of what activation means
for each line projecting to a higher layer will
be preserved as much as possible over time.
In other words, an output line will be acti-
vated for the same situations in the future
as it was in the past.

> An important exception is that the seman-
tics of an output line may change due to at-
tempts to refine or purify it (so that it is less
affected by noise, for example, or responds
to the same basic property in an extended
range of situations).



Figure 3: Association and invocation via the egocentric map
(Fitzpatrick, 2003a). When the robot looks at an object and
recognizes it, its head rolls into an inquisitive look. If a word
is spoken at this point (e.g. “car!” or “ball’” in top two

frames — note that the human is bringing the robot’s atten-
tion to an object with his hand) then that word is associated
with the object the robot is viewing. If that word is spoken
again later (as in the lower frames — note that the human
is standing back, only interacting through speech), then the
robot queries the egocentric map for the last known loca-
tion of the associated object, turns there, and looks for the
object.

> Requests for refinement are handled locally
if possible, otherwise passed back to a lower
layer.

> Input lines with very similar activation
should be detected and merged.

The contract is important because in actual im-
plementation, layers change in both an incremen-
tal and batch manner, and this requires careful
regulation to stay consistent over time. For ex-
ample, the object recognition layer quickly cre-
ates a new output line when the robot appears to
experience a novel object; periodically, all object
clusters are examined and optimized using an off-
the-shelf clustering algorithm in MATLAB, and
the new output line may turn out to be redun-
dant. The output of this clustering is mapped
to the current output lines in such a way as to
maximally preserve their semantics. Excess lines
are never removed, but simply made identical, so
that there are no abrupt changes in semantics.

The incremental version of hierachical dis-
criminant regression could be an alterna-
tive to this approach (Hwang and Weng, 2000,
Weng and Hwang, 2000).

4. Generalization of percepts

Cog has a primitive innate facility for associating
cues in different modalities via an egocentric map
(similar to the system of (Peters et al., 2001)).
Figure 3 shows an example for associating utter-
ances to objects. More generally, Cog also con-
tinually searches for useful new ways to perceive
the world, where being ‘useful’ means having pre-
dictive power. This search is performed by con-
sidering combinations of existing percepts, when
heuristics suggest that such combinations may be
fruitful. There are three categories of combina-
tions :-

> Conjunctions: if two percepts are noted
to occur frequently together, and rarely oc-
cur without each other, a composite percept
called their conjunction is formed. From
then on, this percept is activated whenever
the two component percepts do in fact occur
together in future.

> Disjunctions: if two percepts are noted to
occur frequently together, but also occur in-
dependently in other situations, a composite
percept called their disjunction is formed.
This percept is activated whenever one or
both of the two component percepts occur.

> Implications: Causal versions of the above
composite percepts, which are sensitive to
event order and timing, are also considered.

These composite percepts are intended to en-
able the robot to make meaningful generaliza-
tions, by allowing the same physical event to be
viewed in ways that are sensitive to past his-
tory. Figure 4 demonstrates the use of such
generalizations to link an object with its name
through an extended search activity. This is a
simplified version of an experiment carried out on
human infants by Tomasello (Tomasello, 1997),
which in combination with other experiments
seeks to rule out many heuristics proposed for
fast word learning in the infant development liter-
ature (Markman, 1989). A human and the robot
engage in a simple search activity, where the hu-
man goes looking for an object, which they fail
to find immediately. The robot is then tested to
see if it can associate the object eventually found
with its name, which is given at the start of the
search and never mentioned in the presence of its
referent.

Searches are presented to the robot as a game
following a fairly strict script: first the word ‘find’
is uttered, then the name of the object to search
for is mentioned. Then a series of objects are fix-
ated. The word ‘no’ is uttered if the object is not



the target of the search. The word ‘yes’ indicates
that the search has succeeded, and the object cur-
rently fixated is the target of the search. The
meaning of these words is initially entirely in the
mind of the human. But the robot can discover
them using event generalization, if it experiences
a number of searches for objects whose name it
already knows.

The word spoken after ‘find’ gets a special
composite implication percept associated with it,
let us call it word-after-find (of course, no
such symbols are used internally, and the word
‘find’ initially has no special significance — it
could be replaced with any other word, such
as ‘seek,” ‘cherchez,” or ‘fizzle-tizzle’). When
the search is for an object whose name the
robot knows (through a pre-established disjunc-
tion) that is also noted as a simultaneous event
with word-after-find. The object seen when
‘yves’ (object-with-yes) is said matches this
and an implication is formed between the two.
This implication is sufficient to link an wun-
known word following ‘find’ with the object seen
when ‘yes’ is said, via the word-after-find
and object-with-yes generalizations (again, the
choice of the word ‘yes’ has no special significance,
and could be replaced with ‘frob’).

The above description omitted many other com-
posite events which were created, but served no
purpose.

When the generalization mechanism adescribed
above was integrated with the full perceptual and
motor system of Cog, then the search activity be-
came much simpler to learn, requiring less gener-
alization. This is because the egocentric map has
internal state to track when the robot perceives
something such as an utterance that is strongly
associated with an object it is not looking at (so
that it can then direct its gaze towards a remem-
bered prior location of that object). With this
structure built in, the robot simply has to map
the search activity on to it, which it can do with
just two observations (the details of the composite
percepts involved are now omitted) :-

> ‘Find’ is followed by utterance associated
with an absent object.
> ‘Yes’ is said when a previously absent object
is in view.
Of course, there are many limitations to this
generalization mechanism, including :-

> The cues the robot is sensitive to are very
impoverished, relative to what a human in-
fant can perceive. For example, there is no
direct representation of the teacher, and no
perception of prosody or non-verbal cues.

> If there are multiple activities that overlap in
some respects, there is the potential for in-
terference between them. The issue of cap-
turing the overall activity context has not
been addressed.

> The basic events used are word and object
occurrences, which do not begin to capture
the kind of real world events that are possi-
ble. So the robot could not respond to non-
speech sounds, or changes in distance, or any
of the infinite possible events that are not
simply word/object appearances.

To begin to deal with this last point, a simple
mechanism was developed to get the robot’s at-
tention to an unnamed feature or feature com-
bination (as opposed to simply an object) using
periodicity detection. All perceptual features on
Cog are monitored over a sixty second time win-
dow to detect the occurrence of periodicity. Hence
if it is desired that the robot attend to the color
of objects as opposed to their identity or size, for
example, then objects of contrasting colors can
simply be shown to the robot. The periodic sig-
nal oscillation increased the salience of a percept
in a manner similar to the behavioral influences
used on Kismet (Breazeal and Scassellati, 1999).
But this is a rather limited extension. The next
section describes ongoing research into potentially
more powerful ways to enhance Cog’s ability to
generalize percepts.

5. Early generalization

There are many improvements possible on
the mechanism for association and general-
ization described so far. For example, in
(Arsenio and Fitzpatrick, 2003), periodic change
is used to spot associations between visual and
auditory percepts. Suppose two objects in the
scene are moving, and a periodic sound is heard,
the sound will be bound to the object that could
plausibly generate it based on whether the phase
of the sound appears locked to the motion of that
object.

Is it possible to have a mechanism for associ-
ation that requires not just temporal synchrony,
or periodicity, but can tease out more complex re-
lationships? This is just what the generalization
method described in the previous section did, but
it relies on producing many composite percepts —
which means it can only operate when the num-
ber of percepts is relatively low, or in other words
at a high level of abstraction. Ongoing work on
Cog seeks to give the robot the ability to rapidly
perceive non-trivial repeated patterns in its sen-



Human speech | Human action || Robot speech | Robot action
say [shows ball] say [looks at ball]
beh ball
say [shows car] say [looks at car]
keh car
say [shows cube] say [looks at cube]
keh cube
say say

[waits] cube

[shows ball] [looks at ball]
say say

[waits] ball

[attracts attention] [looks at person]
find find
ball ball
no [shows cube] no [looks at cube]
no [shows car] no [looks at car]
yes [shows ball] yes [looks at ball]

[attracts attention] [looks at person]
find find
toma toma
no [shows ball] no [looks at ball]
no [shows cube] no [looks at cube]
yes [shows bottle] yes [looks at bottle]
say [shows cube] say [looks at cube]

cube
say [shows bottle] say [looks at bottle]
toma

Figure 4: Extracts from a dialogue with Cog. First, the robot is taught to name the object it is looking at when the word ‘say’
is spoken. This is done by speaking the word, then prompting the robot with a short utterance (beh and keh in this example).
Short utterances prompt the robot to take responsibility for saying what it sees. A link is formed between ‘say’ and prompting
so that ‘say’ becomes an alternate way to prompt the robot. Then the robot is shown instances of searching for an object
whose name it knows (in the one example given here, the ball is the target). Finally, the robot is shown an instance of searching
where an unfamiliar object name is mentioned (‘toma’). This allows it to demonstrate that it has learned the structure of the
search task, by correctly linking the unfamiliar name (‘toma’) with the target of search (a bottle). This experiment is close to
one considered by Tomasello for human infants (Tomasello, 1997). Ideally, to match Tomasello’s experiment, all the objects
in this search should be unfamiliar, but this was not done. In the infant case, this would leave open the possibility that the
infant associated the unfamiliar word with the first unfamiliar object it saw. In the robot case, we have access to the internal
operations, and know that this is not the cue being used.



sory input, at a very low level, with space and
time costs that are consistent with massively par-
allel and pre-attentive application, analogous to
early visual processing (Nothdurft, 1993). Real-
time machine perception benefits greatly from
heuristics for quickly filtering out irrelevant stim-
uli and thus focusing computational effort where
it is most likely to pay off. The robots built
by the Humanoid Robotics Group at MIT all
use one form or another of such heuristics for
visual perception, such as biases towards skin-
colored regions, moving objects, and bright stim-
uli (Breazeal et al., 2000). More recently, as al-
ready mentioned, we have investigated the utility
of periodicity as a perceptual bias, demonstrat-
ing cross-modal priming where visually periodic
motion influenced the perception of the sound
of tools and toys (Arsenio and Fitzpatrick, 2003).
To extend this idea still further, to patterns, re-
quires finding an extremely fast way to look at a
sequence of percepts and spot the regularity.

5.1 Fast reqularity detection

Perception involves many ‘missing information’
problems which are straightforward to model but
difficult to invert. For example, transforming a
3D scene into a 2D view such as our eye might see
is a much more tractable mathematical problem
than that of recovering the 3D scene given just the
2D view. The basic difficulty is that many pos-
sible world states could have produced the same
sensory impression, so there is a fundamental am-
biguity to contend with. Of course, not all those
world states are equally likely to occur, and this
fact is explicitly or implicitly used in all computer
vision algorithms to generate plausible interpreta-
tions of raw sensory input.

For application to robotics, which requires real-
time parallel processing of sensory data, there is
little time to weigh alternative hypotheses — either
algorithms must be quite simple, or the results
must be pre-computed. For pattern detection we
make use of the second approach, where many
possible interpretations of each possible percept
sequence are considered, and a favored interpreta-
tion and measure of confidence is assigned off-line
prior to operation.

5.2 Counting patterns

For an alphabet of k symbols, there are k™ pos-
sible sequences of length n. However, if we are
concerned only with the pattern of symbol recur-
rence (that is, if we consider a sequence abbbac
and zdddza to be the same pattern), then the

length distinct distinct

n sequences patterns
5 3,125 52
6 46,656 203
7 823,543 877
8 16,777,216 4,140
9 387,420,489 21,147
10 10,000,000,000 115,975

11 285,311,670,611 678,570
12 8,916,100,448,256 4,213,597

Table 1: For sequences with at most n distinct symbols, the
middle column of this table shows the number of distinct
sequences of length n, while the column on the right shows
the number of distinct patterns of the same length. This
number is far smaller.

number of possibilities is much, much less. The
Bell numbers count these — see Table 1.

The numbers of patterns is smaller than one
might expect. This is very important because it
suggests that an exhaustive enumeration of pat-
terns (not sequences) is practical, both for off-line
evaluation and on-line storage in RAM, for non-
trivial pattern lengths.

Ideally, the interpretation of patterns should
be driven by experience. Given the volume of
sensed data of varying regularity, this seems quite
possible. Currently, for short patterns, human
expertise is captured directly by examining the
patterns by hand (this was done for patterns of
length 5 in less than an hour). For longer pat-
terns, an automated evaluation process is used
which exhaustively evaluates a set of models, and
compares the probability of the patterns they gen-
erate to find the most plausible interpretations.

5.8  Progress

Tables have been built automatically for se-
quences of length up to 10, and by hand for se-
quences of length 5. Preliminary testing shows
results superior to analytic methods previously
used (primarily because those methods needed to
be weakened to run in real-time, a trade-off not
needed for off-line preparation). Some initial ex-
periments have been done with noisy sequences —
this requires longer to build tables, but has lit-
tle impact on run-time operation. Currently the
model of activity used is equivalent to regular ex-
pressions augmented with the ability to refer to
previous sub-expressions. Models are compared
based on their description length and specificity.
Table 2 shows some sequences, their interpreta-
tion as a pattern (determined with a single look-



up), and predicted continuations of the sequence.
This ability is suitably fast to allow large-scale
comparisons of low-level percepts for regularity.
This work is motivated by recent advances in
processor speed and cache size. Much previous
work needs to be re-evaluated, to see what algo-
rithms have input spaces that are small enough
to allow them to be converted to look-up tables
(and ‘small enough’ can now be quite large!) for
fast real-time operation. Of course, this conver-
sion is not always possible, especially if there is
significant contextual information that needs to
be factored into the interpretive process. But for
pre-attentive biases, it seems to make sense.

6. Discussion and conclusions

This paper gave a snapshot of the current state
of the DayOne project implemented on the
humanoid robot Cog. This project focuses on
the rapid development of perceptual skills, in an
open-ended framework (see Figure 5). Interac-
tions with the physical environment are incredibly
rich in terms of sensory feedback — consider the
amount of raw information flowing in every sec-
ond from a robot’s cameras, microphones, tactile
sensors, etc. Given that wealth of information, we
can expect that the developmental process could
operate quite rapidly for the growth of appropri-
ate perceptual abilities. And this has been the
experience in the DayOne project.

There are many exciting research projects
that continue to press the boundaries of what
can be achieved through robot learning and
development — (Weng et al., 2000, Metta, 2000,
Roy and Pentland, 2002) etc. It seems that by
its nature, the field of epigenetic robotics will
advance by a combination of innovation, aggre-
gation, and consolidation. In our own system,
a promising direction of research seems to be to
take the most ‘cognitive-like’ ability of the robot
(understanding patterns of activity through com-
posite percepts) and find ways to push something
analogous back into the very lowest levels of per-
ception. It is interesting to imagine what a robot
of tomorrow could learn in a single hour, if every-
one’s most advanced methods of today become
just a part of the smallest building blocks of to-
morrow’s systems!
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