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Abstract. Humanoid robots are more suit-
ed to being generalists rather than special-
ists. Hence when designing a speech in-
terface, we need to retain that generality.
But speech recognition is most successful in
strongly circumscribed domains. We exam-
ine whether some useful properties of infant-
directed speech can be evoked by a robot, and
how the robot’s vocabulary can be adapted.
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1 Introduction

A natural-language interface is a desirable component
of a humanoid robot. In the ideal, it allows for natural
hands-free communication with the robot without ne-
cessitating any special skills on the human user’s part.
In practice, we must trade off flexibility of the interface
with its robustness. Contemporary speech understand-
ing systems rely on strong domain constraints to achieve
high recognition accuracy [23]. This paper makes an ini-
tial exploration of how ASR techniques may be applied
to the domain of robot-directed speech with flexibility
that matches the expectations raised by the robot’s hu-
manoid form.

A crucial factor for the suitability of current speech
recognition technology to a domain is the expected per-
plexity of sentences drawn from that domain. Perplex-
ity is a measure of the average branching factor within
the space of possible word sequences, and so generally
grows with the size of the vocabulary. For example, the
basic vocabulary used for most weather-related queries
may be quite small, whereas for dictation it may be
much larger and with a much less constrained grammar.
In the first case speech recognition can be applied suc-
cessfully for a large user population across noisy tele-
phone lines [22], whereas in the second a good quality
headset and extensive user training are required in prac-
tice. It is important to determine where robot-directed
speech lies in this spectrum. This will depend on the na-
ture of the task to which the robot is being applied, and
the character of the robot itself. For this paper, we will
consider the case of Kismet [5], an “infant-like” robot
whose form and behavior is designed to elicit nurtur-
ing responses from humans. Among other effects, the
youthful character of the robot is expected to confine
discourse to the here-and-now.

Sections 4 and 5 look at these effects in more de-
tail. Sections 6 and 7 look at methods that don’t rely
on such cooperative forms of speech. We expect both
mechanisms to play a role in practical language model-
ing for a general-purpose humanoid robot.

2 Background

Recent developments in speech research on robot-
s have followed two basic approaches. The first ap-
proach builds on techniques developed for command-
and-control style interfaces. These systems employ the
standard strategy found in ASR research of limiting the
recognizable vocabulary to a particular predetermined
domain or task, so as to ensure a manageable size of
the vocabulary. For instance, the ROBITA robot [16] in-
terprets command utterances and queries related to its
function and creators, using a fixed vocabulary of 1,000
words. Within a fixed domain fast performance with few
errors becomes possible, at the expense of any ability to
interpret out-of-domain utterances. But in many cases
this is perfectly acceptable, since there is no sensible re-
sponse available for such utterances even if they were
modeled.

A second approach adopted by some roboticists
[19, 17] is to allow adjustable (mainly growing) vocab-
ularies. This introduces a great deal of complexity, but
has the potential to lead to more open, general-purpose
systems. Vocabulary extension is achieved through a la-
bel acquisition mechanism based on a learning algorith-
m, which may be supervised or unsupervised. This ap-
proach was taken in particular in the development of
CELL [19], Cross-channel Early Language Learning,
where a robotic platform called Toco the Toucan is de-
veloped and a model of early human language acquisi-
tion is implemented on it. CELL is embodied in an ac-
tive vision camera placed on a four degree of freedom
motorized arm and augmented with expressive features
to make it appear like a parrot. The system acquires lex-
ical units from the following scenario: a human teach-
er places an object in front of the robot and describes
it. The visual system extracts color and shape proper-
ties of the object, and CELL learns on-line a lexicon of
color and shape terms grounded in the representation-
s of objects. The terms learned need not be pertaining
to color or shape exclusively - CELL has the potential
to learn any words, the problem being that of decid-
ing which lexical items to associate with which seman-
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tic categories. In CELL, associations between linguis-
tic and contextual channels are chosen on the basis of
maximum mutual information. Also in [17], a Pioneer-1
mobile robot was programmed with a system to cluster
its sensory experiences using an unsupervised learning
algorithm. In this way the robot extends its vocabulary
by associating sets of sensory features with the spoken
labels that are most frequently uttered in their presence.

3 Our approach

We share the goal of automatically acquiring new vo-
cabulary, but our methods are different. We rely on con-
temporary ASR systems.

but wish to do so using conventional speech recog-
nition systems.

In our approach, we try to stay within the ASR
paradigm as much as possible

The rest of this paper examines two broad classes of
robot-directed speech which are relevant to vocabulary
extension. In the first case, we consider speech that is
cooperative – speech that intentionally or not has prop-
erties that allow us to cast the machine learning prob-
lem as supervised. This is examined in Section 4. In the
second case, we consider neutral speech for which this
is not the case, and the problem is essentially unsuper-
vised. This is examined in Section 6.

4 Supervised extension

As mentioned earlier, natural speech may be the most
convenient medium for a human to interact with a hu-
manoid robot, including in the case of communicating
vocabulary extensions. The latter case is a specialized
kind of interaction, where the human plays the role of
a teacher, with the accompanying modifications in the
discourse with which the robot is addressed. When inter-
acting with a young-appearing robot such as Kismet in
particular, we can expect that the speech input may have
specialized characteristics similar to those of infant-
directed speech (IDS). This section examines some of
the properties of IDS so they may inform our expecta-
tions of the nature of Kismet-directed speech signal.

4.1 Properties of infant-directed speech

In this paper we examined the following two questions
regarding the nature of infant-directed speech:

– Does it include a substantial proportion of single-
word utterances? Presenting words in isolation
would solve the difficult word-segmentation prob-
lem.

– How often, if at all, is it clearly enunciated and s-
lowed down in an unnatural way? Overarticulated
speech may be helpful to infants, but may be detri-
mental to artificial speech recognizers.

Isolated words Whether isolated words in parental
speech help infants learn has been a matter of some de-
bate. It has been shown that infant-directed utterances
are usually short with longer pauses between words
(e.g., research cited in [21]), but also that they do not
necessarily contain a significant proportion of isolat-
ed words [1]. Another study [6] presents evidence that
isolated words are a reliable feature of infant-directed
speech, and that infants’ early word acquisition may be
facilitated by their presence. In particular, the authors
find that the frequency of exposure to a word in isola-
tion is a better predictor of whether the word will be
learned, than the total frequency of exposure. This sug-
gests that isolated words may be easier for infants to
process and learn. Equally importantly for us, howev-
er, is the evidence for a substantial presence of isolated
words in IDS: 9% found in [6] and 20% reported in [1].
If Kismet achieves its purpose of eliciting nurturing be-
havior from humans, then maybe we can expect a sim-
ilar proportion of Kismet-directed speech to consist of
single-word utterances. This hypothesis will undergo a
preliminary evaluation here.

Enunciated speech and “vocal shaping”The tenden-
cy of humans to slow down and overarticulate their
utterances when they meet with misunderstanding has
been reported as a problem in the ASR community [12].
Such enunciated speech degrades considerably the per-
formance of speech recognition systems which were
trained on natural speech only. If we find that human
caretakers tend to address Kismet with overarticulated
speech, its presence becomes a problem to be addressed
by the robot’s perceptual system.

In infant-directed speech, we might expect overar-
ticulation to occur in an instructional context, when a
caretaker deliberately introduces the infant to a new
word or corrects a mispronounciation. Another possible
strategy is that of “shaping” of the infant’s pronuncia-
tion by selecting and repeating the mispronounced part
of the word until a satisfactory result is reached. There
is anecdotal evidence that parents may employ such a
strategy.

4.2 Preliminary exploration

To facilitate some preliminary exploration of this area,
experiments were conducted in which subjects were in-
structed to try to teach a robot words. While the response
of the robot was not the focus of these experiments,
a very basic vocabulary extension was constructed to
encourage users to persist in their efforts. The system
consisted of a simple command-and-control style gram-
mar. Sentences that began with phrases such as “say”,
“can you say”, “try” etc. were treated to be requests for
the robot to repeat the phonetic sequence that followed
them. If, after the robot repeated a sequence, a positive
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phrase such as “yes” or “good robot” were used, the se-
quence would be entered in the vocabulary. If instead
the human’s next utterance was similar enough to the
first, it was assumed to be a correction and the robot
would repeat it. Because of the relatively low accuracy
of phoneme-level recognition, such corrections are the
rule rather than the exception.

Maybe also: Kismet’s “production” system (so so-
phisticated).

5 “Supervised” results - preliminary
analysis of the input signal

The purpose of this preliminary study is to suggest new
ways of improving the speech interface on the robot
based on a better knowledge of the properties of speech
directed at this particular robot. This section presents the
results of the study and a discussion of the method used
with directions for similar future research.

We have analyzed video recordings of 13 children
aged from 5 to 10(?) years old interacting with the robot.
Each session lasted approximately 20 minutes. In two of
the sessions, two children are playing with the robot at
the same time. In the rest of the sessions, only one child
is present with the robot.

The recordings were originally made for Sherry
Turkle’s research on children’s perception of technology
and identity.

5.1 Preliminary data analysis

We have looked to establish, in particular, whether
any of the following strategies are present in Kismet-
directed speech:

– single-word utterances (words spoken in isolation)
– enunciated speech
– vocal shaping
– vocal mimicry of Kismet’s babble

A total of 831 utterances were transcribed from the 13
sessions of children playing with the robot. Of these,
303 utterances, or 36.5% consisted of a single word
said in isolation. 27.4% of transcribed utterances (228)
contained enunciated speech. An utterance was count-
ed as ”enunciated speech” whenever deliberate pauses
between words or syllables within a word, and vow-
el lengthening were used. The count therefore includes
the very frequent examples where a subject would ask
the robot to repeat a word, e.g. “Kismet, can you say:
GREEN?”. In such examples, GREEN would be the on-
ly enunciated part of the utterance but the whole ques-
tion was counted as containing enunciated speech. In the
whole body of data we have discovered only 6 plausible
instances (0.7%) of vocal shaping. Finally, there were 23
cases of children imitating the babbling sounds that K-
ismet made, which accounts for 2.8% of the transcribed
utterances.

These coarse figures mask the finding that there was
a very wide distribution of strategies among different
subjects. In the following, deviations from the mean are
mentioned to give an idea of the wide range of the data.
They are not meaningful otherwise, since we have not
observed any Gaussian distributions. The total number
of utterances varied from session to session in the range
between 19 and 169, with a mean of 64 (standard de-
viation of 44, based on a sample of 13) utterances per
session. The percentage of single-word utterances had a
distribution among subjects with a mean at 34.8 and a
standard deviation of 21.1. These numbers come from
counts of single-word utterances including instances of
greetings, such as “Hello!”, and attention-bidding us-
ing the name of the robot, i.e. “Kismet!”. The statistics
change if we exclude such instances from the counts, as
can be seen in Table 1.

Specifically, if we exclude both greetings and the
robot’s name from counts of single-word utterances, we
get a distribution centered around 20.3% with a standard
deviation of 18.5%. This still accounts for a substantial
proportion of all recorded Kismet-directed speech. Ex-
amining the other distributions, we find that the mean
proportion of enunciated speech is 25.6% with a devia-
tion of 20.4%. The percentage of vocal imitation of K-
ismet’s babble has a mean of 2.0% and a deviation of
4.0%, which is again a very large variation. The same
pattern holds for the proportion of vocal shaping ut-
terances: a mean of 0.6% with a standard deviation of
1.1%. Thus, children in this dataset used varied strate-
gies to communicate with the robot, and there does not
seem to be enough evidence to suggest that the strate-
gies of vocal shaping and imitation play an important
part in it.

5.2 Discussion

The results presented above seem encouraging. Howev-
er, before we draw any meaningful conclusions from the
analysis, we must realize that in this instance, the pro-
cess of gathering the data and the method of analysis
had several shortcomings. The data itself, as was men-
tioned earlier, came from recordings of interactions set
up for the purposes of an unrelated sociological study of
children. (AM I SUPPOSED TO CITE SHERRY? BUT
HOW?).

The interaction sessions were not set up as con-
trolled experiments, and do not necessarily represen-
t spontaneous Kismet-directed speech. In particular, on
all occasions but one, at some point during the interac-
tion, children were instructed to make use of the current-
ly implemented command-and-control system to get the
robot to repeat words after them. In some cases, once
that happened, the subject was so concerned with get-
ting the robot to repeat a word that anything else simply
disappeared from the interaction. On three occasions,
the subjects were instructed to use the ”say” keyword
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subject # utterances# single-word
utterances

%
# single-word
greetings

# kismet
utterances

%

1 94 65 69.2 0 30 37.2
2 19 9 47.4 1 2 31.6
3 128 69 54.0 11 46 9.3
4 37 17 46.0 2 7 21.6
5 26 9 34.7 3 0 23.1
6 61 14 23.0 9 0 8.2
7 34 2 5.9 1 0 2.9
8 73 43 58.9 0 0 58.9
9 169 39 23.1 8 9 13.0
10 32 17 53.1 0 2 46.9
11 56 7 12.5 3 1 5.4
12 33 5 15.2 5 0 0.0
13 69 7 10.1 3 0 5.8

total 831 303 46 97
mean 34.8 20.3
deviation 21.1 18.5

Table 1.Percentage of isolated words in Kismet-directed speech

as soon as they sat in front of the robot. When subject-
s are so clearly focused on a teaching scenario, we can
expect the proportion of isolated words, for instance, to
be unnaturally high.

Note also that as of now, we have no measure of ac-
curacy of the transcriptions, which were done by hand
by one transcriber, from audio that sometimes had poor
quality. Given the focus of the analysis, only Kismet-
directed speech was noted from each interaction, ex-
cluding any conversations that the child may have had
with other humans who were present during the session.
Deciding which utterances to transcribe was clearly an-
other judgement call that we cannot validate here yet.
Finally, since the speech was transcribed by hand, we
cannot claim a scientific definition of an utterance (e.g.,
by pause duration) but must rely on one person’s judge-
ment call again.

However, this preliminary analysis shows promise
in that we have found many instances of isolated word-
s in Kismet-directed speech, suggesting that Kismet’s
environment may indeed be scaffolded for word learn-
ing. We have also found that a substantial proportion of
speech was enunciated. This would present problems for
the speech recognizer, but at the same time opens new
possibilities. For an improved word-learning interface,
it may be possible to descriminate between natural and
enunciated speech to detect instances of pronunciation
teaching (this approach was taken in the ASR commu-
nity, for example in [12]). On the other hand, the strat-
egy of vocal shaping was not clearly present in the in-
teractions, and there were few cases of mimicry. More
(and better) research would determine how reliable or
not these features of Kismet-directed speech may be.

We plan in the future to conduct much more con-
trolled studies to explore further the nature of the speech
input to the robot. The setup will involve filming 20 min-
utes of interaction between an adult subject and Kismet.

The subjects will be told that they are controls in an ex-
periment with children and that they should play freely
with the robot while we record the interaction. All care
will be taken not to constrain the subjects’ speech pat-
terns artificially by asking them to teach Kismet word-
s. The data will be sequenced and transcribed indepen-
dently by two people, so the transcripts may be com-
pared and analyzed for agreement and error. An utter-
ance will be defined as continuous speech between t-
wo pauses which last for longer than a threshold. We
will be looking to address in depth the question of how
word teaching scenarios are different from other kinds
of interaction with the robot, by examining the prosody,
vowel and pause lengthening (enunciation) and repeti-
tions in the speech input. We will also be interested in
finding out whether Kismet-directed speech has a high
proportion of topics related to the robot’s immediate en-
vironment, for the purposes of attaching meaning to the
words that the robot learns.

6 Unsupervised vocabulary extension

This section develops a technique to bootstrap from an
initial vocabulary (perhaps introduced by the methods
described in Section 4) by building a model of unrec-
ognized parts of utterances. The purpose of this mod-
el is both to improve recognition accuracy on the ini-
tial vocabulary and to automatically identify candidates
for vocabulary extension. This work draws on research
in word spotting and speech recognition. In word spot-
ting, utterances are modeled as a relatively small num-
ber of keywords floating on a sea of unknown word-
s. In speech recognition, an occasional unknown word
may punctuate utterances that are otherwise assumed to
be completely in-vocabulary. Despite this difference in
viewpoint, in some circumstances implementations of
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the two may become very similar. When transcribed ut-
terances are available for a domain, word spotting ben-
efits from the more detailed background model this can
support [13]. The manner in which the background is
modeled in these cases is reminiscent of speech recog-
nition. For example, a large vocabulary with good cov-
erage may be extracted from the corpus, so that rela-
tively few words in an utterance remain unmodeled. In
this case, the situation is qualitatively similar to OOV
(out-of-vocabulary) modeling in a conventional speech
recognizer, except that the vocabulary is strictly divided
into “filler” and “keyword”.

We will bootstrap from a relatively weak back-
ground model for word-spotting, where OOV words
dominate, to a much stronger model where many more
word or phrase clusters have been “moved to the fore-
ground” and explicitly modeled. With this increase in
vocabulary comes an increase in the potency of lan-
guage modeling, boosting performance on the original
vocabulary.

The remainder of this section shows how a conven-
tional speech recognizer can be convinced to cluster fre-
quently occurring acoustic patterns, without requiring
the existence of transcribed data.

A speech recognizer with a phone-based OOV mod-
el is able to recover an approximate phonetic representa-
tion for words or word sequences that are not in its vo-
cabulary. If commonly occurring phone sequences can
be located, then adding them to the vocabulary will al-
low the language model to capture their co-occurrence
with words in the original vocabulary, potentially boost-
ing recognition performance. This suggests building a
“clustering engine” that scans the output of the speech
recognizer, correlates OOV phonetic sequences across
all the utterances, and updates the vocabulary with any
frequent, robust phone sequences it finds. While this
is feasible, the kind of judgments the clustering engine
needs to make about acoustic similarity and alignmen-
t are exactly those at which the speech recognizer is
most adept. This section describes a way to convince the
speech recognizer to perform clustering almost for free,
eliminating the need for an external module to make a-
coustic judgments.

The clustering procedure is shown in Figure 1. An
ngram-based language model is initialized randomly, or
trained up using whatever data is available - for exam-
ple, a small collection of transcribed utterances. Unrec-
ognized words are explicitly represented using a phone-
based OOV model, described in the next section. The
recognizer is then run on a large set of untranscribed da-
ta. The phonetic and word level outputs of the recogniz-
er are compared so that occurrences of OOV words are
assigned a phonetic transcription. A randomly cropped
subset of these are tentatively entered into the vocab-
ulary, without any attempt yet to evaluate their signifi-
cance (e.g. whether they occur frequently, whether they
are dangerously similar to a keyword, etc.). The hy-

Hypothesized
transcript

N-Best
hypotheses

Run recognizer

Extract OOV
fragments

Identify
competition

Identify rarely-
used additions

Remove from
lexiconAdd to lexicon Update lexicon,

baseforms

Update Language Model

Fig. 1. The iterative clustering procedure.

potheses made by the recognizer are used to retrain the
language model, making sure to give the newly added
vocabulary items some probability in the model. Then
the recognizer runs using the new language model and
the process iterates. The recognizer’s output can be used
to evaluate the worth of the new “vocabulary” entries.
The following sections detail how to eliminate vocabu-
lary items the recognizer finds little use for, and how to
detect and resolve competition between similar items.

Extracting OOV phone sequencesRecognizer is that
developed by the SLS group at MIT [8]. The recogniz-
er used the OOV model developed by Bazzi in [3]. This
model can match an arbitrary sequence of phones, and
has a phone bigram to capture phonotactic constraints.
The OOV model is placed in parallel with the models for
the words in the vocabulary. A cost parameter can con-
trol how much the OOV model is used at the expense of
the in-vocabulary models. This value was fixed at zero
throughout the experiments described in this paper, s-
ince it was more convenient to control usage at the level
of the language model. The bigram used in this project
is exactly the one used in [3], with no training for the
particular domain.

Recovering phonemic representationsIt is useful to
convert the extracted phone sequences to phonemes if
they are to be added as baseforms in the lexicon. Al-
though the sequences could be kept in their original for-
m by creating a dummy set of units for the baseforms
that are passed verbatim by the phonological rules, con-
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verting to phonemes adds some small amount of gen-
eralization over allophones to the sequence’s pronunci-
ation, and reduces the amount of competing forms that
have to be dealt with later (see Section 0). I make the
conversion in a nave way, classifying single or paired
phonetic units into a set of equivalence classes that cor-
respond to phonemes. For example, taps and cleanly e-
nunciated stops are mapped to the same phoneme, with
explicit closures being dropped. Although the procedure
does not capture some contextual effects, it achieves
perfectly adequate performance (see Section 0).

Phoneme sequences are given an arbitrary name and
added to the list of vocabulary and baseforms. To en-
sure that the language model assigns some probability
to these new vocabulary items the next time the recog-
nizer runs, a collection of randomly generated sentences
is added to those output of the recognizer used in re-
training.

Dealing with rarely-used additions If a phoneme se-
quence introduced into the vocabulary is actually a com-
mon sound sequence in the acoustic data, then the rec-
ognizer will pick it up and use it. Otherwise, it just will
not appear very often in hypotheses. After each itera-
tion a histogram of phoneme sequence occurrences in
the output of the recognizer is generated, and those be-
low a threshold are cut.

Dealing with competing additions Very often, two or
more very similar phoneme sequences will be added to
the vocabulary. If the sounds they represent are in fac-
t commonly occurring, both are likely to prosper and
be used more or less interchangeably by the recognizer.
This is unfortunate for language modeling purposes, s-
ince their statistics will not be pooled and so will be less
robust. Happily, the output of the recognizer makes such
situations very easy to detect. In particular, this kind of
confusion can be uncovered through analysis of the N-
best utterance hypotheses.

If we imaging a set of N-best hypotheses aligned and
stacked vertically, then competition is indicated if two
vocabulary items exhibit both of these properties:

. Horizontally repulsive - if one of the items appears
in a single hypothesis, the other will not appear in
its vicinity.

. Vertically attractive - the items frequently occur in
the same part of a collection of hypotheses for a par-
ticular utterance.

Since the utterances in this domain are generally
short and simple, it did not prove necessary to rigorous-
ly align the hypotheses. Instead, items were considered
to be aligned based simply on the vocabulary items pre-
ceding and succeeding them. It is important to measure

both the attractive and repulsive conditions to distin-
guish competition from vocabulary items that are sim-
ply likely or unlikely to occur in close proximity.

Accumulating statistics about the above two prop-
erties across all utterances gives a reliable measure of
whether two vocabulary items are essentially acousti-
cally equivalent to the recognizer. If they are, they can
be merged or pruned so that the statistics maintained by
the language model will be well trained. For clear-cut
cases, the competing items are merged as alternatives in
the baseform entry for a single vocabulary unit. A bet-
ter alternative might have been to use class n-grams and
put the items into the same class, but this works fine. For
less clear-cut cases, one item is simply deleted.

Here is an example of this process in operation. In
this example, “phone” is a keyword present in the ini-
tial vocabulary. These are the 10-best hypotheses for the
given utterance:

“what is the phone number for victor zue”

<oov> phone (n ah m b er) (m ih t er z) (y uw)

<oov> phone (n ah m b er) (m ih t er z) (z y uw)

<oov> phone (n ah m b er) (m ih t er z) (uw)

<oov> phone (n ah m b er) (m ih t er z) (z uw)

<oov> phone (ah m b er f) (m ih t er z) (z y uw)

<oov> phone (ah m b er f) (m ih t er z) (y uw)

<oov> (ax f aa n ah) (m b er f axr) (m ih t er z)

(z y uw)

<oov> (ax f aa n ah) (m b er f axr) (m ih t er z)

(y uw)

<oov> phone (ah m b er f) (m ih t er z) (z uw)

<oov> phone (ah m b er f) (m ih t er z) (uw)

The “<oov> ” symbol corresponds to an out of vo-
cabulary sequence. The phone sequences within paren-
theses are uses of items added to the vocabulary in a pri-
or iteration of the algorithm. From this single utterance,
we acquire evidence that:

. The entry for(ax f aa n ah) may be compet-
ing with the keyword “phone”. If this holds up s-
tatistically across all the utterances, the entry will
be destroyed. The keyword vocabulary is given spe-
cial status, since they represent a link to the outside
world that should not be modified.

. (n ah m b er), (m b er f axr) and (ah m b er f) may
be competing. They are compared against each oth-
er because all of them are followed by the same se-
quence (m ih t er z) and many of them are preceded
by the same word “phone”.

. (y uw), (z y uw), and (uw) may be competing

All of these will be patched up for the next itera-
tion. This use of the N-best utterance hypotheses is rem-
iniscent of their application to computing a measure of
recognition confidence in [11].
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Testing for convergence For any iterative procedure,
it is important to know when to stop. If we have tran-
scribed data, we can track the keyword error rate on that
data and halt when the increment in performance is suf-
ficiently small.

If there is no transcribed data, then we cannot direct-
ly measure the error rate. We can however bound the rate
at which it is changing by comparing keyword locations
in the output of the recognizer between iterations. If few
keywords are shifting location, then the error rate can-
not be changing above a certain bound. We can therefore
place a convergence criterion on this bound rather than
on the actual keyword error rate. It is important to just
measure changes in keyword locations, and not changes
in vocabulary items added by clustering. Items that do
not occur often tend to be destroyed and rediscovered
continuously, making comparisons difficult.

7 Experiments in unsupervised
vocabulary extension

The unsupervised procedure described in the previous
section is intended to both improve recognition accu-
racy on the initial vocabulary, and to identify candi-
dates for vocabulary extension. This section describes
experiments that demonstrate to what degree these goals
were achieved. To facilitate comparison with other ASR
systems, results are quoted for a fairly typical domain
called LCSInfo [9] developed by the SLS group at MIT.
This domain consists of queries about personnel – their
addresses, phone numbers etc.

7.1 Experiment 1: Qualitative Results

This section describes the candidate vocabulary dis-
covered by the clustering procedure. Numerical,
performance-related results are reported in the next sec-
tion.

Results given here are from a clustering session with
an initial vocabulary of five keywords (email, phone,
room, office, address), run on a set of 1566 utterances.
Transcriptions for the utterances were available but not
used by the clustering procedure. Here are the top 10
clusters discovered on this very typical run, ranked by
decreasing frequency of occurrence:

1 n ah m b er 6 p l iy z
2 w eh r ih z 7 ae ng k y uw
3 w ah t ih z 8 n ow
4 t eh l m iy 9 hh aw ax b aw
5 k ix n y uw 10 g r uw p

These clusters are used consistently by the recog-
nizer in places corresponding to: ”number, whereis,
what is, tell me, canyou, please, thankyou, no,
how about, group,” respectively in the transcription.
The first, /n ah m b er/, is very frequent because of
”phone number”, ”room number”, and ”office number”.
Once it appears as a cluster the language model is im-
mediately able to improve recognition performance on

those keywords. Other high-frequency clusters corre-
spond to common first names (Karen, Michael).

Every now and then a ”parasite” appears such as /d-
h ax f ow n/ (from an instance of ”the phone” that the
recognizer fails to spot) or /iy n eh l/ (from ”email”).
These have the potential to interfere with the detection
of the keywords they resemble acoustically. But as soon
as they have any success, they are detected and eliminat-
ed as described in Section [sect]. It is possible that if a
parasite doesn’t get greedy, and for example limits itself
to one person’s pronunciation of a keyword, that it will
not be detected, although I didn’t see any examples of
this happening.

Many simple sentences can be modeled completely
after clustering, without need to fall back on the generic
OOV phone model. For example, the utterances:

What is Victor Zue’s room number

Please connect me to Leigh Deacon

are recognized as:

(w ah t ih z) (ih t er z uw) room (n ah m b

er)

(p l iy z) (k ix n eh k) (m iy t uw) (l iy d

iy) (k ix n)

All of which are entries in the vocabulary and so
contribute to the language model. All the discovered vo-
cabulary items are assigned one or more baseforms as
described in Section [sect]. For example, the nasal in /n
ah m b er/ is sometimes recognized, sometimes not, so
both pronunciations are added to a single baseform.

7.2 Experiment 2: Quantitative Results

For experiments involving small vocabularies, it is ap-
propriate to measure performance in terms of Keyword
Error Rate (KER). I take this to be:

KER =
F +M

T
� 100 (1)

with:
F : Number of false or poorly localized detections
M : Number of missed detections
T : True number of keyword occurrences in data
A detection is only counted as such if it occurs at

the right time. Specifically, the midpoint of the hypothe-
sized time interval must lie within the true time interval
the keyword occupies. I take forced alignments of the
test set as ground truth. This means that for testing it is
better to omit utterances with artifacts and words out-
side the full vocabulary, so that the forced alignment is
likely to be sufficiently precise.

The experiments here are designed to identify when
clustering leads to reduced error rates on a keyword vo-
cabulary. Since the form of clustering addressed in this
paper is fundamentally about extending the vocabulary,
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Fig. 2. Keyword error rate of baseline recognizer and cluster-
ing recognizer as total coverage varies.

we would expect it to be useless if the vocabulary is al-
ready large enough to give good coverage. We would
expect it to offer the greatest improvement when the vo-
cabulary is smallest. To measure the effect of coverage,
the full vocabulary was made smaller and smaller by
incrementally removing the most infrequent words. A
set of keywords were chosen and kept constant and in
the vocabulary across all the experiments so the results
would not be confounded by properties of the keywords
themselves (for example, the most common word ”the”
would make a very bad keyword since it is often un-
stressed and loosely pronounced). The same set of key-
words were used as in the previous section.

Clustering is again performed without making any
use of transcripts. To truly eliminate any dependence on
the transcripts, an acoustic model trained only on a dif-
ferent dataset was used. This reduced performance but
made it easier to interpret the results.

Figure 2 shows a plot of error rates on the test data
as the size of the vocabulary is varied to provide differ-
ent degrees of coverage. The most striking result is that
the clustering mechanism reduces the sensitivity of per-
formance to drops in coverage. In this scenario, the er-
ror rate achieved with the full vocabulary (which gives
84.5% coverage on the training data) is 33.3%. When
the coverage is low, the clustered solution error rate re-
mains under 50% - in relative terms, the error increases
by at most a half of its best value. Straight application of
a language model gives error rates that more than double
or treble the error rate.

As a reference point, the keyword error rate using a
language model trained with the full vocabulary on the
full set of transcriptions with an acoustic model trained
on all available data gives an 8.3% KER.

7.3 Experiment 3: Kismet Domain

An exploratory experiment was carried out for data
drawn from robot-directed speech collected for the K-
ismet robot. This data comes from an earlier series of
recording sessions [7] rather than the ones described in
Section 4. Early results are promising – semantically
salient words such as “kismet”, “no”, “sorry”, “robot”,
“okay” appear among the top ten clusters. But this work
is in a very preliminary stage.

8 Discussion and Conclusions

Paper is a collection of stuff, not a unified whole. Work
in progress. Hard hat area. Divers alarums and excur-
sions. Exeunt all pursued by the furies.

This paper does not address the crucial issue of bind-
ing vocabulary to meaning. One line of research under
way is to use transient, task-dependent vocabularies to
communicate the temporal structure of processes. An-
other line of research looks more generally at how a
robot can establist a shared basis for communication
with human through learning expressive verbal behav-
iors as well as acquiring the humans’ existing linguistic
labels.

Problem of affective speech – too much darned
prosody. Good thing about prosody: it may help distin-
guish a word teaching scenario from normal conversa-
tion. The robot could operate in different modes then
(mentioned in section 5.2).

Ultimate research interests: How can a robot estab-
lish a shared basis for communication? Informed by in-
fant language research. Establishing a mechanism for a
robot to vocalize its behavioral and internal state in a
consistent manner understandable to humans.

THIS CAME FROM 4.1:

Vocal imitation and referential mapping Parents tend
to interpret their children’s first utterances very gener-
ously and often attribute meaning and intent where there
may be none [4]. It has been shown, however, that such
a strategy may indeed help infants coordinate mean-
ing and sound and learn to express themselves verbally.
Pepperberg [18] formalized the concept into a teaching
technique called referential mapping. The strategy is for
the teacher to treat the pupil’s spontaneous utterances as
meaningful, and act upon them. This, it is shown, will
encourage the pupil to associate the utterance with the
meaning that the teacher originally gave it, so the stu-
dent will use the same vocalization again in the future to
make a similar request or statement. The technique was
successfully used in aiding the development of children
with special needs.

For the purposes of the research reported here, we
are not concerned with the meaning of words yet. How-
ever, one of the purposes of vocabulary extensions is to
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build a shared basis for meaningful communication be-
tween the human and the robot, and referential mapping
may be one of the promising lines of development. We
are therefore interested in finding out how often humans
spontaneously treat Kismet’s utterances as meaningful.
WHY DO I THINK THAT One way of doing this is to
look at how often they are imitated by the humans. ?
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