
Regulation and Entrainment in

Human-Robot Interaction

Dr. Cynthia Breazeal
MIT Artificial Intelligence Lab
Cambridge, MA 02139 USA

cynthia@ai.mit.edu

Abstract:

Newly emerging robotics applications for domestic or entertainment pur-
poses are slowly introducing autonomous robots into society at large. A
critical capability of such robots is their ability to interact with humans,
and in particular, untrained users. This paper explores the hypothesis that
people will intuitively interact with robots in a natural social manner pro-
vided the robot can perceive, interpret, and appropriately respond with
familiar human social cues. Two experiments are presented where naive
human subjects interact with an anthropomorphic robot. Evidence for mu-
tual regulation and entrainment of the interaction is presented, and how
this benefits the interaction as a whole is discussed.

1. Introduction
New applications for domestic, health care related, or entertainment based
robots motivate the development of robots that can socially interact with, learn
from, and cooperate with people. One could argue that because humanoid
robots share a similar morphology with humans, they are well suited for these
purposes – capable of receiving, interpreting, and reciprocating familiar social
cues in the natural communication modalities of humans.

However, is this the case? Although we can design robots capable of
interacting with people through facial expression, body posture, gesture, gaze
direction, and voice, the robotic analogs of these human capabilities are a crude
approximation at best given limitations in sensory, motor, and computational
resources. Will humans readily read, interpret, and respond to these cues in
an intuitive and beneficial way?

Research in related fields suggests that this is the case for computers [1]
and animated conversation agents [2]. The purpose of this paper is to explore
this hypothesis in a robotic media. Several expressive face robots have been
implemented in Japan, where the focus has been on mechanical engineering
design, visual perception, and control. For instance, the robot in the upper left
corner of figure 1 resembles a young Japanese woman (complete with silicone
gel skin, teeth, and hair [5]. The robot’s degrees of freedom mirror those of
a human face, and novel actuators have been designed to accomplish this in
the desired form factor. It can recognize six human facial expressions and can



Figure 1. A sampling of robots designed to interact with people. The far left
picture shows a realistic face robot designed at the Science University of Tokyo.
The middle left picture shows WE-3RII, an expressive face robot developed at
Waseda University. The middle right picture shows Robita, an upper-torso
robot also developed at Waseda University to track speaking turns. The far
right picture shows our expressive robot, Kismet, developed at MIT. The two
leftmost photos are courtesy of Peter Menzel [8].

mimic them back to the person who displays them. In contrast, the robot
shown in the upper right of corner of figure 1 resembles a mechanical cartoon
[6]. The robot gives expressive responses to the proximity and intensity of a
light source (such as withdrawing and narrowing its eyelids when the light is
too bright). It also responds expressively to a limited number of scents (such
as looking drunk when smelling alcohol, and looking annoyed when smoke is
blown in its face). The lower right picture of figure 1, shows an upper-torso
humanoid robot (with an expressionless face) that can direct its gaze to look at
the appropriate person during a conversation by using sound localization and
head pose of the speaker [7].

In contrast, the focus of our research has been to explore dynamic, expres-
sive, pre-linguistic, and relatively unconstrained face to face social interaction
between a human and an anthropomorphic robot called Kismet (see lower right
of figure 1). For the past few years, we have been investigating this question in a
variety domains through an assortment of experiments where naive human sub-
jects interact with the robot. This paper summarizes our results with respect to
two areas of study: the communication of affective intent and the dynamics of
proto-dialog between human and robot. In each case we have adapted the the-
ory underlying these human competencies to Kismet, and have experimentally
studied how people consequently interact with the robot. Our data suggests
that naive subjects naturally and intuitively read the robot’s social cues and
readily incorporate them into the exchange in interesting and beneficial ways.
We discuss evidence of communicative efficacy and entrainment that results in
an overall improved quality of interaction.

2. Communication of Affective Intent

Human speech provides a natural and intuitive interface for both communi-
cating with humanoid robots as well as for teaching them. Towards this goal,
we have explored the question of recognizing affective communicative intent
in robot-directed speech. Developmental psycholinguists can tell us quite a
lot about how preverbal infants achieve this, and how caregivers exploit it to



regulate the infant’s behavior. Infant-directed speech is typically quite exag-
gerated in the pitch and intensity (often called motherese). Moreover, mother’s
intuitively use selective prosodic contours to express different communicative
intentions. Based on a series of cross-linguistic analyses, there appear to be
at least four different pitch contours (approval, prohibition, comfort, and at-
tentional bids), each associated with a different emotional state [9]. Figure 2
illustrates these four prosodic contours.

Figure 2. Fernald’s prototypical prosodic contours for approval, attentional
bid, prohibition, and soothing.

Mothers are more likely to use falling pitch contours than rising pitch
contours when soothing a distressed infant [10], to use rising contours to elicit
attention and to encourage a response [11], and to use bell shaped contours to
maintain attention once it has been established [12]. Expressions of approval
or praise, such as “Good girl!”are often spoken with an exaggerated rise-fall
pitch contour with sustained intensity at the contour’s peak. Expressions of
prohibitions or warnings such as “Don’t do that!” are spoken with low pitch
and high intensity in staccato pitch contours. Fernald suggests that the pitch
contours observed have been designed to directly influence the infant’s emotive
state, causing the child to relax or become more vigilant in certain situations,
and to either avoid or approach objects that may be unfamiliar [9].

Inspired by these theories, we have implemented a recognizer for distin-
guishing the four distinct prosodic patterns that communicate praise, prohibi-
tion, attention, and comfort to preverbal infants from neutral speech. We have
integrated this perceptual ability into our robot’s emotion system, thereby al-
lowing a human to directly manipulate the robot’s affective state which is in
turn reflected in the robot’s expression.

2.1. The Classifier Implementation
As shown in figure 3, the affective speech recognizer receives robot-directed
speech as input. The speech signal is analyzed by the low-level speech process-
ing system, producing time-stamped pitch (Hz), percent periodicity (a measure
of how likely a frame is a voiced segment), energy (dB), and phoneme values1

1This auditory processing code is provided by the Spoken Language Systems Group at
MIT. For now, the phoneme information is not used in the recognizer.



in real-time. The next module performs filtering and pre-processing to reduce
the amount of noise in the data. The pitch value of a frame is simply set to 0 if
the corresponding percent periodicity indicates that the frame is more likely to
correspond to unvoiced speech. The resulting pitch and energy data are then
passed through the feature extractor, which calculates a set of selected fea-
tures (F1 to Fn). Finally, based on the trained model, the classifier determines
whether the computed features are derived from an approval, an attentional
bid, a prohibition, soothing speech, or a neutral utterance.

Figure 3. The spoken affective intent recognizer.

2.1.1. Training the System

Two female adults who frequently interact with Kismet as caregivers were
recorded. The speakers were asked to express all five affective intents (ap-
proval, attentional bid, prohibition, comfort, and neutral) during the inter-
action. Recordings were made using a wireless microphone, and the output
signal was sent to the low-level speech processing system running on Linux.
For each utterance, this phase produced a 16-bit single channel, 8 kHz signal
(in a .wav format) as well as its corresponding real-time pitch, percent period-
icity, energy, and phoneme values. All recordings were performed in Kismet’s
usual environment to minimize variability of environment-specific noise. Sam-
ples containing extremely loud noises (door slams, etc.) were eliminated, and
the remaining data set were labeled according to the speakers’ affective intents
during the interaction. There were a total of 726 utterances in the final data
set — approximately 145 utterances per class.

2.1.2. Data Preprocessing

The pitch value of a frame was set to 0 if the corresponding percent period-
icity was lower than a threshold value. This indicates that the frame is more
likely to correspond to unvoiced speech. Even after this procedure, observa-
tion of the resulting pitch contours still indicated the presence of substantial
noise. Specifically, a significant number of errors were discovered in the high
pitch value region (above 500 Hz). Therefore, additional preprocessing was per-
formed on all pitch data. For each pitch contour, a histogram of ten regions was
constructed. Using the heuristic that the pitch contour was relatively smooth,
it was determined that if only a few pitch values were located in the high region
while the rest were much lower (and none resided in between), then the high
values were likely to be noise. Note that this process did not eliminate high
but smooth pitch contour since pitch values would be distributed evenly across



Figure 4. Fernald’s prototypical prosodic contours found in the preprocessed
data set. Notice the similarity to those shown in figure 2.

nearby regions.

2.1.3. Classification Method

In all training phases each class of data was modeled using a Gaussian mix-
ture model, updated with the EM algorithm and a Kurtosis-based approach
for dynamically deciding the appropriate number of kernels [13]. Due to the
limited set of training data, cross-validation in all classification processes was
performed. Specifically, a subset of data was set aside to train a classifier using
the remaining data. The classifier’s performance was then tested on the held-
out test set. This process was repeated 100 times per classifier. The mean and
variance of the percentage of correctly classified test data were calculated to
estimate the classifier’s performance.



Feature Description
F1 Pitch mean
F2 Ptich Variance
F3 Maximum Pitch
F4 Minimum Pitch
F5 Pitch Range
F6 Delta Pitch Mean
F7 Absolute Delta Pitch Mean
F8 Energy Mean
F9 Energy Variance
F10 Energy Range
F11 Maximum Energy
F12 Minimum Energy

Table 1. Features extracted in the first-stage classifier. These features are
measured over the non-zero values throughout the entire utterance. Feature
F6 measures the steepness of the slope of the pitch contour.

2.1.4. Feature Selection

As shown in figure 4, the preprocessed pitch contour in the labeled data resem-
bles Fernald’s prototypical prosodic contours for approval, attention, prohibi-
tion, and comfort/soothing. A set of global pitch and energy related features
(see table 1) were used to recognize these proposed patterns. All pitch features
were measured using only non-zero pitch values. Using this feature set, a se-
quential forward feature selection process was applied to construct an optimal
classifier. Each possible feature pair’s classification performance was measured
and sorted from highest to lowest. Successively, a feature pair from the sorted
list was added into the selected feature set to determine the best n features for
an optimal classifier. Table 2 shows the results of the classifiers constructed
using the best eight feature pairs. Classification performance increases as more
features are added, reaches maximum (78.77 percent) with five features in the
set, and levels off above 60 percent with six or more features. It was found that
global pitch and energy measures were useful in roughly separating the pro-
posed patterns based on arousal (largely distinguished by energy measures) and
valence (largely distinguished by pitch measures). However, further processing
was required to distinguish each of the five classes distinctly.

Accordingly, the classifier consists of several mini-classifiers executing in
stages. In the beginning stages, the classifier uses global pitch and energy fea-
tures to separate some of the classes into pairs (in this case, clusters of soothing
along with low-energy neutral, prohibition along with high-energy neutral, and
attention along with approval were formed). These clustered classes were then
passed to additional classification stages for further refinement. New features
had to be considered to build these additional classifiers. Using prior informa-
tion, a new set of features encoding the shape of the pitch contour was included,
which proved useful in further separating the classes.



Table 2. The performance (the percent correctly classified) is shown for the best
pair-wise set having up to eight features. The pair-wise performance was ranked
for the best seven pairs. As each successive feature was added, performance
peaks with five features (78.8%), but then drops off.
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Figure 5. Feature space of all five classes with respect to energy variance, F9,
and pitch mean, F1. There are three distinguishable clusters for prohibition,
soothing and neutral, and approval and attention.



To select the best features for the initial classification stage, the seven
feature pairs listed in table 2 were examined. All feature pairs worked better
in separating prohibition and soothing than other classes. The F1-F9 pair
generates the highest overall performance and the least number of errors in
classifying prohibition. Several observations can be made from the feature
space of this classifier(see figure 5). The prohibition samples are clustered
in the low pitch mean and high energy variance region. The approval and
attention classes form a cluster at the high pitch mean and high energy variance
region. The soothing samples are clustered in the low pitch mean and low
energy variance region. The neutral samples have low pitch mean and are
divided into two regions in terms of their energy variance values. The neutral
samples with high energy variance are clustered separately from the rest of the
classes (in between prohibition and soothing), while the ones with lower energy
variance are clustered within the soothing class. These findings are consistent
with the proposed prior knowledge. Approval, attention, and prohibition are
associated with high intensity while soothing exhibits much lower intensity.
Neutral samples span from low to medium intensity, which makes sense because
the neutral class includes a wide variety of utterances.

Based on this observation, the first classification stage uses energy-related
features to classify soothing and low-intensity neutral with from the other
higher intensity classes (see figure 6). In the second stage, if the utterance
had a low intensity level, another classifier decides whether it is soothing or
neutral. If the utterance exhibited high intensity, the F1 − F9 pair is used to
classify among prohibition, the approval-attention cluster, and high intensity
neutral. An additional stage is required to classify between approval and at-
tention if the utterance happened to fall within the approval-attention cluster.

Figure 6. The classification stages of the multi-stage classifier.

2.1.5. Stage 1: Soothing — Low-Intensity Neutral versus Everything Else

The first two columns in table 3 show the classification performance of the top
four feature pairs (sorted according to how well each pair classifies soothing and



Feature Pair Perf. Feature Perf.
Pair Mean (%) Set Mean (%)

F9, F11 93.0 F9F11 93.0
F10, F11 91.8 F9F10F11 93.6
F2, F9 91.7 F2F9F10F11 93.3
F7, F9 91.3 F2F7F9F10F11 91.6

Table 3. Classification results in stage 1.

low-intensity neutral against other classes). The last two columns illustrate
the classification results as each pair is added sequentially into the feature set.
The final classifier was constructed using the best feature set (energy variance,
maximum energy, and energy range), with an average performance of 93.6
percent.

2.1.6. Stage 2A: Soothing versus Low-Intensity Neutral
Since the global and energy features were not sufficient in separating these two
classes, new features were introduced into the classifier. Fernald’s prototypical
prosodic patterns for soothing suggest looking for a smooth pitch contour ex-
hibiting a frequency down-sweep. Visual observations of the neutral samples in
the data set indicated that neutral speech generated flatter and choppier pitch
contours as well as less-modulated energy contours. Based on these postula-
tions, a classifier using five features (number of pitch segments, average length
of pitch segments, minimum length of pitch segments, slope of pitch contour,
and energy range) was constructed. The slope of the pitch contour indicated
whether the contour contained a down-sweep segment. It was calculated by
performing a linear fit on the contour segment starting at the maximum peak.
This classifier’s average performance is 80.3 percent.

2.1.7. Stage 2B: Approval-Attention versus Prohibition versus High-Intensity
Neutral

A combination of pitch mean and energy variance works well in this stage. The
resulting classifier’s average performance is 90.0 percent. Based on Fernald’s
prototypical prosodic patterns, it was speculated that pitch variance would
be a useful feature for distinguishing between prohibition and the approval-
attention cluster. Adding pitch variance into the feature set increased the
classifier’s average performance to 92.1 percent.

2.1.8. Stage 3: Approval versus Attention
Since the approval class and attention class span the same region in the global
pitch versus energy feature space, prior knowledge (provided by Fernald’s pro-
totypical prosodic contours) gave the basis to introduce a new feature. As
mentioned above, approvals are characterized by an exaggerated rise-fall pitch
contour. This particular pitch pattern proved useful in distinguishing between
the two classes. First, a three-degree polynomial fit was performed on each
pitch segment. Each segment’s slope sequence was analyzed for a positive slope
followed by a negative slope with magnitudes higher than a threshold value.



Table 4. Overall classification performance.

The longest pitch segment that contributed to the rise-fall pattern (which was
0 if the pattern was non-existent) was recorded. This feature, together with
pitch variance, was used in the final classifier and generated an average perfor-
mance of 70.5 percent. Approval and attention are the most difficult to classify
because both classes exhibit high pitch and intensity. Although the shape of
the pitch contour helped to distinguish between the two classes, it is very diffi-
cult to achieve high classification performance without looking at the linguistic
content of the utterance.

2.1.9. Overall Performance

The final classifier was evaluated using a new test set generated by the same
female speakers, containing 371 utterances. Because each mini-classifier was
trained using different portions of the original database (for the single-stage
classifier), a new data set was gathered to ensure that no mini-classifier stage
was tested on data used to train it. Table 4 shows the resulting classification
performance and compares it to an instance of the cross-validation results of the
best single-stage five-way classifier obtained using the five features described
in section 2.1.4. Both classifiers perform very well on prohibition utterances.
The multi-stage classifier performs significantly better in classifying the diffi-
cult classes, i.e., approval versus attention and soothing versus neutral. This
verifies that the features encoding the shape of the pitch contours (derived
from prior knowledge provided by Fernald’s prototypical prosodic patterns)
were very useful.

It is important to note that both classifiers produce acceptable failure
modes (i.e., strongly valenced intents are incorrectly classified as neutrally va-
lenced intents and not as oppositely valenced ones). All classes are sometimes
incorrectly classified as neutral. Approval and attentional bids are generally
classified as one or the other. Approval utterances are occasionally confused
for soothing and vice versa. Only one prohibition utterance was incorrectly
classified as an attentional bid, which is acceptable. The single-stage classifier
made one unacceptable error of confusing a neutral utterance as a prohibition.
In the multi-stage classifier, some neutral utterances are classified as approval,
attention, and soothing. This makes sense because the neutral class covers a
wide variety of utterances.



3. Integration with the Emotion System
The output of the recognizer is integrated into the rest of Kismet’s synthetic
nervous system as shown in figure 7. The entry point for the classifier’s re-
sult is at the auditory perceptual system. Here, it is fed into an associated
releaser process. In general, there are many different kinds of releasers defined
for Kismet, each combining different contributions from a variety of perceptual
and motivational systems. Here, I only discuss those releasers related to the
input from the vocal classifier. The output of each vocal affect releaser repre-
sents its perceptual contribution to the rest of the SNS. Each releaser combines
the incoming recognizer signal with contextual information (such as the cur-
rent “emotional” state) and computes its level of activation according to the
magnitude of its inputs. If its activation passes above threshold, it passes its
output on to the emotion system.

Figure 7. System architecture for integrating vocal classifier input to Kismet’s
emotion system.

Within the emotion system, the output of each releaser must first pass
through the affective assessment subsystem in order to influence emotional
behavior. Within this assessment subsystem, each releaser is evaluated in af-
fective terms by an associated somatic marker (SM) process. This mechanism
is inspired by the Somatic Marker Hypothesis of [3] where incoming perceptual



Category Arousal Valence Stance Typical
Expression

Approval medium high approach pleased
high positive

Prohibition low high withdraw sad
negative

Comfort low medium neutral content
positive

Attention high neutral aproach interest

Neutral neutral neutral neutral calm

Table 5. Table mapping [A, V, S] to classified affective intents. Praise biases
the robot to be “happy,” prohibition biases it to be “sad,” comfort evokes a
“content, relaxed” state, and attention is “arousing”.

information is “tagged” with affective information. Table 5 summarizes how
each vocal affect releaser is somatically tagged.

There are three classes of tags that the affective assessment phase uses
to affectively characterize its perceptual, motivational, and behavioral input.
Each tag has an associated intensity that scales its contribution to the overall
affective state. The arousal tag, A, specifies how arousing this percept is to
the emotional system. Positive values correspond to a high arousal stimulus
whereas negative values correspond to a low arousal stimulus. The valence tag,
V , specifies how good or bad this percept is to the emotional system. Positive
values correspond to a pleasant stimulus whereas negative values correspond
to an unpleasant stimulus. The stance tag, S, specifies how approachable
the percept is. Positive values correspond to advance whereas negative values
correspond to retreat. Because there are potentially many different kinds of
factors that modulate the robot’s affective state (e.g., behaviors, motivations,
perceptions), this tagging process converts the myriad of factors into a common
currency that can be combined to determine the net affective state.

For Kismet, the [A, V, S] trio is the currency the emotion system uses
to determine which emotional response should be active. This occurs in two
phases: First, all somatically marked inputs are passed to the emotion elici-
tor stage. Each emotion process has an elicitor associated with it that filters
each of the incoming [A, V, S] contributions. Only those contributions that
satisfy the [A, V, S] criteria for that emotion process are allowed to contribute
to its activation. This filtering is done independently for each class of affective
tag. For instance, a valence contribution with a large negative value will not
only contribute to the sorrow emotion process, but to the fear, anger, and
distress processes as well. Given all these factors, each elicitor computes its
net [A, V, S] contribution and activation level, and passes them to the associ-
ated emotion process within the emotion arbitration subsystem. In the second
stage, the emotion processes within the emotion arbitration subsystem compete



for activation based on their activation level. There is an emotion process for
each of Ekman’s six basic emotions [4]. Ekman posits that these six emotions
are innate in humans, and all others are acquired through experience. The
“Ekman six” encompass joy, anger, disgust, fear, sorrow, and surprise.

If the activation level of the winning emotion process passes above thresh-
old, it is allowed to influence the behavior system and the motor expression
system. There are actually two threshold levels, one for expression and one for
behavior. The expression threshold is lower than the behavior threshold; this
allows the facial expression to lead the behavioral response. This enhances the
readability and interpretation of the robot’s behavior for the human observer.
For instance, given that the caregiver makes an attentional bid, the robot’s
face will first exhibit an aroused and interested expression, then the orienting
response ensues. By staging the response in this manner, the caregiver gets im-
mediate expressive feedback that the robot understood her intent. For Kismet,
this feedback can come in a combination of facial expression, tone of voice, or
posture. The robot’s facial expression also sets up the human’s expectation of
what behavior will soon follow. As a result, the human observing the robot
can see its behavior, in addition to having an understanding of why the robot
is behaving in that manner. As I have argued previously, readability is an
important issue for social interaction with humans.

3.1. Affective Intent Experiment
Communicative efficacy has been tested with people very familiar with the
robot as well as with naive subjects in multiple languages (French, German,
English, Russian, and Indonesian). Female subjects ranging in age from 22 to
54 were asked to praise, scold, soothe, and to get the robot’s attention. They
were also asked to signal when they felt the robot “understood” them. All
exchanges were video recorded for later analysis.

Figure 8 illustrates a sample event sequences that occurred during ex-
periment sessions of a naive speaker. Each row represents a trial in which
the subject attempts to communicate an affective intent to Kismet. For each
trial, we recorded the number of utterances spoken, Kismet’s cues, subject’s
responses and comments, as well as changes in prosody, if any.

3.2. Discussion
Recorded events show that subjects in the study made ready use of Kismet’s
expressive feedback to assess when the robot “understood” them. The robot’s
expressive repertoire is quite rich, including both facial expressions and shifts in
body posture. The subjects varied in their sensitivity to the robot’s expressive
feedback, but all used facial expression, body posture, or a combination of both
to determine when the utterance had been properly communicated to the robot.
All subjects would reiterate their vocalizations with variations about a theme
until they observed the appropriate change in facial expression. If the wrong
facial expression appeared, they often used strongly exaggerated prosody to
“correct” the “misunderstanding”. In trial 20–22 of subject S3’s experiment
session, she giggled when kismet smiled despite her scolding, commented that
volume would help, and thus spoke louder in the next trial. In general, the
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Figure 8. Sample experiment session of a naive speaker, S3.

subjects used Kismet’s expressive feedback to regulate their own behavior.
Kismet’s expression through face and body posture becomes more intense

as the activation level of the corresponding emotion process increases. For
instance, small smiles verses large grins were often used to discern how “happy”
the robot appeared. Small ear perks verses widened eyes with elevated ears and
craning the neck forward were often used to discern growing levels of “interest”
and “attention”. The subjects could discern these intensity differences and
several modulated their own speech to influence them. For example, in trials 1
and 2, Kismet responded to subject S3’s praise by perking its ears and showing
a small grin. In the next two trials the subject raised her pitch while praising
Kismet to coax a stronger response. In trials 6–8 Kismet smiles broadly. We
found that subjects often use Kismet’s expressions to regulate their affective
impact on the robot.

During course of the interaction, several interesting dynamic social phe-
nomena arose. Often these occurred in the context of prohibiting the robot. For



instance, several of the subjects reported experiencing a very strong emotional
response immediately after “successfully” prohibiting the robot. In these cases,
the robot’s saddened face and body posture was enough to arouse a strong sense
of empathy. The subject would often immediately stop and look to the experi-
menter with an anguished expression on her face, claiming to feel “terrible” or
“guilty”. In this emotional feedback cycle, the robot’s own affective response
to the subject’s vocalizations evoked a strong and similar emotional response
in the subject as well. This empathic response can be considered to be a form
of entrainment.

Another interesting social dynamic we observed involved affective mirror-
ing between robot and human. For instance, for another female subject (S2),
she issued a medium strength prohibition to the robot, which caused it to dip
its head. She responded by lowering her own head and reiterating the pro-
hibition, this time a bit more foreboding. This caused the robot to dip its
head even further and look more dejected. The cycle continues to increase in
intensity until it bottoms out with both subject and robot having dramatic
body postures and facial expressions that mirror the other. We see a simi-
lar pattern for subject S3 while issuing attentional bids. During trials 14–16
the subject mirrors the same alert posture as the robot. This technique was
often employed to modulate the degree to which the strength of the message
was “communicated” to the robot. This dynamic between robot and human is
further evidence of entrainment.

4. Proto-Dialog

Achievement of adult-level conversation with a robot is a long term research
goal. This involves overcoming challenges both with respect to the content of
the exchange as well as to the delivery. The dynamics of turn-taking in adult
conversation are flexible and robust. Well studied by discourse theorists, hu-
mans employ a variety of para-linguistic social cues, called envelope displays, to
regulate the exchange of speaking turns [2]. Given that a robotic implementa-
tion is limited by perceptual, motor, and computational resources, could such
cues be useful to regulate the turn-taking of humans and robots?

Kismet’s turn-taking skills are supplemented with envelope displays as
posited by discourse theorists. These paralinguistic social cues (such as raising
of the brows at the end of a turn, or averting gaze at the start of a turn)
are particularly important for Kismet because processing limitations force the
robot to take-turns at a slower rate than is typical for human adults. However,
humans seem to intuitively read Kismet’s cues and use them to regulate the
rate of exchange at a pace where both partners perform well.

4.1. Envelope Display Experiment

To investigate Kismet’s turn-taking performance during proto-dialogs, we in-
vited three naive subjects to interact with Kismet. Subjects ranged in age from
12 to 28 years old. Both male and female subjects participated. In each case,
each subject was simply asked to carry a “play” conversation with the robot.
The exchanges were video recorded for later analysis. The subjects were told



that the robot did not speak or understand English, but would babble to them
something like an infant.

37+8:06 – 8:43end @ 8:43

447:18 – 8:02

216:54 – 7:15

76:43 – 6:50start @ 6:43subject 2

37+17:30 – 18:07end @ 18:07

7016:20 – 17:25

1915:56 – 16:15

2115:37 – 15:54

1315:20 – 15:33start @ 15:20subject 1

subject 3

80+9:20 – 10:40end @ 10:40 min

458:25 – 9:10

587:18 – 8:16

186:58 – 7:16

536:00 – 6:53

245:30 – 5:54

155:08 – 5:23

104:52 – 4:58start @ 4:52 min

time between
disturbances

(sec)

time stamp (min:sec)

1065342total speaking
turns

%data%data%data

82%78%8385%4583%35clean
turns

6.5%

7%

11%

avgsubject 3subject 2subject 1

7%75.7%37%3significant flow
disturbances

7%77.5%47%3prompts

15%167.5%410%4interrupts

Figure 9. The left table shows data illustrating evidence for entrainment of
human to robot. The right table summarizes Kismet’s turn taking performance
during proto-dialog with three naive subjects. Significant disturbances are
small clusters of pauses and interruptions between Kismet and the subject
until turn-taking become coordinated again

Often the subjects begin the session by speaking longer phrases and only
using the robot’s vocal behavior to gauge their speaking turn. They also expect
the robot to respond immediately after they finish talking. Within the first
couple of exchanges, they may notice that the robot interrupts them, and they
begin to adapt to Kismet’s rate. They start to use shorter phrases, wait longer
for the robot to respond, and more carefully watch the robot’s turn taking cues.
The robot prompts the other for their turn by craning its neck forward, raising
its brows, and looking at the person’s face when it’s ready for them to speak.
It will hold this posture for a few seconds until the person responds. Often,
within a second of this display, the subject does so. The robot then leans back
to a neutral posture, assumes a neutral expression, and tends to shift its gaze
away from the person. This cue indicates that the robot is about to speak. The
robot typically issues one utterance, but it may issue several. Nonetheless, as
the exchange proceeds, the subjects tends to wait until prompted.

Before the subjects adapt their behavior to the robot’s capabilities, the
robot is more likely to interrupt them. There tend to be more frequent delays
in the flow of “conversation” where the human prompts the robot again for a



response. Often these “hiccups” in the flow appear in short clusters of mutual
interruptions and pauses (often over 2 to 4 speaking turns) before the turns be-
come coordinated and the flow smoothes out. However, by analyzing the video
of these human-robot “conversations”, there is evidence that people entrain
to the robot (see the table to the left in figure 9). These “hiccups” become
less frequent. The human and robot are able to carry on longer sequences of
clean turn transitions. At this point the rate of vocal exchange is well matched
to the robot’s perceptual limitations. The vocal exchange is reasonably fluid.
The table to the right in figure 9 shows that the robot is engaged in a smooth
proto-dialog with the human partner the majority of the time (about 82%).

5. Conclusions

Experimental data from two distinct studies suggests that people do use the
expressive cues of an anthropomorphic robot to improve the quality of inter-
action between them. Whether the subjects were communicating an affective
intent to the robot, or engaging it in a play dialog, evidence for using the
robot’s expressive cues to regulate the interaction and to entrain to the robot
were observed. This has the effect of improving the quality of the interaction
as a whole. In the case of communicating affective intent, people used the
robot’s expressive displays to ensure the correct intent was understood to the
appropriate intensity. In the case of proto-conversation, the subjects quickly
used the robot’s cues to regulate when they should exchange turns. As the
result, the interaction becomes smoother over time with fewer interruptions or
awkward pauses. These results signify that for social interactions with humans,
expressive robotic faces are a benefit to both the robot and to the human who
interacts with it.
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