
The Creature Library Tutorial (1040 Long Form)

Robert Ringrose

July 18, 1995

Copyright (C) 1992, MIT Leg Lab
All rights reserved
This document is intended as instructions on the basic use of the Creature Library, a library of C

subroutines for the creation of physical simulations. There is an appendix which describes how to use the
resulting simulation. I assume a working knowledge of the C programming language.

It does not describe the use of Legplot or Anim.

1 Background

In the Leg Lab, we study actively balancing dynamically stable legged robots (robots that keep their balance
as they run, walk, or do acrobatic manouvers). Generally, we simulate the robots on a computer to test the
control algorithms before trying them on a physical robot. We also �nd that these simulations are useful for
controlling physically realistic computer animation. All of our simulations use rigid-body dynamics.

The Creature Library was designed to solve several problems which came up as the simulation process
evolved.

The �rst simulations in the Leg Lab were coded directly. Later we got a package called SD/Fast1 which
would automatically write the equations of motion for a physical system, and we implemented an interface
which allowed adjustment of variables while the simulation was running.

At the same time, we were developing legplot, a tool which allowed further analysis of the simulation re-
sults, and anim, another tool which allowed us to combine simulation results into three-dimensional animated
scenes.

The Creature Library integrates the use of all three of these tools (SD/Fast, legplot, and anim) in a way
which helps prevent inconsistencies and makes it easier to create new creatures.

2 How It Works, In Brief

You write a C programwhich, using Creature Library subroutines, describes a creature. Once this is compiled

and linked into the library, you can run it to write the entire simulation except the control system (for our
machines, this is a �nite state controller). Make�les are provided which will compile, link, and run your C
program, and then compile the resulting simulation.

The resulting simulation includes:

� servomechanisms in the joints (can be suppressed)

� user-de�nable external forces at speci�ed points

� ground contact at speci�ed points

� integrator and physical simulator

� code which can be included into the animator to display the creature

1SD/Fast is a product of Symbolic Dynamics, inc.

1

� code which can be included into legplot to display a \cartoon" of the creature

� user interface

� hooks for user-de�ned ground forces, external forces, servomechanisms

� locations for the control system and its variables.

� user-modi�able code for initialization

The simulation is missing:

� the control algorithm

� stable initial parameters

3 Motivation

Initially, new simulations were created by copying other simulations and modifying them (adding, altering,
or removing links and joints). The problem with this approach is that you never know if you made all the
appropriate changes everywhere.

One of the goals of the Creature Library is that everything which de�nes the simulation should end up
in one place. For the structure of the creature, this place is in the C program which includes the library. If
you change something in that program, you know the changes will be propogated.

Additionally, you know the generated code has been tested and is not likely to be causing errors. The
generated code is more uniform than the code which results when every simulation is created individually,
so a person who has worked extensively on a simulation can look at someone else's simulation and rapidly
�gure out what is going on.

Finally, it is easier to modify the creature (longer legs, di�erent mass properties) when the description is
in a single fairly small �le.

4 Constructing A Creature

There are two phases in the creation of a creature. First you have the basic structure, including the links,
joints, and connections between them. Then you have the actual shapes, masses, and moments of inertia for
the di�erent links.

I generally create something with the correct basic structure but blocks for the shapes, and once I have
veri�ed with the animator that all the blocks are where I think they should be, joints point the right direction,
and joints are spaced properly, I make more complex link shapes.

Here is a sample C program which creates a creature called \test".

/* create_test.c */

#include <cl_lib.h>

main(argc, argv)

int argc;

char *argv[];

{

command_line(argc, argv);

begin_species("test");

new_link("link1");

begin_shape();

translate(0.0, 0.0, -1.0);

shape(SBRICK, 0.5, 0.45, 1.0);

2

end_shape();

joint_pin("tjoint", 'z');

new_link("link2");

begin_shape();

shape(SBRICK, 0.45, 0.5, 1.0);

end_shape();

end_species();

}

This program is a full-edged C program and can call any of the standard C library routines, include
other �les, and have its own subroutines. For example, if you are creating a quadruped you could have a
create leg subroutine (which might be passed the leg number) which would add a leg.

5 Calling Conventions

Let's go through the sample code and show how it evolved:

First, the header �le. Without the #include, you can't access the library routines.

/* create_test.c */

#include <cl_lib.h>

The include �le, /home/ll/include/cl lib.h, contains extern declarations for each of the functions you can
use from the Creature Library. If you are unsure of the parameters which should go to a function, or of the
options available (for example, the di�erent kinds of joints or shapes), this �le has them in gory detail.

It is good to tell the compiler where to start, so add main.

main()

{

}

The library has some initialization it needs to do, so tell it you're starting a new species and let it
know when you're �nished (be aware it does an exit(0) at the end of end species, so code after it won't be
executed).

main()

{

begin_species("test");

end_species();

}

We'd like to be able to use command-line options, but the only way for the library to see them is to
actually pass them to the library ourselves with the command line procedure. Calling command line is
optional, but allows the library to check the species name against the creating �lename and permits you to
specify which �les you want created (discussed in more detail later).

main(argc, argv)

int argc;

char *argv[];

{

command_line(argc, argv);

begin_species("test");

end_species();

}

3

The structure of the test object is a solid mass connected by a pin joint to another solid mass. We will
need two links and a joint. The library assumes each joint is attached to the last link you created, and each
link is attached to the last joint you created; to do anything else, see the section on PARENTING. The links
and joints need di�erent names so they can be referred to unambiguously. We can set up the basic structure
with

begin_species("test");

new_link("link1");

new_joint("tjoint");

new_link("link2");

end_species();

It doesn't know what kind of joint tjoint is. We want it to be a pin joint, rotating about the \z"
(vertical) axis, so we would add set pin joint(`z') after new joint(\tjoint"). This pair of routines (new joint
and set joint) come together so often that there is an alternate routine which does both of them in order.
So, the link-joint structure becomes

begin_species("test");

new_link("link1");

joint_pin("tjoint", 'z');

new_link("link2");

end_species();

We have completed the link-joint structure. We could create the simulation now, except that we haven't
given any geometry to the links. This means that they will have no size and no mass, and the results will be
quite boring (or interesting, depending on your point of view). Actually, SD/Fast won't allow you to have
a link with no mass or moment of inertia at the end of a link chain so it won't write the dynamics.

To give it some substance, we need to specify shapes for the link. Normally, I write a C subroutine for
each shape and call them as necessary. I do this because the shapes get complex enough that they clutter
the creature's structure. To tell it you are de�ning a shape, add begin shape and end shape after the link.

new_link("link2");

begin_shape();

end_shape();

end_species();

None of the identity, rotate, translate, or shape calls within a begin shape() end shape() pair will a�ect
the positioning of the joints. This is so that you can change how something looks without risking alteration
of the underlying structure. The process of generating speci�c shapes with translate() and shape() is fairly
complicated and will be covered in GRAPHICS and ORIGINS. For this example, we'll present the code to
create a pair of bricks without explaination.

begin_species("test");

new_link("link1");

begin_shape();

translate(0.0, 0.0, -1.0);

shape(SBRICK, 0.5, 0.45, 1.0);

end_shape();

joint_pin("tjoint", 'z');

new_link("link2");

begin_shape();

shape(SBRICK, 0.45, 0.5, 1.0);

end_shape();

end_species();

4

6 One-Time Setup

Now that you have a create test.c �le in an otherwise empty directory, check your .login and .rhosts �les to
make sure it will run. There are a few environment variables which need to be set.

The common Leg Lab login �le (/home/ll/.login) will set these environment variables. If you have access

to /home/ll, I suggest simply putting \source /home/ll/.login" in your ~/.login �le so that future changes
will automatically take e�ect.

If you don't have access to /home/ll/.login, or don't want to source it, edit your ~/.login �le so that it
includes the following lines:

setenv SDKEYDIR /home/ll/bin/sun4/sd_examples_BX21

(SDKEYDIR may change with other versions of SD/Fast)

setenv SIM_SOURCE_FILES /home/ll/sim_source_files/

setenv MATERIALS_DATA /home/ll/anim/gx_iris/material.h

set path = ($path /home/ll/bin)

Save your ~/.login �le and either source it or log o� and on again.

You will also need a ~/.rhosts �le. It should have a line for each machine you are likely to run create test
from with the machine name and your user ID. Alternately, this �le can have lists of hosts (netgroups). For

example, my .rhosts �le has

+@aihosts ringrose

which allows me to freely rlogin between all the AI lab machines. Additionally, the .rhosts �le must be owned
by you (chown YOUR-ID ~/.rhosts) and should only be writable by you (chmod 0644 ~/.rhosts). Having your
current machine in your .rhosts �le will enable you to log into other machines without giving your password.
The Creature Library needs this ability to run SD-Fast, since SD-Fast will only run on tibia.ai.mit.edu.

The changes to your ~/.login and ~/.rhosts �les need only be done once.

7 Creating The Simulation

Go to the directory with create test.c and type

setup_simulation test

(replace \test" with the creature name if you're making something else). This has to be done the �rst time
you create a simulation. If you modify or correct it, as long as you don't change the species name, you
will not need to run setup simulation again. Setup simulation will fail (and tell you so) if you don't have a
.rhosts �le or do not have the environment variables set.

Finally, type

make

to create the simulation. If you just did a setup simulation, there will be a stub make�le which will compile
and run create test so that it has the \real" make�le, and then it will do another make. If this stub make�le
fails (because of an error in your code or otherwise), you should do another setup-simulation.

8 In Summary

� If you have never used CL before, you need to modify your .login and .rhosts �les.

� If this is a new creature, the species name has been altered, or the compile failed right after running
setup simulation, you need to run setup simulation.

� If the creature has been modi�ed, or setup simulation has just been run, or a compile failed and the
problem has been corrected, you need to run make.

5

9 Coordinate Systems

The Creature Language uses a right-handed coordinate system, where +x and +y are parallel to the ground
and positive z is \up". Generally, positive x is also considered \forward". Gravity is, by default, in the
negative z direction at 9:81m=s

2. Positive rotations are de�ned by the right-hand rule. Thus, a positive x
rotation rotates from y to z around the origin, a positive y rotation rotates from z to x, and a positive z
rotation rotates from x to y.

10 Parenting (Attaching Things)

Every creature has a \base" link, which is attached to the ground. Since loops of links aren't implemented,
each link has a joint closer to the base link (or, in the case of the base link, the ground) and each joint has
a link closer to the base link. That joint/link closer to the base link is the parent.

To determine a link's parent: Normally, a link's parent is the joint created most recently. A call, before
the next link or joint is begun, to

set_parent("jointname");

will change this. Passing GROUND to set parent will �x the link to the ground, useful for bases of systems
attached to the ground. Passing FREE will create a new six-degree-of-freedom joint attached to the ground.

These six-degree-of-freedom joints, e�ectively three sliders (x, y, z) and three pins (yaw, pitch, roll), is
normally used to measure position and orientation with respect to the ground. Unless you directly apply a
force to the joint, the joint will not a�ect the motion of your simulated object.

In the case, as with link1 in \test" earlier, of no recently-created joint, it is treated as if you had called
set parent(FREE).

To determine a joint's parent: Normally, a joint's parent is the link created most recently (regardless of
joints created previously). A call, before the next link or joint is begun, to

set_parent("linkname");

will change this. Passing GROUND to set parent will attach the joint to the ground. If there is no previously
created link, it is treated as if you had called set parent(GROUND). It is an error to set a joint's parent to
FREE.

A more complicated link-joint structure requiring set parent calls is a biped with telescoping legs (�g-
ure 10). Calls to routines for o�sets and shapes are left out to emphasize the link-joint structure, since they
don't a�ect it.

new_link("trunk");

joint_ball("hip1", "hip1_yaw", "hip1_roll",

"hip1_pitch");

new_link("u_leg1"); /* upper leg */

joint_slider("leg1", 'z');

new_link("l_leg1"); /* lower leg */

joint_ball("hip2", "hip2_yaw", "hip2_roll",

"hip2_pitch");

set_parent("trunk"); /* Attach hip2 to the trunk */

new_link("u_leg2");

joint_slider("leg2", 'z');

new_link("l_leg2");

So, with the exception of the hip2 ball joint, everything is attached to the joint/link above it.
The same tree structure can be created with

new_link("trunk");

joint_ball("hip2", "hip2_yaw", "hip2_roll",

"hip2_pitch");

6

+--------------- trunk

| 6 DOF / \

| joint hip1 hip2

| u_leg1 u_leg2

| leg1 leg2

| l_leg1 l_leg2

|

ground

Figure 1: Connectivity structure for sample two-legged creature

joint_ball("hip1", "hip1_yaw", "hip1_roll",

"hip1_pitch");

new_link("u_leg1");

joint_slider("leg1", 'z');

new_link("l_leg1");

new_link("u_leg2");

set_parent("hip2"); /* Attach u_leg2 to hip2 */

joint_slider("leg2", 'z');

new_link("l_leg2");

The possible joints in the Creature Library are the same as those in SD/Fast. Although most of them
can be done as combinations of pins and sliders. For details on using more complex joints, see section 15

� joint pin: rotation about an axis. For example, a simple hip.

� joint slider: movement up and down an axis. Length zero means that the point where the slider is
attached to the parent and the point where the slider is attached to the child are the same in world
space. Any telescoping leg.

� joint cylinder: movement up and down and rotation about the same axis.

� joint universal: Two pin joints, at right angles to each other.

� joint planar: Two sliders, at right angles, and a pin joint in the third axis. Con�nes motion to a plane.

� joint gimbal: Three pin joints, each at right angles to the previous.

� joint ball: Like a gimbal, but without gimbal lock. Unlike pin joints, which if they go through several
complete rotations can have angles greater than PI, a ball joint's angles will wrap from +PI to -PI.

WARNING: velocities (qd) in and torques applied to a ball joint are given in body-�xed coordinates.
The torques should be in the CHILD's coordinates.

� joint 6dof: Three sliders, then a ball joint. Allows complete freedom of movement between the two
links (or the link and the ground). WARNING: velocities (qd) in and torques applied to a ball joint
are given in body-�xed coordinates.

11 Origins

Links will have their center of mass determined by the shape and density of the graphic representation, or
you can call

set_com_offset(x, y, z);

7

to set the location of the center of mass relative to the parent joint. This will not a�ect the drawing of the
link, only the properties passed to SD/Fast for use in calculating the dynamics.

Joints, by default, are at the same place as the parent link's parent joint. However, they can moved with
either

set_joint_offset(x, y, z)

which places the joint relative to the parent link's parent joint, or

set_joint_offset_com(x, y, z)

which places the joint relative to the parent link's center of mass (either calculated or given explicitly with
set com o�set). In the previous biped example, to spread the hips out 0.1 m in the y direction, you would
use

new_link("trunk");

joint_ball("hip1", "hip1_yaw", "hip1_roll",

"hip1_pitch");

set_joint_offset(0.0, 0.1, 0.0);

new_link("u_leg1");

joint_slider("leg1", 'z');

new_link("l_leg1");

joint_ball("hip2", "hip2_yaw", "hip2_roll",

"hip2_pitch");

set_joint_offset(0.0, -0.1, 0.0);

set_parent("trunk");

new_link("u_leg2");

joint_slider("leg2", 'z');

new_link("l_leg2");

or you could use

new_link("trunk");

joint_ball("hip2", "hip2_yaw", "hip2_roll",

"hip2_pitch");

set_joint_offset(0.0, -0.1, 0.0);

joint_ball("hip1", "hip1_yaw", "hip1_roll",

"hip1_pitch");

set_joint_offset(0.0, 0.1, 0.0);

new_link("u_leg1");

joint_slider("leg1", 'z');

new_link("l_leg1");

new_link("u_leg2");

set_parent("hip2");

joint_slider("leg2", 'z');

new_link("l_leg2");

Note that nothing has been done to translate the lower legs down. Frequently, with sliding legs, we don't
translate the lower legs and then set up the geometry so the slider value corresponds to how far the leg is
extended. But this is simply a convention, not something required or enforced by the library.

12 Graphics

The basic graphics routine is shape(). All shapes are created pointing in the positive z axis (up), with the
center of the base at 0, 0, 0 link co-ordinates. The origin in link co-ordinates can be moved, moving the link
and all links and joints attached to it, by using set joint o�set on the link's parent joint.

You begin a graphical description of a link with

8

begin_shape();

Once the graphical description is begun, you can add shapes to the link by listing the translations and
rotations to be applied (calls to translate() and rotate() routines) and then calling shape() with appropriate
parameters (the possible shapes are listed further on in this section). These calls will not a�ect the shapes
or positions of other links. If you want more than one shape associated with a link, simply continue the list
of translations and rotations and then call shape() again. If you want to add another shape but not make it
subject to the previous translations and rotations, simply call identity(). This routine cancels (for all shapes
following it) the e�ects of previous calls to translate() and rotate().

Finally, end the graphical description of the link with a call to

end_shape();

use color() will change the color of all shapes created after it. Colors are declared in the �le /home/ll/anim/gx iris/material.h
as arrays; simply pass the array name as a string to use color(). For example,

use_color("aluminum_material");

will make all shapes after the use color have the color declared in the array aluminum material. The default
color is white. Warning: the case is important. If you do not use the same case as in material.h, the
animator will get a bus error when it loads your creature.

To �gure out where a shape really is and its orientation:
Start at the call to shape(). Find the previous identity() or begin shape() call. Place the shape with the

center of the base at 0, 0, 0 (link co-ordinates) pointing in the positive z direction. Go through the list of
calls, applying the rotation (about 0,0,0) or the translation to the shape.

As an example, take the code

new_link("link2");

begin_shape();

translate(0.0, 0.0, 0.5);

rotate('y', 90.0);

shape(SBRICK, 0.45, 0.5, 1.0);

end_shape();

and see where the brick ends up.

_

| | 1) place brick (width 0.45m, depth 0.5m,

| | height 1m)

|.| 2) go to begin_shape call

_

| | 3) translate the brick (0.5m in the +z

| | direction, up)

|_|

.

___ 4) rotate the brick 90 degrees about the

. | | y axis to get final position.

+---+ (Note that the y axis points into the page)

The density of the polygons displayed by the animator can be altered with a call to the routine use polygon density(density)
where the density is some number greater than zero. Density 1.0 is \standard" | you might wish to in-
crease the density for very large shapes or shapes where you have aliasing problems, and you might wish
to decrease the density for unimportant shapes. Use default polygon density returns to the default. The
polygon density attribute propogates in the same manner as the physical density attribute (see Groups and
Mass Properties).

The di�erent shapes:

9

� shape(SBRICK, x length, y length, z length); A brick of the given lengths in x, y, and z. 0,0,0 is the
center of the base of the brick, not the center of mass of the brick.

� shape(SCYLINDER, height, radius); A cylinder with the center of the base at 0,0,0 of the given height
and radius.

� shape(SCONE, height, base radius); A cone, with the center of the base at 0,0,0 and the given height
and base radius.

� shape(SFCONE, height, base radius, top radius); A trucated cone, with the center of the base at 0,0,0
and the given radii at the base and top.

� shape(SELL FCONE, height, base x, tip x, y x ratio); Equivalent to shape(SGEN FCONE, height,
base x, base x*y x ratio, tip x, tip x*y x ratio); The horizontal cross-section is an ellipse.

� shape(SGEN FCONE, height, base x, base y, tip x, tip y); A truncated cone with the center of the base
at 0,0,0 and the given radii in the x and y directions at the base and top. The horizontal cross-section
is an ellipse.

� shape(SGEN FPYRAMID, height, base x, base y, tip x, tip y); A four-sided pyramid with the given
widths. 0,0,0 is the middle of the bottom side.

� shape(SSPHERE, radius); Create a complete sphere of the given radius, with the center at 0,0,0.

� shape(SELLIPSOID, x radius, y radius, z radius); Create a sphere where the di�erent axis have dif-
ferent radii.

� shape(SHEMISPHERE, radius); Create a hemisphere of the given radius. The cross-section in the xz
and yz planes will be a half circle, while the cross-section in the xy plane will be a full circle.

� shape(SHEMIELLIPSOID, x radius, y radius, z radius); As hemisphere, except the radii are di�erent
so the cross-sections become ellipsoid.

� shape(SARC TORUS, angle start, angle end, major radius, minor radius); Create a section of a torus.
Angle start and angle end are measured in degrees in the xy plane, with zero degrees being the x axis.
The center (major radius) is at 0,0,0. There are no endcaps.

� shape(SARC HOOP, angle start, angle end, major radius, minor radius); Not currently functional

� shape(SBBRICK, x length, y length, z length, bevel width); A brick of the given lengths in x, y, and
z with bevelled corners. 0,0,0 is the center of the base of the brick, not the center of mass of the brick.

� shape(STUBE, height, radius, inner radius); A tube with the given height, outer radius, and inner
radius. 0,0,0 is the center of the base of the tube, which extends vertically.

� shape(SGEN TUBE, height, base x, base y, tip x, tip y, inner base x, inner base y, inner tip x, in-
ner tipy); A generalized tube, where the inner and outer sections are ellipses with the given radii. 0,0,0
is the center of the base of the tube, which extends vertically.

� shape(SGEN COLUMN, height, num points, positions); height is a double, num points is an integer,
and positions is a pointer to a list of doubles (x and y positions of points). A generalized column,
where the cross-section is speci�ed by an array of x and y positions relative to 0,0,0 and with the given
vertical height.

� shape(SCOMPLEX, �lename, scalex, scaley, scalez, right handed); �lename is a string, and right handed
is an integer 1 or 0. Any complex shape, the structure of which is taken from the given �le. For con-
sistent functioning, the �lename should be absolute (start with a \/"). The shape is scaled in x, y,
and z before any calculations. Right handed should be 1 if the exterior polygons of the shape are
right-handed, and 0 if they are left-handed. The shape should not be self-intersecting, should not have
bow-tie polygons, and should be closed, or the mass properties will not be accurate.

10

13 Group

A graphical object and its associated mass properties can be separated from a link and used like a shape
with the begin group, end group, and group procedures.

begin_group("groupname");

... description of a group of shapes, exactly as within a begin shape() end shape() pair

end_group();

From there on, you can treat this \group" in the same way you would any single shape, except that you
add it with

group("groupname");

rather than a call to shape().
By placing calls to set moi(), set moment of inertia(), set com o�set(), or set mass() within the be-

gin group() end group() pair, you can set the various mass properties of a group (see the descriptions of
set moi, set com, and set mass later). When you later use the group within a link, the given mass properties

will be included in the calculations for that link (if you don't provide mass properties, they will be calcu-
lated for you from the graphic description). This means that you can approximate the mass properties of a
complicated shape without having to calculate the mass properties of an entire link yourself, since when you
put a group within a link it will use the given mass properties to compute the mass properties of the whole
link.

Densities and colors within a group will, if set, remain what they are set to. However, any density or
material which is set to default values will become set to whatever the current values are when the call
to group() is made. You can force the use of the default color or density by calling use default color() or
use default density(). Note that if you actually want the default color or density regardless of values outside
of the group, you need to call use color with the default color and use density with the default density.

You cannot nest the declaration of a shape or a group. In other words, a call to begin group() or
begin shape() cannot occur within a begin group() end group() pair, or within a begin shape() end shape()
pair. The same holds for end group() and end shape().

You can, however, put a call to group() within a begin group() end group() pair if you have completed
the declaration for that group already. For example:

begin_group("centered_cube");

translate(0.0, 0.0, -0.5);

shape(SBRICK, 1.0, 1.0, 1.0);

end_group();

begin_group("rotated_cube");

rotate('y', 45.0);

group("centered_cube");

end_group();

and later, within a link:

begin_shape();

rotate('z', 30.0);

group("rotated_cube");

translate(0.0, 0.0, 2.0);

group("centered_cube");

end_shape();

One could also include more shape() calls and set the masses, colors, and moments of inertia, but that
would only confuse the example.

11

14 Mass Properties

The Creature Library will calculate and use the mass properties (mass, center of mass, and moment of inertia
tensor) of the shape created within begin shape and end shape. A creature's density is usually about that
of water, so the default is 1000:0kg=m3 (water density).

One way to alter these properties is to call

use_density(new_density);

where new density is a oat (kg=m3). Any future calls to shape() will create objects with the indicated
density. The density can be zero or even negative, although massless or negative mass links should be avoided.
The header �le cl lib.h has pre-de�ned constants for a number of materials, including water, aluminum,
steel, brass, titanium, heavy and light wood, ivory, mammilian bone, acrylic, teon, polyethylene, concrete,
and Earth (average planetary density). They are de�ned as WATER DENSITY, ALUMINUM DENSITY,
STEEL DENSITY, and so on.

Alternately, you can override the mass or moment of inertia calculations completely and use your own
numbers with

set_mass(mass_in_kg);

to set the mass,

set_com_offset(x, y, z);

to set the link's o�set of the center of mass from the previous joint, and either

set_moment_of_inertia(x, y, z);

or

set_moi(x1,x2,x3,y1,y2,y3,z1,z2,z3);

to set the moment of inertia. Set moment of inertia expects three three-vectors of oats, and sets the moment
of inertia of the current link. set moi is the same, except that it doesn't require that the input columns be
in arrays. These subroutines will also set the mass and moment of inertia of a group (see the section on
groups).

15 Complex Joints

The complex joints (cylinder, universal, ball, planar, etc.) implemented by SD/Fast are available through
calls to routines such as set cylinder joint and set universal joint. Simply call them instead of set pin joint.
Because you frequently get new joint() followed by set cylinder joint(), there are corresponding joint cylinder
routines which combine the two.

With simple joints (pins and sliders) the name of the joint is the same as the name for the corresponding
variable. However, with more complex joints there are several degrees of freedom. For those, you need to
specify a joint name (for parenting) and variable names for each degree of freedom. Within the simulation,
you can access each degree of freedom by the variables, but when describing the creature you can refer to
the entire joint as a whole.

The di�erent complex joints:

set pin joint() :

� char axis | The axis ('x', 'y', 'z').

De�nes the current joint as a pin joint about the given axis.

set slider joint() :

12

� char axis | The axis ('x', 'y', 'z').

De�nes the current joint as a sliding joint along the given axis.

set cylinder joint() :

� char *pinname | The name of the pin subjoint.

� char *slidername | The name of the slider subjoint.

� char axis | The axis ('x', 'y', 'z').

De�nes the current joint as a cylinder joint along the given axis, with the pin and slider subjoints
having the given names.

set universal joint() :

� char *majorname, *minorname | The names of the major and minor pin subjoints.

� char majoraxis, minoraxis | The axis ('x', 'y', 'z') for the major and minor subjoints.

De�nes the current joint as a universal joint. The major axis must be perpendicular to the minor axis.

set planar joint() :

� char *�rsttrans, *secondtrans | The names of the �rst and second translation subjoints.

� char *rotate | The name of the rotation subjoint

� char �rstaxis, secondaxis, rotateaxis | The axis ('x', 'y', 'z') for the various subjoints

De�nes the current joint as one which con�nes motion to a plane. The second planar axis must be
perpendicular to the other two.

set gimbal joint() :

� char *�rstname, *secondname, *thirdname | The names of the subjoints within the gimbal joint.

� char �rstaxis, secondaxis, thirdaxis | The axis ('x', 't', 'z') for each subjoint.

De�nes the current joint as a gimbal joint. Each axis must be perpendicular to the ones next to it.

set ball joint() :

� char *yawname, *rollname, *pitchname | The names for the yaw, pitch, and roll subjoints.

A ball joint is internally tracked as a quaternion, so there is no gimbal lock. Thus, the values for yaw,
pitch, and roll will by limited to += � �.

set 6dof joint() :

� char *trans1name, *trans2name, *trans3name, *yawname, *rollname, *pitchname | The names
for the various subjoints.

� char trans1axis, trans2axis, trans3axis | The axis ('x', 'y', 'z') for the translational subjoints.

De�nes the current joint as a six degree of freedom joint. These joints do not actually limit movement,
but can be used for measurements and for application of arbitrary forces.

13

16 Joint Stops

You can limit a joint's motion by calling limit(variable name, min, max). Whenever the joint passes the
minimum end stop, the force/torque applied is either the force normally applied by the servo, or the force
from a PD servo with spring constant ls.k stop and damping ls.b stop, whichever is greater. The maximum
end stop is the same, with the signs reversed as necessary.

If you want more control over the springs and dampers, you should instead call limit pd(variable name,
min, max, spring constant, damping). This acts exactly as a call to limit, except that the strings given for
spring constant and damping are used in the PD servo. Three examples are:

� limit pd(\legz 1", -1.0, 0.5, \ls.k stop", \ls.b stop");

This is exactly equivalent to limit(\legz 1", -1.0, 0.5);

� limit pd(\legz 1", -2.0, -1.0, \ls.my k stop", \ls.my b stop");

� limit pd(\legz 1", -2.0, -1.0, \2.5*ls.k stop", \2.5*ls.b stop");

17 Servos

Servomechanisms will be added automatically at each degree of freedom unless you specify otherwise. Each
servo has a state, held in the simulation variable servosw.JOINT NAME. State zero (the initial state) is
always limp (no applied torque or force). To add another servo state, you would make a call to servo after
creating the joint and before creating the next link. For example,

joint_ball("hip1", "hip1_yaw", "hip1_roll",

"hip1_pitch");

servo(1, "hip1_yaw", PD_SERVO, "ls.k_hip1",

"ls.b_hip1");

servo(2, "hip1_yaw", PD_SERVO, "ls.high_k_hip1",

"ls.b_hip1*2.0");

servo(3, "hip1_yaw", PD_FF_SERVO,

"ls.k_hip1", "ls.b_hip1", "ls.ff_hip1");

means that in your control system, or directly from the simulation interface (see INTERFACE), if you set
servosw.hip1 yaw to 1.0, you will have a position-damping servo with spring constant determined by the
variable ls.k hip1 and damping determined by ls.b hip1 (whatever values those variables happen to hold). It
will try and servo to the desired position (determined by q d.hip1 yaw). If you set servosw.hip1 yaw to 2.0,

you will again have a position-damping servo, but with di�erent spring and damping values. If you set it to

3.0, you will have another position-damping servo, the same as the �rst, except that it has a feed-forward
torque (ls.� hip1). Finally, if you set servosw.hip1 yaw to 0.0 the servo will be limp (the default).

Although that example only dealt with hip1 yaw, the other degrees of freedom (hip1 roll and hip1 pitch
in this case) can have their own sets of servo states, independant of hip1 yaw.

Each of the servo types takes a series of parameters. In the servo call, they would be strings after the
servo type which are textually substituted for the appropriate parameters within the simulation.

� LIMP SERVO - no parameters

� PD SERVO - k (spring constant) and b (damping). tau = -k*(position error) - b*(velocity)

� PD BALL SERVO - k and b. As PD SERVO, but deals with the fact that ball joints limit the angles
to +/- PI

� PD FF SERVO - k (spring constant), b (damping), and � (torque). tau = -k*(position error) -
b*(velocity) + �

� PD PLUS SERVO - k, b, other k, other b, other value, other desired, other derivative, second b, and
second derivative. This servo calculates its torque as two PD servos and an additional damping term.

14

� LEG SERVO - k compress, b compress, k extend, and b extend. Another PD servo, but with di�erent
values for extension and compression forces.

� LEG R SERVO - k compress, b compress, k extend, b extend, and spring len. Another PD servo, but
with a 1/r force applied on extension.

The routines which actually implement these servomechanisms can be found in servo.c (once the simula-
tion is made) if there is any doubt about the forces applied.

Using those routines as models, you can create your own servomechanisms. Simply write the routine
(placing it somewhere safe, like control.c) using the existing ones as a guide, and then in the creating
program call

user_servo(2, "hip1_yaw", "my_servo_routine", 3,

"ls.param1", "ls.param2", "ls.param3");

replacing my servo routine with your routine name, 3 with the number of parameters other than *tau, q, qd,
and q d (which are assumed), and the parameters (ls.param1, ls.param2, ls.param3) with the parameters
you actually want passed to your new servo routine.

Alternately, you can call no automatic servos(). No servomechanisms will be placed at any joints, but
whenever servos should be updated there will be a call to servo1() (located in control.c). You can then place
your own servo code there - all it has to do is set the tau structure to the forces to be applied.

18 Ground Contact

Arbitrary contact is not checked for. However, you can designate a point on a link as a ground contact point
with

ground_contact("foot", x, y, z);

or

mobile_ground_contact("foot", "1.0", "2.0", "ls.z_pos");

By calling ground contact, you designate a speci�c point on an an arbitrary vector from the link origin
as a ground contact point. As necessary, this point will be checked to see if it on the ground. When it lands,

the contact point will be recorded and a force determined by the ground contact model will be applied.
Note that in the second version the ground contact points are strings which are simply copied into the

appropriate positions in the generated simulation. They can be constants, variables, or functions. Be aware,
however, that if you place a function call within the strings indicating the position it should be as e�cient
as possible.

Contact forces are provided, in general, by a spring{damper system (with a torque spring for rotation).
This means that the feet will penetrate the ground a little, but for our purposes this is acceptable.

Information on a ground contact point is kept in a structure gc \contact name" with the �elds

� fs | The current status of the \foot switch", 1.0 if the foot is down and 0.0 if it is in the air.

� td x, td y, td z, td th | The position and rotational orientation at touchdown.

� at x, at y, at z, at th | The current position and rotational orientation.

� k x, k y, k z, k th | The spring constants in each direction.

� b x, b y, b z, b th | The damping in each direction.

� f x, f y, f z, t th | The forces and torques applied.

� nomlen z | Used as the nominal spring length in some ground contact models.

� model | The ground contact model in use.

15

The model itself can be altered at any time by changing the model �eld of the ground contact's structure
(for example, gc foot.model). The initial model is zero, which means that no forces will be applied. Currently
implimented values are:

� 0 | No forces will be applied

� 1 | a linear spring-damper system without foot torque.

� 2 | attached to the ground. As long as the point is on or below the surface of the ground (z=0.0),
there will be a force pulling it back to whatever is designated as the touchdown point (at x, at y, at z,
at th).

� 3 | a nonlinear spring-damper system (the spring forces are a quadratic function of displacement)

without foot torque.

� 4 | a linear spring-damper system with foot torque.

� Greater than 100 | If the model number is greater than 100, a routine called user gcontact will be

called.

There is a stub for the user gcontact routine in control.c (where it won't go away). It is intended to allow
you to create your own ground contact models. At the time this routine is called, the position and angle in
the contact structure are correct, and the position and velocity is passed as parameters. This routine should
set the forces as necessary for your ground contact model and return.

19 Spring Constants

Once the Creature Library knows the mass properties of the simulation, it will create suggestions for critically
damped springs. Those suggestions are in the �les suggestions and Ssuggestions. The suggestions �le is easier
to read, while the Ssuggestions �le is loadable directly into the simulator, but they both contain the same
information. For each joint, assuming the rest of the simulation is rigid, it calculates the spring and damping
values for critically damped oscillation at 1 Hertz. It performs this calculation three assuming the simulation
is free-oating, that the parent of the joint is �xed in place, and that the child of the joint is �xed in place.
You should choose appropriately.

If you want the suggestions to use a position other than 0 for the joint, or a frequency other than 1 Hertz,

nominal_position("myjoint", rest_position, frequency);

will set the rest position (given in radians or meters, just as in the simulation itself) and critically damped
frequency (in Hertz).

20 Miscellaneous

20.1 Command line options

main(argc, argv)

int argc;

char *argv[];

{

command_line(argc, argv);

By adding these parameters to main and calling command line with them, the resulting program will
check that the species name corresponds to the creating �le name, and permit you to specify which �les to
alter.

Valid parameters are:

� +all, -all - create/don't create all �les

16

� +anim, -anim - create/don't create CREATURENAME anim.c

� +dat, +sdfast, -dat, -sdfast - create/don't create the input to SD/Fast

Similarly, for any individual �le (like ground.c) you can use

� +ground, -ground - create/don't create the �le ground.c

Parameters are read left-to-right and evaluated in order, and (unless it would create ambiguities) only
the �rst four letters of the �lename are important. Firstrun.c and vars.h are too intertwined to produce
separately.

To not touch the SD/Fast input, you would use

create_test -dat

To only modify ground.c, you could use (since four letters are enough)

create_test -all +grou

Finally, if you are doing a lot of work where you are making cosmetic changes which won't a�ect the
model, you can do \make anim" (to create only the anim �le), \make legplot" (to create only the legplot

�le), or \make graphics" (to make both the anim and the legplot �les). These commands work by running

create_test -all +anim +legplot

and they will also copy them into the proper directories.
They will not execute a \make" in those directories. You have to do that yourself.

20.2 Alternate integrators

alternate_integrator("cl_plant2.c");

You can use an alternate integrator by putting a call to alternate integrator somewhere between be-
gin species and end species.

Currently, there are only two functioning integrators: cl plant.c and cl plant2.c. cl plant.c uses the
integrator which comes with SD/Fast, while the integrator in cl plant2.c is available for checking and modi-
�cation. If you specify an alternate integrator, it will look in the current directory and then in the directory
indicated by SIM SOURCE FILES.

20.3 Gravity

set_gravity(x, y, z);

This routine will override the default gravity (earth-normal gravity, with \down" in the negative z direc-

tion). It is not possible to have di�erent gravities for di�erent links; the last call to set gravity before the
end species will be the only e�ective call. Calling set gravity before begin species will have no e�ect.

20.4 Track point

set_track_offset(xoffset, yoffset, zoffset);

Anim will track the point (x, y, z) if the variables x, y, and z exist, substituting zero if they do not.
Calling set track o�set allows you to specify a constant o�set from that tracking point. The tracking point is
used when positioning creatures onscreen, �nding the camera's �xation point, and �nding the dolly position.

20.5 Alternate output �le names

set_files("test.out", "test.dat", "test_anim.c");

This routine is out of date. If you use it, you will receive a warning and the call will be ignored.

17

20.6 Legplot body size

set_legplot_link_size(xmin, xmax, ymin, ymax,

zmin, zmax);

For a legplot cartoon, each link is represented as a brick for ease of visulation and display speed. Normally,
link size is calculated from the moment of inertia entries on the main diagonal, but with this call you can
specify the size of the cube representing the link.

20.7 External forces

external_force("push", x, y, z);

external_force_com("wind", x, y, z);

The �rst declares an external force point named \push" at the link origin (or an arbitrary vector from
there). The second declares an external force point named \wind" at the center of mass of the current link;
if you override the calculated location of the center of mass with set link o�set, the new center of mass will
be used. The vector allows you to displace the force point.

External force points cannot be moved, relative to the link, during simulation runs. Their locations on
the links are �xed. Upon the declaration of an external force, a routine is added to eforces.c; this routine

should be altered so that it sets the external force as desired.

20.8 Suppression of automatic servos

no_automatic_servos();

If you call no automatic servos(), no servomechanisms will be placed at any joints. All calls to servo() or
user servo() will be overridden; instead, whenever servos should be updated there will be a call to servo1()
(located in control.c). You can then place your own servo code there - all it has to do is set the tau structure
to the forces to be applied.

20.9 User constants

user_constant("name", val);

This call will cause the given constant to be de�ned with the appropriate value within the simulation. It
is useful for passing parameters such as leg lengths to the actual simulation when you need them for your
control algorithm.

The resulting code, in creature.h, is:

#define name val

20.10 Double-body actuators

make_actuator_connection("name", end, x, y, z);

make_actuator_connection_com("name", end, x, y, z);

The �rst declares the end of a double-body actuator names \name" at the link origin (or an arbitrary
vector from there). The second is the same, except from the center of mass of the link.

Because it is a double-body actuator, you need to specify the end as an integer 1 the �rst time you specify
the actuator, and a 2 the second. This has the advantage of double-checking the names of di�erent ends.

For each actuator, a subroutine is added to the eforces.c �le. Initially, the subroutine doesn't apply any
force, but you can alter it to any function you desire. At some point in the future, you will be able to call a
subroutine to specify the name of the called routine, so you don't have to modify each stub yourself.

The basic act structure, with information commonly used to determine the force applied and a place to
set the force, is:

18

typedef struct {

double force;

double mag;

double dx;

double dy;

double dz;

double ddx;

double ddy;

double ddz;

double dmag;

double a;

double b;

double c;

} basic_act;

The variables containing this information for each actuator are named act \name" (where \name" is
replaced with the name of the actuator speci�ed in make actuator connection). Before each call to determine
the force (held in the variable force), the �elds are updated. The �elds dx, dy, and dz contain a vector between

the connected points, and the �elds ddx, ddy, and ddz contain the derivative of that vector. Mag and dmag
are the magnitudes of the di�erence vector and the derivative, respectively. Force should be set to the force
to apply, with a positive force pushing the points apart and a negative one pulling them together. A, b, and
c are scratch variables for your own use.

If you alter the �elds dx, dy, dz, mag, ddz, ddy, ddz, or dmag the results will not be reliable since they
are cached here for use later.

There have been reports of bugs involving the signs of the force near reversal points with the sign, but I
have yet to have anyone show me an example.

21 Resulting Simulation

21.1 Where is My Code Safe?

The written simulation consists of many �les, some of which are completely re-written each time the simu-
lation is created, some of which are modi�ed, and some of which are left untouched.

In any �le, if there are the lines

/* BEGIN USER CODE 1 */

and

/* END USER CODE 1 */

you can add your own code between those two comments and it will be kept, even if the �le is completely
rewritten.

When you add your own code, it is possible (although not recommended) to directly call SD/Fast routines
to apply forces and torques to the model. The reason it is not recommended is that the force application
routines written by the library set an absolute limit to forces and torques (interactively modi�able by fmax
and tmax), making it easier to debug your control.

21.2 Units

By default, the Creature Library uses MKS (Meters, Kilograms, Seconds) units. One can equivalently use
CGS (Centimeters, Grams, Seconds), as well. Angles within a \create" �le are given in degrees, although
the resulting simulation will use radians. The following conversions are provided for convenience; they are
de�ned as constants, and you do the conversion by multiplication:

� DEG TO RAD: Degrees to radians.

19

� RAD TO DEG: Radians to degrees.

� FEET TO METERS, METERS PER FOOT: Feet to meters.

� INCHES TO METERS, METERS PER INCH: Inches to meters.

21.3 Variables

Within the generated simulation, there are several structures containing position, torques, servo states, and
so on. Some of them are:

� q: position.

� qd: velocity. Be aware that the velocity of a ball joint is given in body-�xed coordinates.

� u: velocity (an artifact of the way the integrator works). This velocity is given in Euler parameters,
not Euler angles. You should use qd or CL generated routines to access these angles.

� ud: acceleration.

� Any of the above with a \ d" after it: a desired value. These are used by servos and your control
system.

� Any of the above with a \ iv" after it, including desired values. These were once used for initial values,
but are out of date and will disappear soon. Just don't touch them.

� tau: the amount of force or torque, depending on the joint type, being applied to the joint.

� servosw: the servo switch for that joint (see SERVOS).

� ground contact: for ecch ground contact point, a variable of type basic gcontact named \gc <name>"
replacing <name> with the name of the ground contact point

� connected actuators: A variable is added for each connected actuator.

21.4 The \ls" Structure

ls stands for \locomotion structure". Any variables which exist in the code as \ls.variablename" will auto-
matically be added to the structure. These variables, along with the structures such as q, qd, q d, etc. are
all accessible while the simulation is running. So, if you use \ls.foobar" in your control code, next time you
do a \make" a line

double foobar;

will be added to the \ls" structure for you, along with extra code in control vars.h which will allow you to
access the variable through the interface while the simulation is running.

21.5 The Files

� Make�le: This �le is only modi�ed when setup simulation is run. There is a commented-out line of
compiler options which uses the debugger and if you change the library include from -lsim to -lsim g
you get the debuggable version of the library as well.

� Make�le.bak: This is a copy of Make�le made automatically when �le dependancies are calculated.

� Make�le.old: When setup simulation is run, the current Make�le will be copied to this �le before the
new one is created.

� S51.0: Any �les consisting of \S" and a number, or just a number, are state �les and data �les from
the simulation.

20

� control.cskel: A skeleton control system, provided so you know which routines are expected to be in
control.c

� control.c: The control system. Every control dt, control1() (a procedure in control.c) will be called.
Also, if automatically generated servos aren't used servo1() will be called every servo dt so you can
write your own servos.

Because this �le is never rewritten, you can make any changes you wish to it. This is also where
the code for user-de�ned servo and ground contact types is (user servo and user gcontact, called from
servo.c or ground.c).

� control vars.hskel: Skeleton for control vars.h

� control vars.h: Any variables used in the control system which you want to be able to access interac-
tively during run-time should be added to this �le, which is never rewritten.

� creature.h: De�nitions, externs, and structures used in the simulation. These are accessible to any
portion of the simulation. Each link has B linkname de�ned to be the SD/Fast body number for it,
and each joint has J jointname and SJ jointname to be the joint number and subjoint number used
by SD/Fast. There are also de�nitions for PI and conversion factors to or from degrees. This �le is
rewritten every time

� eforces.c: This �le contains procedures to calculate the external forces applied at external force points.
Every time an external force point is declared, if there is no corresponding routine it will be added to
this �le, but code is never removed from here. Routines for calculating double body actuator forces
are added here, too, because they were initially implimented as pairs of external forces.

� �rstrun.c: This �le contains a procedure executed when, interactively, you type \FIRSTRUN". It resets
all the variables to (usually) sane values. It is rewritten, but if you change an assignment that change
will be kept. For example, you could change the initial height o� the ground by changing the line \q.z
= 0.0;" to \q.z = 1.0;" and this will be kept as long as there is a variable q.z. This means that if you
remove (for example) a contact point the initializations for it will be lost.

� ground.c: This �le contains the procedures which govern ground contact, and the prede�ned ground
contact models. It is rewritten, but if the ground contact model is greater than 100 it will call
user gcontact in control.c.

� locomotion.hskel: Skeleton �le for locomotion.h

� locomotion.h: This �le contains the locomotion (control system) variables. It is rewritten to include
all the locomotion variables whenever the source code is modi�ed.

� main.c: This is main body. It has user code segments to allow you to add more interactive commands
to the simulation, but aside from those segments is rewritten every time the simulation is created.

� CREATURE.dat: The input �le for SD/Fast. Useful for checking the dynamics if you're suspicious.

� CREATURE.out: An ASCII text �le describing the creature as the library sees it. Once you create
the simulation, this �le makes it easy to check some aspects of it.

� CREATURE anim.c: C code which can be included in anim to display the new creature. Copy it into
/home/ll/anim/gx iris, edit the Make�le there (add CREATURE anim.c to the list of CRSRCS), and
edit modeldef.c so it externs the correct init, build, delete, draw, and pos routines and has an entry
for your creature in the array at the bottom of the �le. Re-make anim using the new Make�le. You
only need to do this when you change the actual look or structure of the simulation; otherwise is won't
matter. This �le is rewritten.

� CREATURE dyn.c: C code written by SD/Fast; the dynamics of the simulation.

21

� CREATURE info: Information about the simulation, written out by SD/Fast as it creates the dynam-
ics. This �le is sometimes useful to verify that your model is correct.

� CREATURE sar.c: Simpli�ed Analysis Routines written by SD/Fast.

� plant.c: the integrator, or call to SD/Fast's integrator (with glue code). This �le is rewritten.

� plant get sdfast.c, plant set sdfast.c: Glue code to convert from the simulation's structures to the array
expected by SD/Fast.

� rs6000, iris, sun4, sun3: Directories where the object �les are kept. Not all of these will be present.

� sdlib.c: SD/Fast library routines written by SD/Fast.

� servo.c: code which implements the prede�ned servomechanisms.

� vars.h: structure which allows the variables to be modi�ed interactively while the simulation is running.
The parameters on each line are:

{ The name you will use to refer to the variable interactively.

{ The address of the variable (doubles only).

{ The minimum value (used for display by legplot).

{ The maximum value (used for display by legplot).

Minimum and maximum values are not used for anything but display.

22 Adding a Creature

22.1 Adding a Creature to Anim

In order for your creature to appear in anim, you need to add it to the animator. This involves editing
several �les which, if done wrong, can keep the animator from recompiling; but it only needs to be done the
�rst time.

$ANIM SOURCE: Make�le Add your creature to the CRSRCS list. Make sure that the �rst character
in the line is a tab, not spaces.

$ANIM SOURCE: modeldef.c Copy the �ve extern de�nitions with the string \Camera", and replace
\Camera" with your creature name (case is important).

$ANIM SOURCE: modeldef.c Take the camera creature descriptor

{ "CAMERA", 0,

init_Camera, build_Camera, delete_Camera,

draw_Camera, pos_Camera, NULL },

and copy it, replacing \Camera" with your creature name again. The string \CAMERA"should be in
upper case; the rest should be the same case as the declaration of your creature.

Now follow the directions under \Altering a Creature"

22

22.2 Adding a Creature to Legplot

In order for your creature to appear in anim, you need to add it to the animator. This involves editing
several �les which, if done wrong, can keep the animator from recompiling; but it only needs to be done the
�rst time.

$LEGPLOT SOURCE: Make�le Add your creature to the SRCS list. Make sure that the �rst character
in the line is a tab, not spaces.

$LEGPLOT SOURCE: cartoon.c Find the \Cartoon function declarations"; add init and draw routines
for your creature. Case is important.

$LEGPLOT SOURCE: cartoon.c Find the \Model table". Add a line with the name of your creature,
the init and draw routines, and a \Nop" (no operation).

Now follow the directions under \Altering a Creature"

22.3 Altering a Creature

To alter the graphics display of an existing creature, you need to take the following steps:

In the creature's directory: make graphics

In $ANIM SOURCE or $LEGPLOT SOURCE: make

In $ANIM SOURCE or $LEGPLOT SOURCE: anim or legplot, depending on the directory

In $ANIM SOURCE or $LEGPLOT SOURCE: if it worked, make update

Be careful using make update. It will only update the current machine type, and it replaces the commonly
used binary with the new one. This means that anyone else using the same program on the same machine
type will get a crash if your update succeeds.

23 Common Pitfalls

23.1 Garbage velocities

The velocities are completely (or even slightly) wrong.
Be aware that velocities (qd) for ball joints and the ball joint section of six degree of freedom joints are

given in body-�xed coordinates. This avoids singularity problems. The derivatives of the positions (u) are
in Euler parameters, not in Euler angles, and shouldn't be modi�ed except for initialization.

23.2 Automatic servos

How do I suppress automatic servos?
Call no automatic servos() and put your own servo code in servo1(). This call overrides the e�ects of all

calls to the routines servo() and user servo().

23.3 Control-C

I can't use control-C to get into dbx.
Right. This is a problem with the simulation interface. The best solution I have found is to put a

breakpoint in the routine dbx() and use the simulation command DBX to call that routine. You can then
put breakpoints where you suspect the problem lies. Alternately, simply put the breakpoints in before you
actually run the program.

23

23.4 Debug

How do I turn debug on?
In the window you will be compiling, type

setenv DEBUG debug

To turn it o�, type

unsetenv DEBUG

Be aware that this only a�ects the �les which are compiled after the command. The debugger cannot
e�ectively debug sections of code which haven't been compiled this way.

23.5 Won't Recompile (\Nothing to do for...")

I turned debug on, but now it says \nothing to do for ..." when I say make.
Make doesn't know you set debug on, and there was a successful compile before you turned debug on, so

as far as it can tell, it is right.
Go to your simulation directory and type

touch create_*.c

and make should recompile everything

23.6 Won't Recompile (Anim or Legplot)

It won't recompile Anim or Legplot. Make complains about an error in the Make�le.
When you modify the Make�le for Anim or Legplot to include your new creature, the most common

mistake is to start a line with a space instead of a tab. In some ways, make is brain-dead, so it requires that
lines which continue previous sets of instructions begin with a tab character.

23.7 Won't Recompile

It won't recompile everything in my simulation. No matter how much I change this �le, it won't recompile
it.

Somewhere, the �le Make�le got altered. One possibility is that your dependancy tree is messed up. Go
to the directory with your simulation and type

make depend

This approach has the advantage of keeping any changes you made to your Make�le.
The brute-force solution (DO NOT DO THIS ANYWHERE BUT IN THE DIRECTORYWITH YOUR

SIMULATION) is to go to the directory with your simulation and type

setup_simulation NAME

where name is the name of your simulation. This will completely wipe out your Make�le and replace it with
a new one.

23.8 Trashed Parameters

Although I am passing perfectly good parameters to the routine, if I use dbx to step inside the routine the
parameters are garbage.

Check the types of your parameters. All Creature Library routines you should be calling have the types
for the parameters included in comments in the �le /home/ll/include/cl lib.h, and if you get the type wrong
you will be passing garbage to the routine.

Additionally, although the compiler will do type conversion when it assigns to a variable it will not do
type conversion for parameters unless you speci�cally tell it to. This means that

24

use_density(1000);

will probably generate a warning message, since that should turn into an unacceptably large density, while

use_density(1000.0);

or

use_density((float)1000);

will work.

23.9 ANSI Prototypes

I can't put the types of the parameters in the parenthesis like ANSI C says I can.

int foo(int i){return(i)}

won't work.
The Sun C compiler is not ANSI-compliant and can't handle ANSI prototyping. It may work on an IBM

or an SGI, but don't do it because it won't port back to the suns.

23.10 Di�erent Machines, Di�erent Answers

My simulation gives di�erent answers on sun or Silicon Graphics machines than it does on an RS6000 like
Talus.

The RS6000 use a di�erent amount of accuracy in their oating point calculations. Somewhere, the small
amount of di�erence adds up. Actually, the IBM is right: it has more precision. Change all the oats you
can to doubles, and your problem should go away.

23.11 Taking Too Long

It's taking FOR EVER.
Either your model is too complicated, or you're running on a slow machine. You can speed compilation

up by turning debugging on. This compilation speed-up is at the cost of optomizing the simulation, so the
simulation itself will run more slowly.

If you are simply trying to make cosmetic changes, try \make graphics", \make legplot", or \make anim".

23.12 Simulation Won't Simulate

My simulation doesn't do anything. Even though I said \run 1", t (time) isn't going up.
Either your simulation is very slow or you never gave the simulation command FIRSTRUN, which

initializes most variables (such as time steps) to sane values.

23.13 Simulation Commands

What are the simulation commands?
The simulation interface is not really a part of the Creature Library, but Yuri was nice enough to come

up with this:

� START: automatically sets the run time to 60 sec

� STOP: stops the simulation

� STEP n: run for n dt's (default is n = 1)

� RUN n: run for n seconds

25

� FIRSTRUN: sets all the variables to reasonable values. Do this to create an initial S �le

� SHOW var-name / HIDE var-name: display the variable and its value on the control panel. HIDE
undo's this.

� RECORD var-name / UNRECORD var-name: highlights the variable and marks it for recording in a
data �le when you do a SAVE

� SEND var-name: marks the variable for piping to another program for realtime display of the simulation
data

� SET var-name value: give the variable a value

� SAVE: save the values of the RECORDed variables over the time of simulation in a data �le. It also
creates a corresponding S �le (see SSAVE).

� SSAVE: create a \state" or \S" �le containing SETs, RECORDs, and SENDs. This creates a snapshot
of the current state of the simulation.

� LOAD: load an S �le (see SSAVE).

� STARTGRAPHICS machine: Opens a pipe directly to either anim or legplot running on a given
machine. Variables marked with SEND will be sent over this pipe. When connecting to legplot, it will
only work if you have given the simulation an individual name (see INDIVIDUAL).

� INDIVIDUAL string: Gives an individual name to the simulation. Not usually necessary unless you
use STARTGRAPHICS, but Legplot will not accept a STARTGRAPHICS command unless you have
declared an individual name.

� QUIT: exit the simulator

To change a variable and record the values:

SHOW q.* display all variables that begin with ``q.''

SET q.z 3 sets the vertical height to 3 m

RECORD q.* you tell it what variables you want recorded

RUN 0.01 runs the simulation forward for the given

number of seconds

SAVE creates a data file as well as an S file

To move up in the command history to edit previous commands, press control-p. To move down, press
control-n.

23.14 Working Copy of the Creature Library

How do I use the \working copy" of the Creature Library.
Normally, you don't. The working copy of the Creature Library is for testing purposes only.
If you do have to do it, though,

cd /home/ll/anim/cl

make working

cd <your simulation directory>

setenv WORK work

setenv SIM_SOURCE_FILES \

/home/ll/anim/cl/sim_source_files

touch create_*.c

make

26

