



Figure 3-8. Reverse phase HPLC purification of $[^3H]$ 3-azioctanol labeled fragments from an EndoLysC digest of α V8-20 and sequence analysis of HPLC fractions

A. αV8-20 isolated from nAChRs photolabeled with 275 μM [³H]3-azioctanol in the absence (●) or presence of 10 μM αBgTx (▼) or 2 mM carbamylcholine (○) was digested with EndoLysC. The digest was applied to a Brownlee Aquapore C4 column and fractionated by reverse-phase HPLC. Upper panel, ³H elution profiles (5% of each fraction counted). Lower panel, fluorescence ("") and absorbance profiles (—). B, C. 3 H (\bullet , \circ , \vee) and mass released (\blacksquare , \square , \diamond) on N-terminal sequencing of material in HPLC fraction 33 (B) and 29 (C). B, Fraction 33 from the sample labeled in the absence (\bullet, \blacksquare) and presence of carbamylcholine (\bigcirc, \square) showed a single sequence, beginning at α Met-243, the N-terminus of the α M2 segment (–carb: I_0 =23 pmol, R=92%, 9800 cpm loaded, 3900 cpm remaining after 30 cycles; +carb: I₀=30 pmol, R=92%, 26000 cpm loaded, 3900 cpm remaining after 30 cycles). C, Fraction 29 from the sample labeled in the absence (\bullet, \blacksquare) or presence of $\alpha BgTx(\nabla, \bullet)$ or carbamylcholine (\bigcirc, \square) showed a primary sequence beginning at α His-186 and a secondary sequence beginning at αAsp-180 (–carb: αHis-186 I₀=35 pmol, R=93%, αAsp-180 I₀=4.6 pmol, R=86%, 16700 cpm loaded, 3400 cpm remaining after 25 cycles; $+\alpha BgTx$: $\alpha His-186 I_0=55 pmol, R=93\%, <math>\alpha Asp-180 I_0=2.4 pmol, R=95\%, 4100 cpm$ loaded, 1000 cpm remaining after 25 cycles; +carb: αHis-186 I₀=36 pmol, R=95%, α Asp-180 I₀=7.8 pmol, R=82%, 4800 cpm loaded, 1200 cpm remaining after 25 cycles). Primary sequence for each fraction is shown on top axes.