Mapping noncompetitive antagonists binding sites in the nicotinic acetylcholine receptor

A thesis presented

by

Megan Benson Pratt

to

The Division of Medical Sciences
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of
Neurobiology
Harvard University
Cambridge, Massachusetts
September, 1999
Abstract

The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that is opened upon the binding of agonist to the extracellular surface. Noncompetitive antagonists of the nAChR block the response of the nAChR to agonist without preventing the binding of agonist. While most aromatic amine noncompetitive antagonists appear to bind within the lumen of the ion channel, the binding site of the fluorescent noncompetitive antagonist ethidium has been predicted by fluorescence resonance energy transfer studies to lie at the most extracellular aspect of the receptor. \[^3\text{H}\]Ethidium diazide, a photoactivatable analog of ethidium, was used to map the binding site of ethidium in the desensitized state. Sequence analysis showed that \[^3\text{H}\]ethidium diazide photoincorporated into the \(\alpha\) and \(\delta\) M2 segments, which are known to contribute to the lumen of the channel, and particularly into residues which have been shown to line the channel. Additionally, photoincorporation was also evident in the M1 segments of these two subunits, indicating that the M1 segment contributes to the formation of the lumen of the channel.

\[^3\text{H}\]3-Aziocanol is a photoaffinity probe that is a general anesthetic that inhibits the nAChR. Sequence analysis of nAChR photolabeled with this probe showed that the primary site of \[^3\text{H}\]3-aziocanol incorporation in the desensitized state of the nAChR was \(\alpha\text{Glu-262}\), at the extracellular end of \(\alpha\text{M2}\), indicating binding within the lumen of the channel. In addition, \[^3\text{H}\]3-aziocanol incorporated at lower efficiency into residues at the protein-lipid interface, at equal levels in the presence or absence of agonist. In the absence of agonist, \[^3\text{H}\]3-aziocanol also reacted with low efficiency with \(\alpha\text{Tyr-190}\) and \(\alpha\text{Tyr-198}\), residues contributing to the binding site of agonist.
[\(^{3}\text{H}\)]Progestin aryl azide is a photoaffinity analog of the steroid anesthetic progesterone. Although most noncompetitive antagonists appear to bind within the lumen of the channel, the high hydrophobicity of steroids suggests that they may interact at the protein-lipid interface. The primary site of [\(^{3}\text{H}\)progestin aryl azide incorporation in the \(\alpha\)-subunit was mapped within a large fragment containing \(\alpha\)M4, known to form the protein-lipid interface. However, the instability of the photoadducts to HPLC and sequencing conditions precluded identification of labeled residues.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION TO THE THESIS 1

LIGAND GATED ION CHANNELS AS ALLOSTERIC PROTEINS 4

STRUCTURAL MOTIFS
Agonist binding site 6
Transmembrane segments 10

NONCOMPETITIVE ANTAGONISTS
Amine NCAs 15
Anesthetics 17

PHOTOAFFINITY LABELING 21

THESIS SYNOPSIS 24

CHAPTER 2 IDENTIFICATION OF THE SITES OF INCORPORATION OF [3H]ETHIDIUM DIAZIDE IN THE NACHR 30

ABSTRACT 30

INTRODUCTION 31

MATERIALS AND METHODS
Materials 33
Equilibrium Binding Assay 34
Photoaffinity labeling of nAChR-enriched membranes with [3H]ethidium diazide 35
Gel Electrophoresis 37
EndoLyS C digest 38
HPLC purification 38
Sequence Analysis 39

RESULTS
Equilibrium binding of [3H]ethidium to nAChR-rich membranes 40
Photoincorporation of [3H]ethidium diazide into nAChR-rich membranes 42
Mapping the [3H]ethidium diazide incorporation in nAChR α-subunit with S. aureus V8 protease 44
Localization of [3H]ethidium diazide incorporation into the α-subunit 44
Localization of [3H]ethidium diazide incorporation into the δ-subunit 47

DISCUSSION 50

CHAPTER 3 IDENTIFICATION OF THE SITES OF INCORPORATION OF [3H]3-AZIOCTANOL IN THE NACHR 64

ABSTRACT 64

INTRODUCTION 65

MATERIALS AND METHODS
Materials 67
Photoaffinity labeling of nAChR-enriched membranes with [3H]3-azioctanol 68
Gel Electrophoresis 69
Proteolytic digestion: 70
HPLC purification 70
Sequence Analysis 71

RESULTS
Photoincorporation of [3H]3-Azioctanol into nAChR-Rich Membranes. 72
CHAPTER 4 IDENTIFICATION OF THE SITES OF INCORPORATION OF [³H]PROGESTIN ARYL AZIDE IN THE nACHR

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS

Materials

Photoaffinity labeling of nACHR-enriched membranes with [³H]progestin aryl azide

Gel Electrophoresis

Proteolytic digestion

HPLC purification

Sequence Analysis

RESULTS

Photoincorporation of [³H]progestin aryl azide into nACHR-rich membranes

Mapping the [³H]progestin aryl azide incorporation in nACHR α subunit with V8 protease

Localization of [³H]progestin aryl azide incorporation within αV8-10

Localization of [³H]progestin aryl azide incorporation in the nACHR β subunit

Localization of [³H]progestin aryl azide incorporation in the nACHR γ-subunit

Localization of [³H]progestin aryl azide incorporation in the nACHR δ-subunit

DISCUSSION

CHAPTER 5 SUMMARY AND FUTURE DIRECTIONS
TABLE OF FIGURES

Figure 1-1. Proposed subunit topology and receptor oligomerization. 27
Figure 1-2. 9 Å structure of nAChR from electron microscopy 27
Figure 1-3. Agonist and benzodiazepine binding sites of the nAChR family 27
Figure 1-4. M2 and M1 segments of the nAChR 27
Figure 1-5. M3 and M4 segments of the nAChR 28
Figure 1-6. NCAs of the nAChR 28
Figure 1-7. The binding site of ethidium localized by FRET 28
Figure 1-8. Proposed binding sites of alcohols on the nAChR and GABA\textsubscript{A} 28
Figure 1-9. Formation of photoreactive intermediates from aryl azides and diazirines. 29
Figure 1-10. Photoaffinity probes of the nAChR 29
Figure 2-1. Binding of [3H]ethidium in the presence and absence of various cholinergic drugs. 56
Figure 2-2. Photoincorporation of [3H]ethidium diazide into integral and peripheral membrane proteins of nAChR-rich membranes in the presence or absence of carbamylcholine or PCP. 57
Figure 2-3. Photoincorporation of [3H]ethidium diazide into integral and peripheral membrane proteins of nAChR-rich membranes in the presence of oxidized glutathione. 57
Figure 2-4. Photoincorporation of [3H]ethidium diazide into integral and peripheral membrane proteins of nAChR-rich membranes in the presence of various cholinergic drugs. 58
Figure 2-5. Proteolytic mapping of sites of [3H]ethidium diazide incorporation into the nAChR \textalpha-subunit using \textit{S. aureus} V8 protease. 58
Figure 2-6. Reverse-phase HPLC purification of [3H]ethidium diazide labeled fragments from EndoLysC digest of \textalphaV8-20. 59
Figure 2-7. 3H and mass release upon N-terminal sequence analysis of HPLC fractions of EndoLysC-digest of [3H]ethidium diazide labeled \textalphaV8-20. 60
Figure 2-8. Proteolytic mapping of the sites of [3H]ethidium diazide incorporation in the nAChR \textdelta-subunit using V8 protease. 61
Figure 2-9. EndoLysC digest of \textdeltaV8-14 fragment labeled with [3H]ethidium diazide resolved by Tricine SDS-PAGE. 62
Figure 2-10. Reverse-phase HPLC purification of [3H]ethidium diazide labeled fragments from EndoLysC digest of \textdeltaV8-20. 62
Figure 2-11. Sequence Analysis of \textdeltaV8-20 EndoLysC digest fragments. 62
Figure 2-12. Model of ethidium and \textalphaM2 helix 63
Figure 3-1. Photoincorporation of [3H]3-azoctanol into integral and peripheral membrane proteins of nAChR-rich membranes in the presence or absence of carbamylcholine. 91
Figure 3-2. Time course of incorporation of [3H]3-azoctanol into integral membrane proteins of nAChR-rich membranes in the presence of carbamylcholine. 91
Figure 3-3. Dependence of [3H]3-azoctanol incorporation into \textalpha-subunit on the concentration of carbamylcholine. 92
Figure 3-4. Photoincorporation of $[^3]$H3-azioctanol into nAChR-rich membranes in the presence of various cholinergic agonists and competitive antagonists.

Figure 3-5. Photoincorporation of $[^3]$H3-azioctanol into nAChR-rich membranes in the presence and absence of various cholinergic drugs.

Figure 3-6. Effect of $[^3]$H3-azioctanol concentration on the incorporation into α-subunit.

Figure 3-7. Proteolytic mapping of sites of $[^3]$H3-azioctanol incorporation into the nAChR α-subunit using S. aureus V8 protease.

Figure 3-8. Reverse phase HPLC purification of $[^3]$H3-azioctanol labeled fragments from an EndoLysC digest of αV8-20 and sequence analysis of HPLC fractions.

Figure 3-9. Reverse phase HPLC purification of $[^3]$H3-azioctanol labeled fragments from S. aureus V8 protease digest of αV8-20.

Figure 3-10. Reverse phase HPLC purification of $[^3]$H3-azioctanol labeled αV8-18 and sequence analysis of HPLC fraction.

Figure 3-11. Reverse phase HPLC purification of $[^3]$H3-azioctanol labeled fragments from trypsin digestion of αV8-10 and sequence analysis of HPLC fractions.

Figure 3-12. Model of 3-azioctanol and αM2 helix.

Figure 4-1. Structure of progesterone and photoaffinity derivatives.

Figure 4-2. Photoincorporation of $[^3]$Hprogestin aryl azide into integral and peripheral membrane proteins of nAChR-rich membranes in the presence or absence of various cholinergic drugs.

Figure 4-3. Proteolytic mapping of sites of $[^3]$Hprogestin aryl azide incorporation into the nAChR α-subunit using S. aureus V8 protease.

Figure 4-4. Reverse phase HPLC purification of $[^3]$Hprogestin aryl azide labeled fragments from trypsin digest of αV8-10.

Figure 4-5. HPLC purification of $[^3]$Hprogestin aryl azide labeled fragments from trypsin digest of β-subunit.

Figure 4-6. HPLC purification of $[^3]$Hprogestin aryl azide labeled fragments from trypsin digest of γ-subunit.

Figure 4-7. HPLC purification of $[^3]$Hprogestin aryl azide labeled fragments from EndoLysC digest of δ-subunit.
Acknowledgements

None of the work presented in this thesis would have been possible without the help of other people. Steen Pedersen, Shaukat Husain, and John Katzenellenbogen provided the photoaffinity compounds with which I worked, to whom I am indebted. While a rotation student in the lab, Aimée Powelka did experiments with the $[^3H]$3-azioctanol, and I used some of her data for figures in that chapter.

I have greatly enjoyed my time in the Program in Neuroscience in the Cohen lab. My advisory committee provided valuable input along the way, and I appreciate their time and effort. All of the members of the Cohen lab have contributed in their own way to this work. I would especially like to thank Dr. Larry Dangott who got me started on the protein chemistry experiments. Finally, I would like to thank my advisor, Jonathan Cohen, for letting me join the lab. I can’t imagine a better person to have as an advisor and mentor.
Abbreviation List

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>1-AP</td>
<td>1-azidopyrene</td>
</tr>
<tr>
<td>CPZ</td>
<td>chlorpromazine</td>
</tr>
<tr>
<td>FRET</td>
<td>fluorescence resonance energy transfer</td>
</tr>
<tr>
<td>GluR</td>
<td>glutamate receptor</td>
</tr>
<tr>
<td>HTX</td>
<td>histrionicotoxin</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>nAChR</td>
<td>nicotinic acetylcholine receptor</td>
</tr>
<tr>
<td>NCA</td>
<td>noncompetitive antagonist</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCP</td>
<td>phencyclidine</td>
</tr>
<tr>
<td>PTH</td>
<td>phenylthiohydantoin</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TID</td>
<td>3-(trifluoromethyl)-3-m-(iodophenyl)diazirine</td>
</tr>
<tr>
<td>TPP</td>
<td>triphenylphosphonium</td>
</tr>
<tr>
<td>TPS</td>
<td>Torpedo physiological saline</td>
</tr>
<tr>
<td>V8</td>
<td>staphylococcus aureus V8 protease</td>
</tr>
</tbody>
</table>