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Abstract

The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that is

opened upon the binding of agonist to the extracellular surface.  Noncompetitive

antagonists of the nAChR block the response of the nAChR to agonist without preventing

the binding of agonist.  While most aromatic amine noncompetitive antagonists appear to

bind within the lumen of the ion channel, the binding site of the fluorescent

noncompetitive antagonist ethidium has been predicted by fluorescence resonance energy

transfer studies to lie at the most extracellular aspect of the receptor.  [3H]Ethidium

diazide, a photoactivatible analog of ethidium, was used to map the binding site of

ethidium in the desensitized state.  Sequence analysis showed that [3H]ethidium diazide

photoincorporated into the α and δ M2 segments, which are known to contribute to the

lumen of the channel, and particularly into residues which have been shown to line the

channel.  Additionally, photoincorporation was also evident in the M1 segments of these

two subunits, indicating that the M1 segment contributes to the formation of the lumen of

the channel.

[3H]3-Azioctanol is a photoaffinity probe that is a general anesthetic that inhibits

the nAChR.  Sequence analysis of nAChR photolabeled with this probe showed that the

primary site of [3H]3-azioctanol incorporation in the desensitized state of the nAChR was

αGlu-262, at the extracellular end of αM2, indicating binding within the lumen of the

channel.  In addition, [3H]3-azioctanol incorporated at lower efficiency into residues at

the protein-lipid interface, at equal levels in the presence or absence of agonist.  In the

absence of agonist, [3H]3-azioctanol also reacted with low efficiency with αTyr-190 and

αTyr-198, residues contributing to the binding site of agonist.
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[3H]Progestin aryl azide is a photoaffinity analog of the steroid anesthetic

progesterone.  Although most noncompetitive antagonists appear to bind within the

lumen of the channel, the high hydrophobicity of steroids suggests that they may interact

at the protein-lipid interface.  The primary site of [3H]progestin aryl azide incorporation

in the α-subunit was mapped within a large fragment containing αM4, known to form the

protein-lipid interface.  However, the instability of the photoadducts to HPLC and

sequencing conditions precluded identification of labeled residues.
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Abbreviation List

ACh acetylcholine

1-AP 1-azidopyrene

CPZ chlorpromazine

FRET fluorescence resonance energy transfer
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HTX histrionicotoxin
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