Mapping noncompetitive antagonists binding sites in the nicotinic acetylcholine receptor

A thesis presented

by

Megan Benson Pratt

to

The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Neurobiology

Harvard University

Cambridge, Massachusetts

September, 1999

© 1999 by Megan Benson Pratt

All rights reserved.

Abstract

The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that is opened upon the binding of agonist to the extracellular surface. Noncompetitive antagonists of the nAChR block the response of the nAChR to agonist without preventing the binding of agonist. While most aromatic amine noncompetitive antagonists appear to bind within the lumen of the ion channel, the binding site of the fluorescent noncompetitive antagonist ethidium has been predicted by fluorescence resonance energy transfer studies to lie at the most extracellular aspect of the receptor. [³H]Ethidium diazide, a photoactivatible analog of ethidium, was used to map the binding site of ethidium in the desensitized state. Sequence analysis showed that [³H]ethidium diazide photoincorporated into the α and δ M2 segments, which are known to contribute to the lumen of the channel, and particularly into residues which have been shown to line the channel. Additionally, photoincorporation was also evident in the M1 segments of the set two subunits, indicating that the M1 segment contributes to the formation of the lumen of the channel.

[³H]3-Azioctanol is a photoaffinity probe that is a general anesthetic that inhibits the nAChR. Sequence analysis of nAChR photolabeled with this probe showed that the primary site of [³H]3-azioctanol incorporation in the desensitized state of the nAChR was α Glu-262, at the extracellular end of α M2, indicating binding within the lumen of the channel. In addition, [³H]3-azioctanol incorporated at lower efficiency into residues at the protein-lipid interface, at equal levels in the presence or absence of agonist. In the absence of agonist, [³H]3-azioctanol also reacted with low efficiency with α Tyr-190 and α Tyr-198, residues contributing to the binding site of agonist.

i

 $[{}^{3}$ H]Progestin aryl azide is a photoaffinity analog of the steroid anesthetic progesterone. Although most noncompetitive antagonists appear to bind within the lumen of the channel, the high hydrophobicity of steroids suggests that they may interact at the protein-lipid interface. The primary site of $[{}^{3}$ H]progestin aryl azide incorporation in the α -subunit was mapped within a large fragment containing α M4, known to form the protein-lipid interface. However, the instability of the photoadducts to HPLC and sequencing conditions precluded identification of labeled residues.

TABLE OF CONTENTS		
CHAPTER 1 INTRODUCTION TO THE THESIS	1	
LIGAND GATED ION CHANNELS AS ALLOSTERIC PROTEINS	4	
STRUCTURAL MOTIFS Agonist binding site Transmembrane segments	6 6 10	
NONCOMPETITIVE ANTAGONISTS Amine NCAs Anesthetics	14 15 17	
PHOTOAFFINITY LABELING	21	
THESIS SYNOPSIS	24	
CHAPTER 2 IDENTIFICATION OF THE SITES OF INCORPORATION OF [³H]ETHIDIUM DIAZIDE IN THE NACHR Abstract	30 30	
INTRODUCTION	31	
MATERIALS AND METHODS Materials Equilibrium Binding Assay Photoaffinity labeling of nAChR-enriched membranes with [³ H]ethidium diazide Gel Electrophoresis EndoLysC digest HPLC purification Sequence Analysis	33 33 34 35 37 38 38 38 39	
RESULTS Equilibrium binding of [³ H]ethidium to nAChR-rich membranes Photoincorporation of [³ H]ethidium diazide into nAChR-rich membranes Mapping the [³ H]ethidium diazide incorporation in nAChR a -subunit with S. aureus V8 protease Localization of [³ H]ethidium diazide incorporation into the a -subunit Localization of [³ H]ethidium diazide incorporation into the d -subunit	40 40 42 44 44 47	
DISCUSSION	50	
CHAPTER 3 IDENTIFICATION OF THE SITES OF INCORPORATION OF [³ H]3- AZIOCTANOL IN THE NACHR	64	
ARSTRACT	64	
INTRODUCTION	65	
MATERIALS AND METHODS Materials Photoaffinity labeling of nAChR-enriched membranes with [³ H]3-azioctanol Gel Electrophoresis Proteolytic digestion: HPLC purification Sequence Analysis	67 67 68 69 70 70 71	
RESULTS <i>Photoincorporation of</i> $[^{3}H]$ <i>3-Azioctanol into nAChR-Rich Membranes.</i>	72 72	

Localization of the sites of incorporation of $[^{3}H]^{3}$ -azioctanol in a V8-20 segment Incorporation of $[^{3}H]^{3}$ -azioctanol into a V8-18 Localization of the sites of incorporation of $[^{3}H]^{3}$ -azioctanol in a V8-10	79 82 83
DISCUSSION	85
CHAPTER 4 IDENTIFICATION OF THE SITES OF INCORPORATION OF [³ H]PROG ARYL AZIDE IN THE NACHR	ESTIN 99
Abstract	99
INTRODUCTION	99
MATERIALS AND METHODS Materials Photoaffinity labeling of nAChR-enriched membranes with [³ H]progestin aryl azide Gel Electrophoresis Proteolytic digestion HPLC purification Sequence Analysis	102 102 102 104 104 104
RESULTS Photoincorporation of [³ H]progestin aryl azide into nAChR-rich membranes Mapping the [³ H]progestin aryl azide incorporation in nAChR a subunit with V8 protease Localization of [³ H]progestin aryl azide incorporation within a V8-10 Localization of [³ H]progestin aryl azide incorporation in the nAChR b subunit Localization of [³ H]progestin aryl azide incorporation in the nAChR g -subunit Localization of [³ H]progestin aryl azide incorporation in the nAChR g -subunit	100 100 100 100 100 100 110 110
DISCUSSION	11
CHAPTER 5 SUMMARY AND FUTURE DIRECTIONS	1

TABLE OF FIGURES

Figure 1-1. Proposed subunit topology and receptor oligomerization.	27
Figure 1-2. 9 Å structure of nAChR from electron microscopy	27
Figure 1-3. Agonist and benzodiazepine binding sites of the nAChR family	27
Figure 1-4 M2 and M1 segments of the nAChR	27
Figure 1-5. M3 and M4 segments of the nAChR	28
Figure 1-6. NCAs of the nAChR	28
Figure 1-7. The binding site of ethidium localized by FRET	28
Figure 1-8. Proposed binding sites of alcohols on the nAChR and GABA _A RError! Bookmark not defined.	
Figure 1-9. Formation of photoreactive intermediates from aryl azides and diazirines.	29
Figure 1-10. Photoaffinity probes of the nAChR	29
Figure 2-1. Binding of [³ H]ethidium in the presence and absence of various cholinergic drugs.	56
Figure 2-2. Photoincorporation of [³ H]ethidium diazide into integral and peripheral membrane proteins o nAChR-rich membranes in the presence or absence of carbamylcholine or PCP.	of 57
Figure 2-3. Photoincorporation of [³ H]ethidium diazide into integral and peripheral membrane proteins o nAChR-rich membranes in the presence of oxidized glutathione.	of 57
Figure 2-4. Photoincorporation of [³ H]ethidium diazide into integral and peripheral membrane proteins o nAChR-rich membranes in the presence of various cholinergic drugs.	of 58
Figure 2-5. Proteolytic mapping of sites of $[^{3}H]$ ethidium diazide incorporation into the nAChR α -subunit using <i>S. aureus</i> V8 protease.	t 58
Figure 2-6. Reverse-phase HPLC purification of $[^{3}H]$ ethidium diazide labeled fragments from EndoLysC digest of α V8-20.	59
Figure 2-7. ³ H and mass release upon N-terminal sequence analysis of HPLC fractions of EndoLysC-dige of [³ H]ethidium diazide labeled α V8-20.	est 60
Figure 2-8. Proteolytic mapping of the sites of [³ H]ethidium diazide incorporation in the nAChR δ-subunusing V8 protease.	iit 61
Figure 2-9. EndoLysC digest of δ V8-14 fragment labeled with [³ H]ethidium diazide resolved by Tricine SDS-PAGE.	62
Figure 2-10. Reverse-phase HPLC purification of $[^{3}H]$ ethidium diazide labeled fragments from EndoLyst digest of δ V8-20.	C 62
Figure 2-11 Sequence Analysis of δV8-20 EndoLysC digest fragments.	62
Figure 2-12. Model of ethidium and $\alpha M2$ helix	63
Figure 3-1. Photoincorporation of [³ H]3-azioctanol into integral and peripheral membrane proteins of nAChR-rich membranes in the presence or absence of carbamylcholine.	91
Figure 3-2 Time course of incorporation of [³ H]3-azioctanol into integral membrane proteins of nAChR-rich membranes in the presence of carbamylcholine.	91
Figure 3-3. Dependence of $[{}^{3}H]$ 3-azioctanol incorporation into α -subunit on the concentration of carbamylcholine.	92

Figure 3-4. cholir	Photoincorporation of [³ H]3-azioctanol into nAChR-rich membranes in the presence of varianter agonists and competitive antagonists.	ous 92
Figure 3-5. absen	Photoincorporation of [³ H]3-azioctanol into nAChR-rich membranes in the presence and ce of various cholinergic drugs.	93
Figure 3-6.	Effect of [³ H]3-azioctanol concentration on the incorporation into α -subunit.	93
Figure 3-7. S. aur	Proteolytic mapping of sites of $[{}^{3}H]$ 3-azioctanol incorporation into the nAChR α -subunit us <i>reus</i> V8 protease.	ing 94
Figure 3-8. digest	Reverse phase HPLC purification of $[{}^{3}H]$ 3-azioctanol labeled fragments from an EndoLysC t of α V8-20 and sequence analysis of HPLC fractions	94
Figure 3-9. protea	Reverse phase HPLC purification of $[{}^{3}H]$ 3-azioctanol labeled fragments from <i>S. aureus</i> V8 ase digest of α V8-20.	95
Figure 3-10 of HP	. Reverse phase HPLC purification of $[^{3}$ H]3-azioctanol labeled α V8-18 and sequence analyseLC fraction.	sis 96
Figure 3-11 digest	. Reverse phase HPLC purification of $[^{3}$ H]3-azioctanol labeled fragments from trypsin tion of α V8-10 and sequence analysis of HPLC fractions.	96
Figure 3-12	. Model of 3-azioctanol and α M2 helix	97
Figure 4-1.	Structure of progesterone and photoaffinity derivatives	115
Figure 4-2. of nA	Photoincorporation of [³ H]progestin aryl azide into integral and peripheral membrane protein ChR-rich membranes in the presence or absence of various cholinergic drugs.	ins 115
Figure 4-3. subur	Proteolytic mapping of sites of [³ H]progestin aryl azide incorporation into the nAChR α - it using <i>S. aureus</i> V8 protease.	115
Figure 4-4. digest	Reverse phase HPLC purification of $[^{3}H]$ progestin aryl azide labeled fragments from trypsit of $\alpha V8-10$	n 116
Figure 4-5. subur	HPLC purification of [³ H]progestin aryl azide labeled fragments from trypsin digest of β - it	117
Figure 4-6. subur	HPLC purification of $[^{3}H]$ progestin aryl azide labeled fragments from trypsin digest of γ - it	117
Figure 4-7. subur	HPLC purification of [³ H]progestin aryl azide labeled fragments from EndoLysC digest of dit	δ- 118

Acknowledgements

None of the work presented in this thesis would have been possible without the help of other people. Steen Pedersen, Shaukat Husain, and John Katzenellenbogen provided the photoaffinity compounds with which I worked, to whom I am indebted. While a rotation student in the lab, Aimée Powelka did experiments with the [³H]3-azioctanol, and I used some of her data for figures in that chapter.

I have greatly enjoyed my time in the Program in Neuroscience in the Cohen lab. My advisory committee provided valuable input along the way, and I appreciate their time and effort. All of the members of the Cohen lab have contributed in their own way to this work. I would especially like to thank Dr. Larry Dangott who got me started on the protein chemistry experiments. Finally, I would like to thank my advisor, Jonathan Cohen, for letting me join the lab. I can't imagine a better person to have as an advisor and mentor.

Abbreviation List

ACh	acetylcholine
1-AP	1-azidopyrene
CPZ	chlorpromazine
FRET	fluorescence resonance energy transfer
GluR	glutamate receptor
HTX	histrionicotoxin
HPLC	high-performance liquid chromatography
nAChR	nicotinic acetylcholine receptor
NCA	noncompetitive antagonist
PAGE	polyacrylamide gel electrophoresis
РСР	phencyclidine
РТН	phenylthiohydantoin
SDS	sodium dodecyl sulfate
TFA	trifluoroacetic acid
TID	3-(trifluoromethyl)-3-m-(iodophenyl)diazirine
TPP	triphenylphosphonium
TPS	Torpedo physiological saline
V8	staphylococcus aureus V8 protease