Machine Learning for Prediction and Control

Gregory Galperin and Paul Viola ‘M

Learning & Vision Group
Artificial Intelligence Laboratory
Massachusetts Institue Of Technology

The Problem: The goal of this project is to investigate machine learning techniques for enabling computers to control
complex and stochastic systems and predict the outcomes of such systems. More specifically, we are developing
algorithms tailored to a parallel architecture which can learn from experience to perform that control task.

The first example of such a system we are investigating is learning to play the game of backgammon. Backgammon
is a two-player board game in which players alternate moves and roll dice (the random element) to constrain which
moves are allowable. It is far too difficult to solve exhaustively, and traditional tree-search based techniques see little
success in this domain because of both its complexity and randomness.

Motivation: The development of a system which is able to automatically learn to perform a complex control task well
both is of significant interest to the field of Artificial Intelligence and is of considerable practical value. Traditionally,
such control systems have been hand-crafted attempts to capture an expert human'’s intuitions about the control task;
they require tedious and extensive human effort, and results are mixed, often poor. In contrast, a successful learning
machine would be able to learn such a task without an expert human even existing, and requires only computational
effort; in its most successful domains, such automatic techniques have performed significantly better than the best
hand-crafted efforts.

Perfectinformation board games are excellent arenas for testing new learning techniques. Clearly, the task is extremely
difficult as a whole, and the decision task is “realistically complex:” the space of possible states is imhdéhse (
states). The environmentis simple and the rules (state transitions and rewards) are well-defined, allowing for effective
simulation. Finally, performance is relatively easy to measure; humans intuitively understand these domains, and thus
can have insight into the computer’s progress, oversights, innovations, and representation.

Backgammon is a particularly relevant game to study because of its random element; unlike completely deterministic
games such as chess, in which a player can know exactly what state they are in and can cause the system to do exactly
as they decide, most applications pertaining to the real world involve elements which can neither be detected nor
controlled and are thus effectively random.

Previous Work: Technigues such as reinforcement learning of neural networks have been very successful in allowing
a computer to learn to perform control tasks; however, their performance is limited by available serial computational
power because the current algorithms do not parallelize well. [3]

The foundation for the backgammon project in this research was laid by Dr. Gerald Tesauro, a collaborator in this
project, first with Neurogammon in 1989, a neural network trained on human expert move preferences. Two years later
Tesauro created TD-Gammon, a neural network which learns to play from experience gained in games played against
itself. TD-Gammon quickly became the strongest computer backgammon player and could beat all but a handful of
the world’s best humans. [2]

Approach: We have designed a Monte-Carlo simulation technique in which control decisions are made in real time
by choosing the action that produces the best outcome statistics in the simulation. This procedure leads to a substantial
improvement over the neural network’s original control decision. [1]

We use Monte-Carlo search to estimbig(z, a), the expected value of performing actiom stater and subsequently
executing policyP in all successor states. HerR,is some given arbitrary policy, as defined by a “base controller”

(we do not care howP is defined or was derived; we only need access to its policy decisions). In the Monte-Carlo
search, many simulated trajectories starting ffaryu) are generated following, and the expected long-term reward

is estimated by averaging the results from each of the trajectories. (Note that Monte-Carlo sampling is needed only
for non-deterministic tasks, because in a deterministic task, only one trajectory starting:fionwould need to be
examined.) Having estimatdd:(x, a), the improved policy”’ at stater is defined to be the action which produced

the best estimated value in the Monte-Carlo simulation,P&z) = arg max, Vp(z,a).

Network | Base player| Monte-Carlo player| Monte-Carlo CPU
Lin-1 -0.52 ppg -0.01 ppg 5 sec/move
Lin-2 -0.65 ppg -0.02 ppg 5 sec/move
Lin-3 -0.32 ppg +0.04 ppg 10 sec/move

Table 1: Performance of three simple linear evaluators, for both initial base players and corresponding Monte-Carlo

players. Performance is measured in terms of expected points per game (ppg) vs. TD-Gammon 2.1 1-ply. Positive
numbers indicate that the player here is better than TD-Gammon. Base player stats are the results of 30K trials (std.
dev. about .005), and Monte-Carlo stats are the results of 5K trials (std. dev. about .02). CPU times are for the

Monte-Carlo player running on 32 SP1 nodes.

We can see in Table 1 that the Monte-Carlo technique produces dramatic improvementin playing ability for these weak
initial players. As base players, Lin-1 should be regarded as a bad intermediate player, while Lin-2 is substantially
worse and is probably about equal to a human beginner. Both of these networks get trounced by TD-Gammon, which
on its 1-ply level plays at strong advanced level. Yet the resulting Monte-Carlo players from these networks appear to
play about equal to TD-Gammon 1-ply. Lin-3 is a significantly stronger player, and the resulting Monte-Carlo player
appears to be clearly better than TD-Gammon 1-ply. Itis estimated to be about equivalent to TD-Gammon on its 2-ply
level, which plays at a strong expert level.

Difficulty: TD-Gammon represented a major advance in the state of the art in learning a control policy. Unfortunately,
the amount of computation required grows drastically as you increase the size of the neural network to gain better
results, and a plateau of how much a single processor could achieve was soon reached. The logical next step would be
to use multiple processors, but the reinforcement learning process unfortunately does not parallelize well at all. The
challenge is to develop new algorithms which exploit the power available in massively parallel machines by tailoring
our approach to match the architecture of the machine.

Impact: This technique proposes a novel approach to learning, combining features of on-line and off-line methods
to achieve considerable performance in the task of learning a backgammon value function in a process that exploits
the processing power of parallel supercomputers. We have already created the world’s best computer backgammon
player using our techniques; we expect that our system is also currently better than the best humans, and we hope to
demonstrate this within a year. Further, this success is hoped to transfer to other domains.

This project is breaking new ground in the field of machine learning and neural networks. The techniques we are
developing will make it possible for computers to learn larger problems and to learn a given problem with greater
accuracy.

Future work: On the theoretical side, we hope to complete a proof that the techniques we have developed will
guarantee an improved control policy. Practically, these techniques should also have broad applicability to many other
classes of real-world problems in which the environment can be simulated, such as manufacturing process control,
robotic control, combinatorial optimization problems like job-shop scheduling (delivery truck scheduling, aircraft
maintenance, etc.), and simulated economies and financial markets. [4]

Research Support:"Machine Learning for Prediction and Control” funded by IBM under contract number 49140046
administered by IBM T.J. Watson Research Center.

References:

[1] G. Tesauro and G. Galperin, “On-Line Policy Improvement using Monte-Carlo Search.” In: M. Mozer et al.,
eds., Advances in Neural Information Processing Systems 9, MIT Press (1997).

[2] G. Tesauro, “Temporal difference learning and TD-Gamm@uinm. of the ACM38:3, 58-67 (1995).
[3] R.S. Sutton, “Learning to predict by the methods of temporal differendéachine Learning, 9-44 (1988).

[4] W.Zhang and T. G. Dietterich, “High-performance job-shop scheduling with a time-delay) Fie{work.” In:
D. Touretzky et al., eds., Advances in Neural Information Processing Systems 8, MIT Press (1996).

