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Abstract

From as early as 6 months of age, human children
distinguish between motion patterns generated by
animate objects from patterns generated by mov-
ing inanimate objects, even when the only stimu-
lus that the child observes is a single point of light
moving against a blank background. The mecha-
nisms by which the animate/inanimate distinction
are made are unknown, but have been shown to rely
only upon the spatial and temporal properties of the
movement. In this paper, I present both a multi-
agent architecture that performs this classification
as well as detailed comparisons of the individual
agent contributions against human baselines.

1 Introduction
One of the most basic visual skills is the ability to distinguish
animate from inanimate objects. We can easily distinguish
between the movement of a clock pendulum that swings back
and forth on the wall from the movement of a mouse running
back and forth across the floor. Michotte[1962] first doc-
umented that adults have a natural tendency to describe the
movement of animate objects in terms of intent and desire,
while the movements of inanimate objects are described in
terms of the physical forces that act upon them and the phys-
ical laws that govern them. Furthermore, by using only sin-
gle moving points of light on a blank background, Michotte
showed that these perceptions can be guided by even simple
visual motion without any additional context.

Leslie [1982] proposed that this distinction between an-
imate and inanimate objects reflects a fundamental differ-
ence in how we reason about the causal properties of ob-
jects. According to Leslie, people effortlessly classify stimuli
into three different categories based on the types of causal ex-
planations that can be applied to those objects, and different
modules in the brain have evolved to deal with each of these
types of causation. Inanimate objects are described in terms
of mechanical agency, that is, they can be explained by the
rules ofmechanics, and are processed by a special-purpose
reasoning engine called theTheory of Bodymodule (ToBY)
which encapsulates the organism’s intuitive knowledge about
how objects move. This knowledge may not match the actual
physical laws that govern the movement of objects, but rather

is our intuitive understanding of physics. Animate objects are
described either by their actions or by their attitudes, and are
processed by theTheory of Mindmodule which has some-
times been called an “intuitive psychology.” System 1 of the
theory of mind module (ToMM-1) explains events in terms of
the intent and goals of agents, that is, theiractions. For ex-
ample, if you see me approaching a glass of water you might
assume that I want the water because I am thirsty. System 2
of the theory of mind module (ToMM-2) explains events in
terms of theattitudesand beliefs of agents. If you see me
approaching a glass of kerosene and lifting it to my lips, you
might guess that I believe that the kerosene is actually wa-
ter. Leslie further proposed that this sensitivity to the spatio-
temporal properties of events is innate, but more recent work
from Cohen and Amsel[1998] may show that it develops ex-
tremely rapidly in the first few months and is fully developed
by 6-7 months.

Although many researchers have attempted to document
the time course of the emergence of this skill, little effort has
gone into identifying the mechanisms of how an adult or an
infant performs this classification. This paper investigates a
number of simple visual strategies that attempt to perform
the classification of animate from inanimate stimuli based
only on spatio-temporal properties without additional con-
text. These strategies have been implemented on a humanoid
robot called Cog as part of an on-going effort to establish ba-
sic social skills and to provide mechanisms for social learning
[Scassellati, 2000]. A set of basic visual feature detectors and
a context-sensitive attention system (described in section 2)
select a sequence of visual targets (see Figure 1). The visual
targets in each frame are linked together temporally to form
spatio-temporal trajectories (section 3). These trajectories are
then processed by a multi-agent representation that mimics
Leslie’s ToBY module by attempting to describe trajectories
in terms of naive physical laws (section 4). The results of
the implemented system on real-world environments are in-
troduced, and a comparison against human performance on
describing identical data is discussed in section 5.

2 Visual Precursors
Cog’s visual system has been designed to mimic aspects of an
infant’s visual system. Human infants show a preference for
stimuli that exhibit certain low-level feature properties. For
example, a four-month-old infant is more likely to look at a
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Figure 1: Overall architecture for distinguishing animate
from inanimate stimuli. Visual input is processed by a set of
simple feature detectors, each of which contributes to a visual
attention process. Salient objects in each frame are linked to-
gether to form spatio-temporal trajectories, which are then
classified by the “theory of body” (ToBY) module.

moving object than a static one, or a face-like object than one
that has similar, but jumbled, features[Fagan, 1976]. Cog’s
perceptual system combines many low-level feature detectors
that are ecologically relevant to an infant. Three of these fea-
tures are used in this work: color saliency analysis, motion
detection, and skin color detection. These low-level features
are then filtered through an attentional mechanism which de-
termines the most salient objects in each camera frame.

2.1 Pre-attentive visual routines
The color saturation filter is computed using an opponent-
process model that identifies saturated areas of red, green,
blue, and yellow[Itti et al., 1998]. The color channels of
the incoming video stream (r, g, andb) are normalized by
the luminancel and transformed into four color-opponency
channels (r′, g′, b′, andy′):
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The four opponent-color channels are thresholded and
smoothed to produce the output color saliency feature map.

In parallel with the color saliency computations, The mo-
tion detection module uses temporal differencing and region
growing to obtain bounding boxes of moving objects. The in-
coming image is converted to grayscale and placed into a ring
of frame buffers. A raw motion map is computed by passing
the absolute difference between consecutive images through
a threshold functionT :

Mraw = T (‖It − It−1‖) (5)

This raw motion map is then smoothed to minimize point
noise sources.

The third pre-attentive feature detector identifies regions
that have color values that are within the range of skin tones
[Breazealet al., 2000]. Incoming images are first filtered by
a mask that identifies candidate areas as those that satisfy the
following criteria on the red, green, and blue pixel compo-
nents:

2g > r > 1.1g 2b > r > 0.9b 250 > r > 20
(6)

The final weighting of each region is determined by a learned
classification function that was trained on hand-classified im-
age regions. The output is again median filtered with a small
support area to minimize noise.

2.2 Visual attention
Low-level perceptual inputs are combined with high-level in-
fluences from motivations and habituation effects by the at-
tention system. This system is based upon models of adult hu-
man visual search and attention[Wolfe, 1994], and has been
reported previously[Breazeal and Scassellati, 1999]. The at-
tention process constructs a linear combination of the input
feature detectors and a time-decayed Gaussian field which
represents habituation effects. High areas of activation in this
composite generate a saccade to that location and compen-
satory neck movement. The weights of the feature detectors
can be influenced by the motivational and emotional state of
the robot to preferentially bias certain stimuli. For example,
if the robot is searching for a playmate, the weight of the
skin detector can be increased to cause the robot to show a
preference for attending to faces. The output of the attention
system is a labeled set of targets for each camera frame that
indicate the positions (and feature properties) of thek most
salient targets. For the experiments presented here,k = 5.

3 Computing Motion Trajectories
The attention system indicates the most salient objects at each
time step, but does not give any indication of the temporal
properties of those objects. Trajectories are formed using
the multiple hypothesis tracking algorithm proposed by Reid
[1979] and implemented by Cox and Hingorani[1996]. The
centroids of the attention targets form a stream of target lo-
cations{P 1

t , P 2
t , ...P k

t } with a maximum ofk targets present
in each framet. The objective is to produce a labeled trajec-
tory which consists of a set of points, at most one from each
frame, which identify a single object in the world as it moves
through the field of view:

T = {P i1
1 , P i2

2 , ...P in
t } (7)

However, because the existence of a target from one frame
to the next is uncertain, we must introduce a mechanism to
compensate for objects that enter and leave the field of view
and to compensate for irregularities in the earlier processing
modules. To address these problems, we introduce phantom
points that have undefined locations within the image plane
but which can be used to complete trajectories for objects that
enter, exit, or are occluded within the visual field. As each
new point is introduced, a set of hypotheses linking that point



Figure 2: The last frame of a 30 frame sequence with five tra-
jectories identified. Four nearly stationary trajectories were
found (one on the person’s head, one on the person’s hand,
one on the couch in the background, and one on the door in
the background). The final trajectory resulted from the chair
being pushed across the floor.

to prior trajectories are generated. These hypotheses include
representations for false alarms, non-detection events, exten-
sions of prior trajectories, and beginnings of new trajectories.
The set of all hypotheses is pruned at each time step based on
statistical models of the system noise levels and based on the
similarity between detected targets. This similarity measure-
ment is based on similarities of object features such as color
content, size, and visual moments. At any point, the system
maintains a small set of overlapping hypotheses so that fu-
ture data may be used to disambiguate the scene. Of course,
at any time step, the system can also produce the set of non-
overlapping hypotheses that are statistically most likely. Fig-
ure 2 shows the last frame of a 30 frame sequence in which a
chair was pushed across the floor and the five trajectories that
were located.

4 The Theory of Body Module
To implement the variety of naive physical laws encompassed
by the Theory of Body module, a simple agent-based ap-
proach was chosen. Each agent represents knowledge of a
single theory about the behavior of inanimate physical ob-
jects. For every trajectoryt, each agenta computes both an
animacy voteαta and a certaintyρta. The animacy votes
range from+1 (indicating animacy) to−1 (indicating inani-
macy), and the certainties range from1 to 0. For these initial
tests, five agents were constructed: an insufficient data agent,
a static object agent, a straight line agent, an acceleration sign
change agent, and an energy agent. These agents were cho-
sen to handle simple, common motion trajectories observed
in natural environments, and do not represent a complete set.
Most notably missing is an agent to represent collisions, both
elastic and inelastic.

At each time step, all current trajectories receive a cur-
rent animacy voteVt. Three different voting algorithms
were tested to produce the final voteVt for each trajectoryt.
The first voting method was a simple winner-take-all vote in
which the winner was declared to be the agent with the great-

est absolute value of the product:Vt = maxa ‖αta × ρta‖
The second method was an average of all of the individual
vote products:Vt = 1

A

∑
a(αta × ρta) whereA is the num-

ber of agents voting. The third method was a weighted aver-
age of the products of the certainties and the animacy votes:
Vt = 1

A

∑
a(wa × αta × ρta) wherewa is the weight for

agenta. Weights were empirically chosen to maximize per-
formance under normal, multi-object conditions in natural en-
vironments and were kept constant through out this experi-
ment as1.0 for all agents except the static object agent which
had a weight of2.0. The animacy vote at each time step is
averaged with a time-decaying weight function to produce a
sustained animacy measurement.

4.1 Insufficient Data Agent

The purpose of the insufficient data agent is to quickly elim-
inate trajectories that contain too few data points to properly
compute statistical information against the noise background.
Any trajectory with fewer than one-twentieth the maximum
trajectory length or fewer than three data points is given an
animacy voteα = 0.0 with a certainty value of1.0. In prac-
tice, maximum trajectory lengths of 60-120 were used (cor-
responding to trajectories spanning 2-4 seconds), so any tra-
jectory of fewer than 3-6 data points was rejected.

4.2 Static Object Agent

Because the attention system still generates target points for
objects that are stationary, there must be an agent that can
classify objects that are not moving as inanimate. The static
object agent rejects any trajectory that has an accumulated
translation below a threshold value as inanimate. The cer-
tainty of the measurement is inversely proportional to the
translated distance and is proportional to the length of the tra-
jectory.

4.3 Straight Line Agent

The straight line agent looks for constant, sustained veloci-
ties. This agent computes the deviations of the velocity pro-
file from the average velocity vector. If the sum of these devi-
ations fall below a threshold, as would result from a straight
linear movement, then the agent casts a vote for inanimacy.
Below this threshold, the certainty is inversely proportional
to the sum of the deviations. If the sum of the deviations is
above a secondary threshold, indicating a trajectory with high
curvature or multiple curvature changes, then the agent casts
a vote for animacy. Above this threshold, the certainty is pro-
portional to the sum of the deviations.

4.4 Acceleration Sign Change Agent

One proposal for finding animacy is to look for changes in
the sign of the acceleration. According to this proposal, any-
thing that can alter the direction of its acceleration must be
operating under its own power (excluding contact with other
objects). The acceleration sign change agent looks for zero-
crossings in the acceleration profile of a trajectory. Anything
with more than one zero-crossing is given an animacy vote
with a certainty proportional to the number of zero crossings.
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Figure 3: Thirty stimuli used in the evaluation of ToBY. Stimuli were collected by recording the position of the most salient
object detected by the attention system when the robot observed natural scenes similar to the one shown in Figure 2. Each
image shown here is the collapsed sequence of video frames, with more recent points being brighter than older points. Human
subjects saw only a single bright point in each frame of the video sequence.

4.5 Energy Agent
Bingham, Schmidt, and Rosenblum[1995] have proposed
that human adults judge animacy based on models of po-
tential and kinetic energy. To explore their hypothesis, a
simple energy model agent was implemented. The energy
model agent judges an object that gains energy to be animate.
The energy model computes the total energy of the systemE
based on a simple model of kinetic and potential energies:

E =
1
2
mv2

y + mgy (8)

wherem is the mass of the object,vy the vertical velocity,g
the gravity constant, andy the vertical position in the image.
In practice, since the mass is a constant scale factor, it is not
included in the calculations. This simple model assumes that
an object higher in the image is further from the ground, and
thus has more potential energy. The vertical distance and ve-
locity are measured using the gravity vector from a three-axis
inertial system as a guideline, allowing the robot to determine
“up” even when its head is tilted. The certainty of the vote is
proportional to the measured changes in energy.

5 Comparing ToBY’s Performance to Human
Performance

The performance of the individual agents was evaluated both
on dynamic, real-world scenes at interactive rates and on

more carefully controlled recorded video sequences.
For interactive video tasks, at each time step five attention

targets were produced. Trajectories were allowed to grow to a
length of sixty frames, but additional information on the long-
term animacy scores for continuous trajectories were main-
tained as described in section 4. All three voting methods
were tested. The winner-take-all and the weighted average
voting methods produced extremely similar results, and even-
tually the winner-take-all strategy was employed for simplic-
ity. The parameters of the ToBY module were tuned to match
human judgments on long sequences of simple data structures
(such as were produced by static objects or people moving
back and forth throughout the room).

5.1 Motion Trajectory Stimuli
To further evaluate the individual ToBY agents on controlled
data sequences, video from the robot’s cameras were recorded
and processed by the attention system to produce only a sin-
gle salient object in each frame.1 To remove all potential con-
textual cues, a new video sequence was created containing
only a single moving dot representing the path taken by that

1This restriction on the number of targets was imposed following
pilot experiments using multiple targets. Human subjects found the
multiple target displays more difficult to observe and comprehend.
Because each agent currently treats each trajectory independently,
this restriction should not bias the comparison.



object set against a black background, which in essence is the
only data available to the ToBY system. Thirty video seg-
ments of approximately 120 frames each were collected (see
Figure 3). These trajectories included static objects (e.g. #2),
swinging pendula (e.g. #3), objects that were thrown into
the air (e.g. #7), as well as more complicated trajectories
(e.g. #1). Figure 4 shows the trajectories grouped according
to the category of movement, and can be matched to Figure
3 using the stimulus number in the second column. The third
column of figure 4 shows whether or not the stimulus was
animate or inanimate.

5.2 Human Animacy Judgments
Thirty-two adult, volunteer subjects were recruited for this
study. Subjects ranged in age from 18 to 50, and included
14 women and 18 men. Subjects participated in a web-based
questionnaire and were informed that they would be seeing
video sequences containing only a single moving dot, and that
this dot represented the movement of a real object. They were
asked to rank each of the thirty trajectories shown in figure 3
on a scale of 1 (animate) to 10 (inanimate). Following ini-
tial pilot subjects (not included in this data), subjects were
reminded that inanimate objects might still move (such as a
boulder rolling down a hill) but should still be treated as inan-
imate. Subjects were allowed to review each video sequence
as often as they liked, and no time limit was used.

The task facing subjects was inherently under-constrained,
and the animacy judgments showed high variance (a typical
variance for a single stimulus across all subjects was 2.15).
Subjects tended to find multiple interpretations for a single
stimulus, and there was never a case when all subjects agreed
on the animacy/inanimacy of a trajectory. To simplify the
analysis, and to remove some of the inter-subject variability,
each response was re-coded from the 1-10 scale to a single
animate (1-5) or inanimate (6-10) judgment. Subjects made
an average of approximately 8 decisions that disagreed with
the ground truth values. This overall performance measure-
ment of 73% correct implies that the task is difficult, but not
impossible. Column 4 of figure 4 shows the percentage of
subjects who considered each stimulus to be animate. In two
cases (stimuli #13 and #9), the majority of human subjects
disagreed with the ground truth values. Stimulus #9 showed
a dot moving alternately up and down, repeating a cycle ap-
proximately every 300 msec. Subjects reported seeing this
movement as “too regular to be animate.” Stimulus #13 may
have been confusing to subjects in that it contained an inani-
mate trajectory (a ball being thrown and falling) that was ob-
viously caused by an animate (but unseen) force.

5.3 ToBY Animacy Judgments
The identical video sequences shown to the human subjects
were processed by the trajectory formation system and the
ToBY system. Trajectory lengths were allowed to grow to
120 frames to take advantage of all of the information avail-
able in each short video clip. A winner-take-all selection
method was imposed on the ToBY agents to simplify the re-
porting of the results, but subsequent processing with both
other voting methods produced identical results. The final
animacy judgment was determined to by the winning agent

on the final time step. Columns 6 and 5 of figure 4 show the
winning agent and that agent’s animacy vote respectively.

Overall, ToBY agreed with the ground truth values on 23 of
the 30 stimuli, and with the majority of human subjects on 21
of the 30 stimuli. On the static object categories, the circu-
lar movement stimuli, and the straight line movement stim-
uli, ToBY matched the ground truth values perfectly. This
system also completely failed on all stimuli that had natu-
ral pendulum-like movements. While our original predictions
indicated that the energy agent should be capable of dealing
with this class of stimuli, human subjects seemed to be re-
sponding more to the repetitive nature of the stimulus rather
than the transfer between kinetic and potential energy. ToBY
also failed on one of the thrown objects (stimulus #20), which
paused when it reached its apex, and on one other object
(stimulus #19) which had a failure in the trajectory construc-
tion phase.

6 Conclusion

The distinction between animate and inanimate is a funda-
mental classification that humans as young as 6 months read-
ily perform. Based on observations that humans can perform
these judgments based purely on spatio-temporal signatures,
this paper presented an implementation of a few simple naive
rules for identifying animate objects. Using only the impover-
ished stimuli from the attentional system, and without any ad-
ditional context, adults were quite capable of classifying ani-
mate and inanimate stimuli. While the set of agents explored
in this paper is certainly insufficient to capture all classes of
stimuli, as the pendulum example illustrates, these five sim-
ple rules are sufficient to explain a relatively broad class of
motion profiles. These simple algorithms (like the agents pre-
sented here) may provide a quick first step, but do not begin
to make the same kinds of contextual judgments that humans
use.

In the future, we intend on extending this analysis to in-
clude comparisons against human performance for multi-
target stimuli and for more complex object interactions in-
cluding elastic and inelastic collisions.
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