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Abstract

On-line help from a human actor will be exploited to fa-
cilitate computer perception. This paper proposes an in-
novative real-time algorithm – running on an active vision
head – to build 3D scene descriptions from human cues.
The theory is supported by experimental results both for fig-
ure/ground segregation of typical heavy objects in a scene
(such as furniture), and for 3D object/scene reconstruction.

1. Introduction

Embodied and situated perception [4] consists of boost-
ing the vision capabilities of an artificial creature by fully
exploiting the opportunities created by an embodied agent
situated in the world [2].

Active vision proponents [1, 5], contrary to passive vi-
sion, argue for active control of the visual perception mech-
anism so that perception is facilitated. Percepts can indeed
be acquired in a purposive way by the active control of a
camera [1]. This approach has been successfully applied to
several computer vision problems, such as stereo vision -
by dynamically changing the baseline distance between the
cameras or by active focus selection [9].

We argue for solving a visual problem by not only ac-
tively controlling the perceptual mechanism, but also and
foremost actively changing the environment through exper-
imental manipulation. The human body plays an essential
role in such a framework, being applied not only to facili-
tate perception, but also to change the world context so that
percepts are easily understood [4].

1.1 Motivation

Besides binocular cues, the human visual system also
processes monocular data for depth inference, such as fo-
cus, perspective distortion, among others. Previous at-
tempts have been made on exploring scene context for depth

inference [14]. However, these passive techniques make use
of contextual clues already present on the scene. They do
not actively change the context of the scene through manip-
ulation to improve the robot’s perception. We propose an
active, embodied approach that actively changes the context
of a scene, extracting monocular depth measures.

This paper proposes an algorithm to infer depth and build
3-dimensional maps from a distinct monocular cue: the rel-
ative size of objects on a monocular image – special focus
will be placed on using the human’s arm as a reference mea-
sure. Another algorithm’s novelty is the real-time transmis-
sion of world-structure to the perceptual system from the
action of an embodied agent (the human tutor). This real-
time algorithm builds scene descriptions as a function of ob-
jects, together with 3D coarse maps for the scene, through
the analysis of cues provided by an interacting human.

It should be emphasized we will not argue for more accu-
rate results than other Stereo or Monocular depth inference
techniques. By the contrary, the technique here proposed
provides solely coarse depth information. Its power relies
on providing an additional cue for depth inference, which
could be augmented by using cues from other scene objects
besides the human arm. In addition, the proposed algorithm
has complementary properties to other depth inference algo-
rithms, it does not require special hardware (low-cost cam-
eras will suffice) and it also outputs object segmentations.

1.2 Human-Robot Interactive Communication

Previous approaches for transferring skills from human
to computers rely heavily on human gesture recognitio, or
haptic interfaces for detecting human motion. Environ-
ments are often over-simplified to facilitate the perception
of the task sequence [10]. Other approaches consist of vi-
sually identifying simple guiding actions (such as direction
following, or collision), for which both the task’s structure
and goal are well known [11].

Teaching a visual system information concerning the
surrounding world is a difficult task, which takes several
years for a child, equipped with evolutionary mechanisms



stored in its genes, to accomplish. Our approach exploits
help from a human in a robot’s learning loop to extract
meaningful percepts from the world. However, it should be
emphasized that such help does not include constraining the
world structure (for instance by removing environment clut-
tering or careful luminosity setup). The focus will be placed
on communicating information to a robot which boosts its
perceptual skills, helping the visual system to filter out irrel-
evant information. Indeed, while teaching a toddler, parents
do not remove the room’s furniture or buy extra lights to
just show the child a book. Help instead is given by facili-
tating the child’s task of stimulus selection (for example, by
pointing or tapping into a book’s image [4]).

1.3 Map Building

Several techniques have been proposed for three-
dimensional reconstruction of environments, ranging from
passive sensing techniques to active sensing using laser
range finders, or both [13]. This paper will focus on learn-
ing topological map representations [6] from cues provided
by interactive humans.

2. Object Segmentation from Human-Robot
Interactive Cues

Real-time object segmentation on unstructured, non-
static, noisy and low resolution(128 × 128) images is a
hard problem, subject to a large variety of disturbances,

. target object with similar color/texture as background

. multiple objects moving simultaneously in a scene

. object is the union of a large number of color regions

Robustness to luminosity and world structure variations is
also of paramount importance. Mobility constraints (such
as segmenting heavy objects) poses additional difficulties,
since motion cannot be used to facilitate the problem.

We argue for a visual embodied strategy which is not
limited to active robotic heads. Instead, embodiment of an
agent is exploited by probing the world with a human arm.
This strategy proves not only useful to segment object de-
scriptions from books [3], but also to segment large, station-
ary objects (such as a table) from monocular images.

2.1. Figure-Ground Segregation

We propose a human aided object segmentation algo-
rithm to tackle the figure-ground problem. Indeed, a sig-
nificant amount of contextual information may be extracted
from a periodically moving actuator. This can be framed
as the problem of estimatingp(on|vB~p,ε

, actper
~p,S), the prob-

ability of finding objectn given a set of local, stationary

featuresv on a neighborhood ballB of radiusε centered on
locationp, and a periodic actuator on such neighborhood
with trajectory points in the setS ⊆ B. The following
algorithm implements the estimation process to solve this
figure-ground separation problem (see Figure 1):
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Figure 1. Segmentation of heavy, stationary
objects. A standard color segmentation al-
gorithm computes a compact cover of color
clusters for the image. A human actor shows
the sofa to the robot, by waving on the ob-
jects’ surface. The human actuator’s periodic
trajectory is used to extract the object’s com-
pact cover – the collection of color cluster
sets which composes the object.

1. A standard color segmentation [7] algorithm is applied
to a stationary image

2. A human actor waves an arm on top of the target object

3. The motion of skin-tone pixels is tracked over a time
interval (by the Lucas-Kanade Pyramidal algorithm).
The energy per frequency content – using Short-Time
Fourier Transform (STFT) – is determined for each
point’s trajectory

4. Periodic, skin-tone points are grouped together into the
arm mask [4]

5. The trajectory of the arm’s endpoint describes an alge-
braic variety [8] overN2 (N stands for natural inte-
gers). The target object’s template is then given by the
union of all bounded subsets (the color regions of the
stationary image) which intersect this variety

Periodic detection is applied at multiple scales. since the
movement might not appear periodic at a coarser scale, but
appear as such at a finer scale. If a strong periodicity is not
found at a larger scale, the window size is halved and the
procedure is repeated again. Periodicity is estimated from
a periodogram built for all signals from the energy of the



STFTs over the frequency spectrum. These periodograms
are processed by a collection of narrow bandwidth band-
pass filters. Periodicity is found if, compared to the maxi-
mum filter output, all remaining outputs are negligible.

The algorithm consists of grouping together the colors
that form an object. This grouping works by having peri-
odic trajectory points being used as seed pixels. The algo-
rithm fills the regions of the color segmented image whose
pixel values are closer to the seed pixel values, using a 8-
connectivity strategy. Therefore, points taken from waving
are used to both select and group a set of segmented regions
into the full object.

2.1.1 Results

Considering Figure 2, both sofa and table segmentations are
hard cases to solve. The clustering of regions by table-like
color content produces two disjoint regions. One of them
corresponds to the table, but it is not possible to infer which
just from the color content. But a human teacher canshow
the table to the robot by waving on the table’s surface. The
arm trajectory then links the table to the correct region. For
the sofa case, segmentation is hard because the sofa appear-
ance consists of a collection of color regions. It is neces-
sary additional information to group such regions without
including the background. Once more, a human tutorde-
scribesthe object, so that the arm trajectory groups several
color regions into the same object - the sofa.

Figure 2. Segmentation of heavy, stationary
objects. The arm trajectory links the objects
to the correspondent color regions.

Figure 3 shows segmentations for a random sample of
objects segmentations (furniture items), together with sta-
tistical results for such objects. Clusters grouped by a sin-
gle trajectory might either form (eg. table) or not form
(eg. black chair – a union of two disconnected regions) the
smallest compact cover which contains the object (depend-
ing on intersecting or not all the clusters that form the ob-
ject). After the detection of two or more temporally and spa-
tially closed trajectories this problem vanishes – the black
chair is grouped from two disconnect regions by merging
temporally and spatially close segmentations.

Figure 3. Statistics for furniture (random seg-
mentation samples are shown). Errors given
by (template area - object’s real area)/(real
area). Positive/negative errors stand for tem-
plates with larger/smaller area than the real
area. Total stands for both errors.

Typical errors result from objects with similar color
to their background, for which no perfect differentiation
is possible, since the intersection of the object’s compact
cover of color regions with the object’s complementary
background is not empty. High color variability within an
object create grouping difficulties (the compact cover con-
tains too many sets – hard to group).

2.2. Attentional mechanism

Newborns have a special interest in oscillatory patterns
of movements. During the first weeks of life, they focus
attention on these type of movements for long periods of
time. As previously described, we developed a mechanism
that filters image data over time intervals according to its
frequency content. However, this strategy only works if the
human actor is able to engage the visual system, by having
the active head gazing towards the object to be segmented.

An attentional Visual System [15] was therefore imple-
mented to facilitate human-computer communication. This
system combines salient stimulus from different feature
modalities into a saliency map.The human actor gets visual
attention to a desired object by creating a salient stimulus on
such a target. The human waving behavior then primes the
attentional system (such bias decreases with time) towards
this stimulus (as shown in Figure 4).



Figure 4. The attentional system running on
the humanoid robot.

2.3. Object Recognition

As just described, a human-computer interactive ap-
proach was implemented to introduce a humanoid robot to
new percepts stored in its surrounding world. Such percepts
are then converted into an useful format through an object
recognition scheme, which enables the robot to recognize
an object in several contexts and under different perspective
views. This object recognition algorithm needs to cluster
objects by classes according to their identity. Such task was
implemented through color histograms – objects are classi-
fied based on the relative distribution of their color pixels
(we developed recently a more elaborate object recognition
algorithm, which processes independently chrominance, lu-
minance and geometric cues [3]).

New object templates are classified according to their
similarity with other object templates in an object database.
A multi-target tracking algorithm (which tracksgood fea-
turesusing the Lucas-Kanade Pyramidal algorithm) was de-
veloped to keep track of object locations as the visual per-
cepts change due to movement of the active head. Table 1
presents performance statistics for this algorithm. It is also
shown the system running on the humanoid robot.

3. 3D Environment Map Building

The world structure is a rich source of information for a
visual system – even without visual feedback, people expect
to find books on shelves. We argue that world structural
information should be exploited in an active manner. For
instance, there is a high probability of finding objects along
the pointing direction of a human arm [12]. In addition,
a human can be helpful for ambiguity removal: a human
hand grabbing a Ferrari car implies that the latter is a toy
car model, instead of a real car. Hence, humans can control
the image context to facilitate the acquisition of percepts
from a visual system.

We propose a real-time strategy to acquire depth infor-
mation from monocular cues by having a human actor ac-
tively controlling the image context. It consists on auto-

Table 1. (left) Recognition errors. It is shown
the number of matches evaluated from a to-
tal of 11 scenes. Incorrect matches occurred
due to color similarity among big/small sofas
or between different objects. Missed matches
result from drastic variations in light sources
(right) object being recognized.

matically extracting the size of objects and their depth as a
function of the human arm diameter. This diameter measure
solves the image ambiguity between the depth and size of
an object situated in the world.

3.1. Coarse depth measures from Human Cues

Given the image of an object, its meaning is often a func-
tion of the surrounding context. The human arm diameter
(which is assumed to remain approximately constant for the
same depth, except for degenerate cases) is used as a ref-
erence for extracting relative depth information – without
camera calibration. This measure is extracted from periodic
signals of a human hand as follows:

1. Detection of skin-tone pixels over a image sequence

2. A blob detector labels these pixels into regions

3. These regions are tracked over the image sequence,
and all non-periodic blobs are filtered out

4. A region filling algorithm (8-connectivity) extracts a
mask for the arm

5. A color histogram is built for the background image.
Points in the arm’s mask having a large frequency on
such histogram are labelled as background.

6. The smallest eigenvalue of the arm’s mask gives an
approximate measure of a fraction of the arm radius
(templates shown in Figure 5).

Once a reference measure is available, it provides a
coarse depth estimation in retinal coordinates for each arm’s
trajectory point. The following factors affect the depth es-
timation process (see Figure 6 for object reconstruction re-
sults, and Table 2 for an error analysis):



Figure 5. Human waving the arm to facili-
tate object segmentation. Upper row shows
a sequence for which the skin-tone detector
performs reasonably well under light satura-
tion. Lower row shows background sofas
with skin-like colors. The arm’s reference size
was manually measured as 5.83 pixels, while
the estimated value was 5.70 pixels with stan-
dard deviation of 0.95 pixels.

Figure 6. (left) An image of the lab. (right)
Depth map (lighter=closer) for a table and a
chair. Perpendicularity is preserved for the
chair’s disconnected regions (3D plot).

Light sensitivity This is mainly a limitation of the skin-
color algorithm. We noticed a variation in between
10 − 25% on size diameter for variations in light in-
tensity (no a-priori environment setup – the only re-
quirement concerns object visibility). High levels of
light exposure increase average errors.

Human arm diameter variability Variations along peo-
ple diversity are negligible if the same person describes
objects in a scene to the visual system, while depth is
extracted relative to that person’s arm diameter.

Background texture interference The algorithm that we
propose minimizes this disturbance by background re-
moval. But in a worst case scenario of saturated, skin-
color backgrounds, the largest variability detected for
the arm’s diameter was35% larger than its real size.

Table 2. Depth estimation errors for objects
from 5 scenes (as percentage of real size). T
stands for number of templates, N for aver-
age number of trajectory points per template,
S for light source, H and L for High/Low lu-
minosity levels, respectively. (left) overal re-
sults (right) Depth errors for different lumi-
nosity conditions are shown for the two sofas
– top – and from all objects– bottom.

Hence, we argue that this technique provides coarse
depth estimates, instead of precise, accurate ones. The aver-
age depth of an object can be estimated by averaging mea-
sures using a least squares minimization criterium – errors
are even further reduced if large trajectories are available.

But since a collection of 3D trajectories (2-dimensional
positions and depth) are available from temporally and spa-
tially closed segmentations, it is also possible to determine a
coarse estimate for the shape of an object from such data. A
plane is fitted (in the least square sense) to the 3D data, for
each connected region in the object’s template – although
hyperplanes of higher dimensions or even splines could be
used. Outliers are removed by imposing upper bounds on
the distance from each point to the plane (normalized by the
data standard deviation). Such fitting depends significantly
on the area covered by the arm’s trajectory and the amount
of available data. The estimation problem is ill-conditioned
if not enough trajectory points are extracted along one ob-
ject’s eigendirection. Therefore, the fitting estimation de-
pends on the human description of the object – accuracy
increases with the area span by the human trajectories and
the number of extracted trajectory points.

3.2. Map Building from Human Contextual Cues

The object locationp = (θ, ψ) in the active vision head’s
gazing angles (egocentric coordinates), together with the
estimated depth and the object’s size and orientation, are
saved for further processing. Each point in the object’s tem-
plate is converted to egocentric coordinates using a motor-
retinal map (obtained by locally weighted regression).



A scene was defined as a collection of objects with an
uncertain geometric configuration, each object being within
a minimum distance from at least one other object in the
scene. Figure 7 presents both coarse depth images and 3D
reconstruction data for a typical scene in the robot’s lab. The
geometry of a scene was reconstructed from the egocentric
coordinates of all points lying on the most recent object’s
template. Figure 8 presents further scene reconstruction re-
sults without deformation.
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Figure 7. (left) Furniture image segmentations
– on top – and depth map – bottom – for the
scene in Figure 8; (right) Coarse 3D map of
the same scene. Depth is represented on the
axis pointing inside, while the two other axis
correspond to egocentric gazing angles (and
hence the spherical deformation).

Figure 8. (left) Depth map for a table and a sofa
(right) two views of the 3D reconstruction.

Scene reconstruction was evaluated from a set of 11
scenes built from human cues, with an average of 4.8 ob-
jects per scene (from a set of ten different furniture items).
Seven of such scenes were reconstructed with no object
recognition error, and hence for such cases the scene organi-
zation was recovered without structural errors. An average
of 0.45 object recognition errors occurred per scene.

4. Conclusions

This paper presented an alternative strategy to extract
depth information. The method proposed relies on a human
actor to modify image context so that percepts are easily
perceived – a waving human arm in front of an object pro-
vides an important cue concerning the size of such object.

Throughout this paper percepts were acquired by an ac-
tive vision head on a stationary platform (the humanoid
robot). This work is being extended to a mobile platform,
for performing simultaneously map building and robot lo-
calization. Whenever a scene object is recognized, the sys-
tem actively searches for other objects. If more than one
object appear displaced, then all objects are used as natural
landmarks for robot localization. Otherwise, the scene 3D
model and the spatial distribution of objects are updated.

This human-centered framework is also being currently
applied to teach robots from books [3]; to generate training
data for contextual priming of the attentional focus from
holistic cues; to learn cross-modal properties of objects, by
correlating periodic visual events with periodic acoustic sig-
nals; and there is still a hough number of potential applica-
tions for which this approach might bring benefits.
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