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Abstract— Neural oscillators offer a natural tool for exploiting  neural oscillator follows the equations presented in Faglr
and adapting to the dynamics of the controlled system. The Each neuron have two states variabless a positive tonic
capability of entraining the frequency of the input signal or input, 71 and 7 are positive time constantsi, v (usually

resonance modes of dynamical systems have been increasingl)b th iti d >0 iaht o t |
used in robotics’ mechanisms, to accomplish complex tasks. oth positives) and;; > 0 are weights, ang; is an externa

However, the application of Matsuoka neural oscillators as iNput to the oscillator. There are two types of nonlineasiti
controllers requires the knowledge of the range of values for the n(u) = n*(u) = max(u,0), andn™(u) = —min(u,0) =
parameters for which the system oscillates, and the warranty of max(—u,0), with u being the nonlinearity input.

stability. Thus, this paper studies in depth the stability and tuning
of Matsuoka neural oscillators, and presents a careful analysis gv
of its behavior on the time-domain. The method is applied on a . !
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The stability analysis of Matsuoka neural oscillators for a
determined range of values will be carried out using tooIsi“ﬁfmpm’e
from contraction analysis, [7], and invariant set theorya (L g kin'(g)
Salle Theorem, [9]). To this end, the oscillator analysishia ‘ )
time domain is performed separately for each of the region: f;ﬁc L v, midy =¢ = 22— fra = ‘Zk'” (o]
in which the dynamics is linear. c i =12 — 1

Certain reflexes, such as some spinal reflexes, also consist
of Rhythmic movements. For example, rhythmic scratchingig. 1. Matsuoka neural oscillator, composed by two inhikitheurons.
occurs after the animal having moved his limb to the starting
posture. Even in animals with the cervical cord damaged atPrevious work provided an extensive analysis of these
the cervical level, the reflexes still occur, [6]. Althoudiese neural oscillators on the frequency domain [2], [1]. This
reflexes do not require input from higher-order corticalteesy paper presents a detailed analysis on the time-domain using
they depend on feedback from sensors, since propertie® of geveral appropriate mathematical tools. It will then diescan
reflex depend both on duration and intensity of the stimegxperiment on the Humanoid robot Cog showing the benefits
lus, [6]. Another important activity generated by innaténap of such analysis.
circuits is walking. Indeed, Central Pattern Generatocated

yi = n(z;) = max(z;, 0),i = 1,2
YQ Yout = W1 — Y2

in the spinal cord, generate coordinated rhythmic pattésns Il. TIME-DOMAIN PARAMETER ANALYSIS
the contraction of the several muscle groups involved in theMatsuoka neural oscillators nonlinearities are all linbgr
movement. parts, [13]. For example, thewz(x,0) nonlinearity has a

These neural circuits are often modelled using a half-centaity gain when the input is non-negative and zero otherwise
model, consisting of motor neurons having mutually intibit All the nonlinearities of this oscillator may thus be decom-
synapses. Networks of Matsuoka neural oscillator may bé ugmsed into regions of operation, and analyzed with linear
to model complex neural circuits, [11]. Furthermore, thisre tools in that regions. Since the oscillator nonlinearitas
also biological evidence that humans exploit the dynamics all continuous, the system is well defined at the boundary
their body (e.g., arms) to accomplish a desired task, ared tbif these regions (although the derivatives are not). In this
property is also fully exploited by such networks. paper, it is presented a time domain analysis for a piece-

The Matsuoka neural oscillator consists of two neurorismear model of the dynamical system, which will bring more
inhibiting each other mutually. The nonlinear dynamicsha t insight to variation of oscillator’s oscillations with Eameters,



and to stability issues. The time-domain description adl@av

better comprehension of the neural oscillator, being pssi  The first two eigenvalues are in the left half of the complex
the determination of the range of values for which the neurglane if 3 > ~v—1 andvy < 1+ = and the other two if5 >
oscillator converges: to a stable equilibrium point, to@k —v—1andy > —1-It. Therefore, this point is asymptotically
limit cycle or to a stable limit set. A similar time-domainstable if 5 > ma:L( v—1,v—1) and -1 — T <<
analysis for the study of the parameters was presented by + Zt. The point would have all manifolds unstable@if<
Matsuoka, [8], using a mathematical formalism, instead ofin(—y —1,7v—1) and+1 + T; <y < —-1-— T— Since the
considering the neural oscillator as a piece-wise lineatesy, time constant&l andr, are both positive, this fast condition
as proposed in [13]. When converging to a limit set, some impossible. Therefore the system’ stability dependy onl

of the internal state variables may diverge along some eige¢he values ofy and 5, and may correspond to a stable or a
directions, but the others converge to zero, implying aw@u saddle equilibrium point. A saddle point with two unstable
contraction in the state-space, as described in Sectiomsthfjy and two stable manifolds (one of the essential conditions fo

Volume Contraction Analysis. free oscillations for this oscillator) if:
A. Free Mibrations 8> maz(—y—1,7—1)
The piece-linear dynamic equations of one oscillator feefr y<—-1=2ory>+1+7
vibrations, i.e., without an applied input, are, Form = 0.1, 7 = 02,7 = § = 2, the equilibrium
&y F T T 2 0 1 point is a four dimensional saddle point, with two directon
212 = 7231 : 0 2 1 5 112 converging and the other two diverging, as shown in Figure 2-
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whereu?, for i=1,2, is the unit input function relative to;,

e., it cancels for negative values and is equal to unity for
positive values. To check for stability of the equilibriumipts,
results:
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Lets consider the four possible cases:
e uf =landuj =1
From (1), the equilibrium point is,
s, QY S S S 3)
1 2 1 2 6"’7"’1

Forc > 0 and 3 + v > —1 the equilibrium point belongs
to the region of the state space considered, and therefore ©)
this is an equilibrium point for all the system. K and rig 2 piot of the neural oscillator by linear parts:@) < 0, z > 0 b)
B+~ + 1 have opposite signs, then the equilibrium is locatetl,z2 > 0 ¢) z1,22 < 0 d) 21 > 0, z2 < 0. The parameters used were:
in the third quadrant and it is not an equilibrium point of thé = 0.1, 2 =02, § =~ =2, andc =1.
overall system (these points will be thereafter caN@&dual
equilibrium points). The stability of the equilibrium pairs e uf =landud =0

d)

determined by (2), being the eigenvalues given by (4), The equilibrium point in this case is:
Mp=—la £l 4[111;1 @ i =vi = g5, @3 =5, v3=0 ©)

_ _1 1 Bt~+1
)\3,4 = 262 + 3 — 4 P
The stability of the equilibrium point is determined by the

_ 1— 1 _ 1+~ 1 : ; .
V\{hereel = 1+ .- ande; = = + ~-. The corresponding eigenvalues:
eigenvectors are,

vipg=la12 1 aie 17 a2 =TaA12+ 1 ®)

- , 12s (red) , [ O
v3a=[-034 —1 o34 1] oaza=72A34+1 =+




and the corresponding eigenvectors, However, fory < 0, z; = x4, i.€., the states oscillate on
phase, and therefore the output is zero. Thus, (12) is diebli

T
v = [0 0 -l 1] to (13), which is the same result obtained by Matsuoka, [8],
v=[0 0 1 0] (8) using a different methodology.
T
V34 = [*% azas 1 0]
B>~v—1, v>+1+1/k 13)
N _L(,T%\ 731+T—2i\/(T17T2)274T1T2ﬁ*75)
3,4 = P 13,4 2 2 2 1

B. Forced Mibrations

. .Th|s equilibrium is stable uplesﬁ <1 va]ug for Wh'c.h Generally, the oscillator has a non-zero ingutThe main

itis unstable. However, qnly iB and y are within a certain changes on the previous analysis is that now there are two
range of values the eq. is on the fourth quadrant. For Oﬂ}%re conditions to be testegd,> 0 andg < 0, which implies
values, this becomes @rtual equilibrium point, since it is that the system becomes piéce-wise Iinear, in eight regitns.
not an equilibrium point for the overall system. Far= 0.1, constant inpuy = D > 0 (if D < 0, the analysis is the same,

2= .2'2’t7 t:h tﬂh = 2 .tlhbe. eqwhpntu][n po>|n(t) IS ;tabls gmdinterchanging indices and?2) is going to change the location
conciaent wi € equiibnum point tor, = Uandx2 20, ot ihe equilibrium point as follows:

as illustrated in Figure 2-d.
e uf =0anduj =1 « z1200andzy 20

. . . . L R S -
Since the equations are symmetric, this case is similar to *! B U1 ~ Pyt N o D
the previous, and thus the same analysis holds interchgngin “2 = "2 = B+ F1 T (G457

z; and z,. The eigenvalues and eigenvectors are the sames z1 > 0andzs <0

and the state-space trajectories for this region are ridtest 2t =t = %—Tﬁ?, i = c(ﬂﬂﬁf#, vi=0
in Figure 2-a.
g e r1 <0andxzy >0
e uf =0andui =0 Byl
S . . . . . Ty =03 = 559, TI=c ——-D, vi=0
The equilibrium point of the piece-linear dynamic equasion s B+
is e v1 <0andxzy <0

xi=c—D, x25=c¢, vi=v5=0

The system’s oscillation depends on having thréeual
attractors in the first quadrant and one real repulsor there.
The stability of this equilibrium point is determined by the~or a constant positive inpud < 2127 or for a constant

i =xz3=c¢, vi=v3=0 9)

) B+L
eigenvalues, negative inputD < —c2+1=2 the stablevirtual equilibrium
1 1 point in regionz; < 0 anczxg > 0 becomes a true one, while
A2 = -0 A3 4= 0 (10)

the unstable equilibrium changes quadrant and therefore be
comeswirtual. Therefore, the system converges now to the
and the associated eigenvectors are, stable equilibrium and therefore there are no oscillati@ss
shown in Figure 3-b. Figure 3-a shows the state-space fer fre
T (11) Vibrations, for an experiment using the same parametens as i
1] Figure 2, [13].

vi=[1 00 07T, va=1[0 0 1 0T
T
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This equilibrium is always stable. However, only a negative s
tonic would locate the equilibrium on the third quadrant. 04
Therefore, this is airtual equilibrium point, as illustrated 02
in Figure 2-c. %,

From the exposed, for a zero tonic input (which is always
non-negative), the equilibrium point i®,0,0,0), and there- o 22
fore all the trajectories will converge to this equilibriysoint.

Indeed, even if the initial conditions are in the first quadya 020 0204 0e Ty

as soon as; or zo changes sign, the trajectory will converge

asymptotically to the equilibrium, and the system does not a) b)

oscillate. Therefore, from the previous conditions, foeefr Fig. 3. a) Simulation for free vibrations, using the MATLAB nSilink

oscillationsk = :—f, B andy must satisfy (12). Control Box. b) Simulation for a constant input. The neuratiketor does
not oscillates, and converges to the stable equilibriunmtpoi
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B > max(—’y - 177 - 13 _1)

< —1—1/k or v> 41+ 1/k (12)



C. Transients Applying (14) to (1), for each of the four piece-wise linear

The Matsuoka neural oscillator is very robust to perturb4€9ions. results that the dynamics do not contract in any of
tions, [13]. The oscillator usually converges very fastiinge tNeSe regions (indeed, there is at least one positive eagenv
often one time period enough for the transient to disappedF,the matrix defined by (14), in each linear region). This is
However, the duration of the transient depends on the eigdlgc@use, for the parameters necessary for oscillatiowen gi
values of the dynamics at each region. By tuning?, 7 and by (13), the dynamics in any of the three quadrants where

T, it is possible to design the system with very fast transient1 < 0 or z2 < 0 (or both), converges to @irtual stable
and with a desired frequency bandwidth. equilibrium. Thus, these regions are not contracting — the

When the amplitude of the input signal decreases, forVijtual equilibrium points are not contgingd in thesg regions.
certain range of input amplitude value the oscillator otitpf® Poth 1,22 > 0, the saddle equilibrium contains two
unstable manifolds and two stable. Since the states have to

is oscillating at two frequencies, corresponding to theutnp . > . i .
frequency and to the oscillator's free vibration frequendj@nsverse this region in both directions (see Figure Sraye

wn,.... If the input amplitude is increased/decreased from the§e© trajectory to which all points converge.
range of values, the oscillator spectrum will be conceattan
only one frequency: input frequeney or w,,__, respectively. ] o ]
This may occur after a transient in which the oscillator outp  The Matsuoka neural oscillator is dissipative, which means

spectrum power is concentrated on two frequencies, as shdW@t volumes defined by the state space variables contract in

A. Volume Contraction

in Figure 4-a. time, although not all the states contract, as just referred
Lets select an arbitrary surfacqt) of volume V' (¢) in phase
08 ' space, [10]. Considering the instantaneous velocity of points
04 on S (the initial conditions for trajectories), andthe outward
Meural Ao ] normal onS, in time dt the volume expand§fndt)dA, and

02 Oscillator

thus V = [s fndA. Using the divergence theorem, results
V = [, VfdV. Lets consider first the oscillator uncoupled,
as described by (1):

X0

Lorenz
equabions

02

02 31 02 04 06 Znti= f5,) Vf:a—ill/n(c—xl—,81)1—'\/mam(:ﬂg,O)—Zikin"'(ui))
a
+8—v11/72(76v1 + max(z1,0))+
a) b) %1/7’1 (¢ — x2 — Bv2 — ymax(x1,0) — >, kin™ (u;))

+%1/’TQ(—5’U2 + max(z2,0)) = —2/tau; — 2/taug <0
Fig. 4. a) Transients in oscillations. The oscillator @iy oscillates at low

frequency, but converges slowly to a higher frequency limdle. b) Lorenz . . . .
maps for the neural oscillator and Lorenz equations. Therefore, since the divergence is constant: —2(1/7; +

1/72)V. Thus, volumes in phase space shrink exponentially

Figure 4-b shows theLorenz map, [10], for the neural fast to a limiting set of zero volume, [.1.0], qnd the rate of
oscillator versus Lorenz equations [10]. In the graphis the Convergence only depends on the positive time constants
local maximum ofz(t) (Lorenz equations) or of the oscillatorand 7z. _
outputy,s.. The functionz, 1 = f(z,) is called the Lorenz ~ FOr an oscﬂlgtor_ couplled to a”fl order system, fche state
map. If |f/(z)| > 1 everywhere, then if any limit cycle exist, SPace is now six-dimensional, being the two additionalestat
they are necessarily unstable. Thus, observing Figure 4fp,andfs, such that
contrary to Lorenz equations, the neural oscillator does no 01 =62, 02 =—k/mbf1 —b/mb> + k/m[y1 — ys]

present Chaotic behavior during the transients. resultingV f = —2/7; — 2/, —b/m, which is negative, since
both the mass and the damping are positive. Therefore, lum
[Il. CONTRACTION ANALYSIS contraction occurs. Since the Poincare-Bendixon theorass d

Contraction analysis, [7], is a method inspired from fluid@ot applies for systems with more than two dimensions, con-
mechanics and differential theory, that analyzes converge traction analysis is a u.seful too[ to infer volume convemgn
between two neighboring trajectories by considering tioallo @nd therefore contraction to a limit set.
flow at a given point. Following the definition presented if [7  Considering a multivariable input multivariable output

given & = f(xz,t), the region of the state-space where th@1IMO) closed-loop system consisting of two oscillatorstw
Jacobiamd f/dz is uniformly negative definite, only one input for each oscillator), connected to a stalte

order system,

- o T
36>0,Vt20,1(?—f—|—£>§—a1<0 (14)
2 \ Ox oz :
¢1 =2
. i . i i ) ¢2 = = (—e1d2 — (k1 + kr)d1 + kads + ki(y] —yb))
is denominated a contraction region. However, partialvderi b3 = ¢4
tives do not exist on regions boundaries. Therefore, cotibra by = % (—cads — (k2 + kr)ps + kid1 + k2 (y? — y2))

analysis is applied to each linear region of the neural lagoil



resultsVf = —4/m —4/19 — ¢1/m1 —ca/ma < 0. Therefore, ~ > —1—1/k (which once more demonstrates that oscillations
the volume of the MIMO close-loop system also contracts tosae impossible fory < 0, or 1 = x3). Thus, %—‘t/ is zero
limit set. Since the volume contraction occis, v, even for only on the invariant set, and thus it is negative semi-defini
unstable oscillations the volume still contracts. Indetbére Therefore, applying the local invariant set theorem, [8%ults
are eigenvectors in thig’* dimensional space along whichthat every solution irf2; tend to this invariant set as— oo.
the state converges to zero, and faster than the eigeriditrect Matsuoka proofed in [8] that the output of the neural oscilla
along which the state may diverge. tor is bounded without any input. Williamson, in [13], extin
the analysis for bounded inputs, and also demonstratefothat
oscillators connected to LTI dynamic systems, the closg-lo
system variables are bounded. The output boundness, the ex-
Lets first investigate the operation of the neural oscitlatstence of only unstable fixed points (for a certain rangenef t
in the 1°* state-space quadrant. As described by (5), there §grameters), and the uniqueness of the solutions, by aigcki
two eigenvectors« ») in which the 1* and 3" elements he Lipschitz condition, [13] (since the oscillator is lareby
are equal, as well as t.h%nd and the4'™, and other two parts, it is locally Lipschitz in each linear region, [13Mply
eigenvectors «s 4) in which the 1° and 3¢ elements are hat the oscillator has oscillatory solutions (not necelssa
symmetric, as well as the"? and the4'" elements. If there periadic), [13]. Furthermore, Williamson, using a method
is an invariant set on this region, it must occur along,, syggested in [5] based on the lineariz@adincaré map, [10],
since oscillations do not occur along ,, because the statesyisg showed the local stability of a candidate limit cyclg, b
along these eigen-directions would oscillate in phaseeéddd imposing conditions for th&loquet multipliers, [10].
there are no invariant sets along, which are the stable  The poincaré map maps the: dimensional systeni =
manifolds of the saddle point. Considering directions glonf(%t) into the n — 1 discrete systemry,, = p(zy), by
vs,4, and constrained to the fact that the saddle equ"ibri“mtersecting the flow with a — 1 dimensional hypersurface
point given by (3) is a solution in the state space, lets @nsi yansyerse to the flow, [10]. Thus, it is possible to tramstae

IV. STABILITY ANALYSIS ON A PIECE-WISE LINEAR
SYSTEM

the setS: (1 52, problem of close orbits to one of fixed points of a mapping,
Si= {120,002 021 422 = ;25 } as shown in Figure 5.
Sa =13 v1,v2 i v1 + vy = Bfﬁ - Free Vibrations
hig / I From the Invariant Sef Theorem
and apply to this set the local invariant set theorem (or UeeSa 04 %Q\ oh= ﬁ:% [1 o =L ]

. . . . . L )i o =
theorem), [9]. This set is invariant for the dynamic system ., 2 oL 2 . ;
given by (1), inQ; = {z1 > 0,22 > 0}, if every system %, <= L I [ﬂq,a m,a]
trajectory which starts from a point in this set remains iis th g ;"mm fhelm'eciwrse irzearwﬁzm
set for all future time, [9]. For a proof, lets determifg:, for %2 y”“”j“‘:fm e and T guadran
i=1,2: 04 wi= et (25 + Ajg B) Ay B

o o w= e (o + AG'B) - A B =}
1= 117 <:v P ) ; (v +op— ) . T 02 04 0570, (1t Au B)-A5'B
— — - — — k g *_ 1t [ e — —1p _ *
T\ T T ey TR\ T By % 77= e (o5 + Ay B) - A5 B =}
; 1 2c 2c
Sy = - T1 + 22 — 7ﬁ 1y — | v1+v2 — 7ﬁ Y114 Fig. 5. Two surface sections transverse the flow of the neasaillator at
z1 =0 and atzgy = 0.
Writing the equations in matrix notation, (15), it is easily
concluded that the derivative is zero on the set. Tug,) S2 V. APPLICATION TO OSCILLATORY CONTROL OF A

is an invariant set. HUMANOID ROBOT

g 14y B8 g g The work here presented is part of the humanoid robot
{ S.l ] = { a3 } { S; ] = Q{ S; } (15) project Cog, [4]. Under such framework, oscillatory motions
2 were integrated with a sliding modes controller for positio

Is this invariant set attractive? Lets consider a Lyapun&?ntrol of the end-effector. .

function (which represents a measure of thetance to the On previous work on neural oscillators, the parameters need

invariant set, [9]) and its time derivative, to be inserted off-line, using a trial-and-error approaoh t

estimate their value. An automatic approach operating en th

frequency domain for selecting the parameters was proposed
) ) . S, in [2], [1]. However, a time-domain analysis is required to
V=51S51+88%=[5 S ]Q { S5 } : both provide additional insight into the dynamics of the non

The matrix@ is negative definite fop and~ Satisfying (13), linear model, and as an alternative, more intuitive mettmd t

since all eigenvalues af) are negative for3 > —1 — v and tune the parameters.

-

T2 T2

1
V= E(Sf +53)



Tools and toys are often used in a manner that is composed VI. DISCcUSSION ANDCONCLUSIONS
of some repeated motion — consider hammers, bells, sawspjgce-wise linear analysis, Lorenz maps, contractionyanal
ratties, drummers, brushes, files, etc. Therefore, SteseQr js invariant set theory anBloincaré maps were used to infer
the oscillatory control of movements of a humanoid robot akgability properties of the neural oscillator. These mathtcal
imperative, especially if they result omatural movements, tools were also used to bring insight to the oscillator state
which is the case of Matsuoka neural oscillators, since th%pﬂace dynamics.
track the natural frequency of the dynamic system to which the oscillator dynamics was characterized in terms of its
they are coupled. As results in Figure 6 show, playing miisicgarameters. This way, the design of oscillators for corigol
instruments is an application where tuning of oscillatipfa/s  failitated, as well as the evaluation of transients anguescy
arather important role. The wrong set of parameters maytresgangwidth. This analysis provides, therefore, theoretcp-
in no oscillations or else low-amplitude or low-frequencyqt for the control of robotic arms using Matsuoka neural
oscillations, which is an undesirable behavior. But using t oscillators. In addition, these oscillators are widely lagzh
tools described in this paper, tuning is fast and effective. g, walking robots to generate rhythmic walking patternd,[11
[12], for which this analysis will be an useful design tool.
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