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Abstract— Neural oscillators offer a natural tool for exploiting
and adapting to the dynamics of the controlled system. The
capability of entraining the frequency of the input signal or
resonance modes of dynamical systems have been increasingly
used in robotics’ mechanisms, to accomplish complex tasks.
However, the application of Matsuoka neural oscillators as
controllers requires the knowledge of the range of values for the
parameters for which the system oscillates, and the warranty of
stability. Thus, this paper studies in depth the stability and tuning
of Matsuoka neural oscillators, and presents a careful analysis
of its behavior on the time-domain. The method is applied on a
Humanoid Robot for playing musical instruments.

I. I NTRODUCTION

The stability analysis of Matsuoka neural oscillators for a
determined range of values will be carried out using tools
from contraction analysis, [7], and invariant set theory (La
Salle Theorem, [9]). To this end, the oscillator analysis inthe
time domain is performed separately for each of the regions
in which the dynamics is linear.

Certain reflexes, such as some spinal reflexes, also consist
of Rhythmic movements. For example, rhythmic scratching
occurs after the animal having moved his limb to the starting
posture. Even in animals with the cervical cord damaged at
the cervical level, the reflexes still occur, [6]. Although these
reflexes do not require input from higher-order cortical centers,
they depend on feedback from sensors, since properties of the
reflex depend both on duration and intensity of the stimu-
lus, [6]. Another important activity generated by innate spinal
circuits is walking. Indeed, Central Pattern Generators located
in the spinal cord, generate coordinated rhythmic patternsfor
the contraction of the several muscle groups involved in the
movement.

These neural circuits are often modelled using a half-center
model, consisting of motor neurons having mutually inhibitory
synapses. Networks of Matsuoka neural oscillator may be used
to model complex neural circuits, [11]. Furthermore, thereis
also biological evidence that humans exploit the dynamics of
their body (e.g., arms) to accomplish a desired task, and this
property is also fully exploited by such networks.

The Matsuoka neural oscillator consists of two neurons
inhibiting each other mutually. The nonlinear dynamics of the

neural oscillator follows the equations presented in Figure 1.
Each neuron have two states variables,c is a positive tonic
input, τ1 and τ2 are positive time constants,β, γ (usually
both positives) andki ≥ 0 are weights, andgi is an external
input to the oscillator. There are two types of nonlinearities:
n(u) = n+(u) = max(u, 0), and n−(u) = −min(u, 0) =
max(−u, 0), with u being the nonlinearity input.

Fig. 1. Matsuoka neural oscillator, composed by two inhibiting neurons.

Previous work provided an extensive analysis of these
neural oscillators on the frequency domain [2], [1]. This
paper presents a detailed analysis on the time-domain using
several appropriate mathematical tools. It will then describe an
experiment on the Humanoid robot Cog showing the benefits
of such analysis.

II. T IME-DOMAIN PARAMETER ANALYSIS

Matsuoka neural oscillators nonlinearities are all linearby
parts, [13]. For example, themax(x, 0) nonlinearity has a
unity gain when the input is non-negative and zero otherwise.
All the nonlinearities of this oscillator may thus be decom-
posed into regions of operation, and analyzed with linear
tools in that regions. Since the oscillator nonlinearitiesare
all continuous, the system is well defined at the boundary
of these regions (although the derivatives are not). In this
paper, it is presented a time domain analysis for a piece-
linear model of the dynamical system, which will bring more
insight to variation of oscillator’s oscillations with parameters,



and to stability issues. The time-domain description allows a
better comprehension of the neural oscillator, being possible
the determination of the range of values for which the neural
oscillator converges: to a stable equilibrium point, to a stable
limit cycle or to a stable limit set. A similar time-domain
analysis for the study of the parameters was presented by
Matsuoka, [8], using a mathematical formalism, instead of
considering the neural oscillator as a piece-wise linear system,
as proposed in [13]. When converging to a limit set, some
of the internal state variables may diverge along some eigen-
directions, but the others converge to zero, implying a volume
contraction in the state-space, as described in Section 3.1using
Volume Contraction Analysis.

A. Free Vibrations

The piece-linear dynamic equations of one oscillator for free
vibrations, i.e., without an applied input, are,
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⇐⇒ Ẋ = AijX + B (1)

whereux
i , for i=1,2, is the unit input function relative toxi,

i.e., it cancels for negative values and is equal to unity for
positive values. To check for stability of the equilibrium points,
results:
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Lets consider the four possible cases:

• ux
1 = 1 and ux

2 = 1

From (1), the equilibrium point is,

x∗

1 = x∗

2 = v∗

1 = v∗

2 =
c

β + γ + 1
(3)

For c ≥ 0 and β + γ ≥ −1 the equilibrium point belongs
to the region of the state space considered, and therefore
this is an equilibrium point for all the system. Ifc and
β + γ + 1 have opposite signs, then the equilibrium is located
in the third quadrant and it is not an equilibrium point of the
overall system (these points will be thereafter calledvirtual
equilibrium points). The stability of the equilibrium point is
determined by (2), being the eigenvalues given by (4),
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λ3,4 = − 1
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ε2 ±
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ε22 − 4β+γ+1
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whereε1 = 1−γ
τ1

+ 1

τ2
andε2 = 1+γ

τ1
+ 1

τ2
. The corresponding

eigenvectors are,

v1,2 = [α1,2 1 α1,2 1]T α1,2 = τ2λ1,2 + 1

v3,4 = [−α3,4 − 1 α3,4 1]T α3,4 = τ2λ3,4 + 1
(5)

The first two eigenvalues are in the left half of the complex
plane if β > γ − 1 andγ < 1 + τ1

τ2
, and the other two ifβ >

−γ−1 andγ > −1− τ1

τ2
. Therefore, this point is asymptotically

stable if β > max(−γ − 1, γ − 1) and −1 − τ1

τ2
< γ <

+1 + τ1

τ2
. The point would have all manifolds unstable ifβ <

min(−γ − 1, γ − 1) and+1 + τ1

τ2
< γ < −1 − τ1

τ2
. Since the

time constantsτ1 andτ2 are both positive, this last condition
is impossible. Therefore the system’ stability depends only on
the values ofγ and β, and may correspond to a stable or a
saddle equilibrium point. A saddle point with two unstable
and two stable manifolds (one of the essential conditions for
free oscillations for this oscillator) if:

β > max(−γ − 1, γ − 1)
γ < −1 − τ1

τ2
or γ > +1 + τ1

τ2
.

For τ1 = 0.1, τ2 = 0.2, γ = β = 2, the equilibrium
point is a four dimensional saddle point, with two directions
converging and the other two diverging, as shown in Figure 2-
b.

a) b)

c) d)

Fig. 2. Plot of the neural oscillator by linear parts: a)x1 < 0, x2 ≥ 0 b)
x1, x2 ≥ 0 c) x1, x2 < 0 d) x1 ≥ 0, x2 < 0. The parameters used were:
τ1 = 0.1, τ2 = 0.2, β = γ = 2, andc = 1.
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The equilibrium point in this case is:
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The stability of the equilibrium point is determined by the
eigenvalues:
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and the corresponding eigenvectors,

v1 =
[

0 0 −
βτ2

τ2−τ1
1
]T

v2 = [0 0 1 0]T
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This equilibrium is stable unlessβ < −1, value for which
it is unstable. However, only ifβ and γ are within a certain
range of values the eq. is on the fourth quadrant. For other
values, this becomes avirtual equilibrium point, since it is
not an equilibrium point for the overall system. Forτ1 = 0.1,
τ2 = 0.2, γ = β = 2, the equilibrium point is stable and
coincident with the equilibrium point forx1 ≥ 0 and x2 ≥ 0,
as illustrated in Figure 2-d.

• ux
1 = 0 and ux

2 = 1

Since the equations are symmetric, this case is similar to
the previous, and thus the same analysis holds interchanging
x1 and x2. The eigenvalues and eigenvectors are the same,
and the state-space trajectories for this region are illustrated
in Figure 2-a.

• ux
1 = 0 and ux

2 = 0

The equilibrium point of the piece-linear dynamic equations
is

x∗

1 = x∗

2 = c, v∗

1 = v∗

2 = 0 (9)

The stability of this equilibrium point is determined by the
eigenvalues,

λ1,2 = − 1
τ1

, λ3,4 = − 1
τ2

(10)

and the associated eigenvectors are,

v1 = [1 0 0 0]T , v2 = [0 0 1 0]T

v3 =
[

βτ2

τ1−τ2
1 0 0

]T
, v4 =

[

0 0 βτ2

τ1−τ2
1
]T (11)

This equilibrium is always stable. However, only a negative
tonic would locate the equilibrium on the third quadrant.
Therefore, this is avirtual equilibrium point, as illustrated
in Figure 2-c.

From the exposed, for a zero tonic input (which is always
non-negative), the equilibrium point is(0, 0, 0, 0), and there-
fore all the trajectories will converge to this equilibriumpoint.
Indeed, even if the initial conditions are in the first quadrant,
as soon asx1 or x2 changes sign, the trajectory will converge
asymptotically to the equilibrium, and the system does not
oscillate. Therefore, from the previous conditions, for free
oscillationsk = τ2

τ1
, β andγ must satisfy (12).

β > max(−γ − 1, γ − 1,−1)
γ < −1 − 1/k or γ > +1 + 1/k

(12)

However, forγ < 0, x1 = x2, i.e., the states oscillate on
phase, and therefore the output is zero. Thus, (12) is simplified
to (13), which is the same result obtained by Matsuoka, [8],
using a different methodology.

β > γ − 1, γ > +1 + 1/k (13)

B. Forced Vibrations

Generally, the oscillator has a non-zero inputg. The main
changes on the previous analysis is that now there are two
more conditions to be tested,g > 0 andg < 0, which implies
that the system becomes piece-wise linear in eight regions.A
constant inputg = D > 0 (if D < 0, the analysis is the same,
interchanging indices1 and2) is going to change the location
of the equilibrium point as follows:

• x1 ≥ 0 and x2 ≥ 0
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The system’s oscillation depends on having threevirtual
attractors in the first quadrant and one real repulsor there.
For a constant positive inputD < cβ+1−γ

β+1
, or for a constant

negative inputD < −cβ+1−γ
γ

, the stablevirtual equilibrium
point in regionx1 < 0 and x2 ≥ 0 becomes a true one, while
the unstable equilibrium changes quadrant and therefore be-
comesvirtual. Therefore, the system converges now to the
stable equilibrium and therefore there are no oscillations, as
shown in Figure 3-b. Figure 3-a shows the state-space for free
vibrations, for an experiment using the same parameters as in
Figure 2, [13].

a) b)

Fig. 3. a) Simulation for free vibrations, using the MATLAB Simulink
Control Box. b) Simulation for a constant input. The neural oscillator does
not oscillates, and converges to the stable equilibrium point.



C. Transients

The Matsuoka neural oscillator is very robust to perturba-
tions, [13]. The oscillator usually converges very fast, being
often one time period enough for the transient to disappear.
However, the duration of the transient depends on the eigen-
values of the dynamics at each region. By tuningγ, β, τ1 and
τ2, it is possible to design the system with very fast transients
and with a desired frequency bandwidth.

When the amplitude of the input signal decreases, for a
certain range of input amplitude value the oscillator output
is oscillating at two frequencies, corresponding to the input
frequency and to the oscillator’s free vibration frequency
wnosc

. If the input amplitude is increased/decreased from these
range of values, the oscillator spectrum will be concentrated on
only one frequency: input frequencyw or wnosc

, respectively.
This may occur after a transient in which the oscillator output
spectrum power is concentrated on two frequencies, as shown
in Figure 4-a.

a) b)

Fig. 4. a) Transients in oscillations. The oscillator initially oscillates at low
frequency, but converges slowly to a higher frequency limit cycle. b) Lorenz
maps for the neural oscillator and Lorenz equations.

Figure 4-b shows theLorenz map, [10], for the neural
oscillator versus Lorenz equations [10]. In the graph,zn is the
local maximum ofz(t) (Lorenz equations) or of the oscillator
outputyosc. The functionzn+1 = f(zn) is called the Lorenz
map. If |f ′(z)| > 1 everywhere, then if any limit cycle exist,
they are necessarily unstable. Thus, observing Figure 4-b,
contrary to Lorenz equations, the neural oscillator does not
present Chaotic behavior during the transients.

III. C ONTRACTION ANALYSIS

Contraction analysis, [7], is a method inspired from fluid
mechanics and differential theory, that analyzes convergence
between two neighboring trajectories by considering the local
flow at a given point. Following the definition presented in [7],
given ẋ = f(x, t), the region of the state-space where the
Jacobian∂f/∂x is uniformly negative definite,

∃β > 0,∀t ≥ 0,
1

2

(

∂f

∂x
+

∂fT

∂x

)

≤ −αI < 0 (14)

is denominated a contraction region. However, partial deriva-
tives do not exist on regions boundaries. Therefore, contraction
analysis is applied to each linear region of the neural oscillator.

Applying (14) to (1), for each of the four piece-wise linear
regions, results that the dynamics do not contract in any of
these regions (indeed, there is at least one positive eigenvalue
of the matrix defined by (14), in each linear region). This is
because, for the parameters necessary for oscillations, given
by (13), the dynamics in any of the three quadrants where
x1 < 0 or x2 < 0 (or both), converges to avirtual stable
equilibrium. Thus, these regions are not contracting – the
virtual equilibrium points are not contained in these regions.
For both x1, x2 ≥ 0, the saddle equilibrium contains two
unstable manifolds and two stable. Since the states have to
transverse this region in both directions (see Figure 3-a),there
is no trajectory to which all points converge.

A. Volume Contraction

The Matsuoka neural oscillator is dissipative, which means
that volumes defined by the state space variables contract in
time, although not all the states contract, as just referred.
Lets select an arbitrary surfaceS(t) of volumeV (t) in phase
space, [10]. Consideringf the instantaneous velocity of points
on S (the initial conditions for trajectories), andn the outward
normal onS, in time dt the volume expands(fndt)dA, and
thus V̇ =

∫

S
fndA. Using the divergence theorem, results

V̇ =
∫

V
∇fdV . Lets consider first the oscillator uncoupled,

as described by (1):

∇ḟ = ∂
∂x1

1/τ1(c − x1 − βv1 − γmax(x2, 0) −
∑

i kin
+(ui))

+ ∂
∂v1

1/τ2(−βv1 + max(x1, 0))+
∂

∂x2
1/τ1(c − x2 − βv2 − γmax(x1, 0) −

∑

i kin
−(ui))

+ ∂
∂v2

1/τ2(−βv2 + max(x2, 0)) = −2/tau1 − 2/tau2 < 0

Therefore, since the divergence is constant,V̇ = −2(1/τ1+
1/τ2)V . Thus, volumes in phase space shrink exponentially
fast to a limiting set of zero volume, [10], and the rate of
convergence only depends on the positive time constantsτ1

andτ2.
For an oscillator coupled to a2nd order system, the state

space is now six-dimensional, being the two additional states
θ1 andθ2, such that

θ̇1 = θ2, θ̇2 = −k/mθ1 − b/mθ2 + k/m[y1 − y2]

resulting∇f = −2/τ1−2/τ2− b/m, which is negative, since
both the mass and the damping are positive. Therefore, volume
contraction occurs. Since the Poincare-Bendixon theorem does
not applies for systems with more than two dimensions, con-
traction analysis is a useful tool to infer volume convergence,
and therefore contraction to a limit set.

Considering a multivariable input multivariable output
(MIMO) closed-loop system consisting of two oscillators (with
only one input for each oscillator), connected to a stable4th

order system,

φ̇1 = φ2

φ̇2 = 1
m1

(

−c1φ2 − (k1 + kT )φ1 + k2φ3 + k1(y1
1 − y1

2)
)

φ̇3 = φ4

φ̇4 = 1
m2

(

−c2φ4 − (k2 + kT )φ3 + k1φ1 + k2(y2
1 − y2

2)
)



results∇f = −4/τ1−4/τ2−c1/m1−c2/m2 < 0. Therefore,
the volume of the MIMO close-loop system also contracts to a
limit set. Since the volume contraction occurs∀β, γ, even for
unstable oscillations the volume still contracts. Indeed,there
are eigenvectors in this4th dimensional space along which
the state converges to zero, and faster than the eigendirections
along which the state may diverge.

IV. STABILITY ANALYSIS ON A PIECE-WISE L INEAR

SYSTEM

Lets first investigate the operation of the neural oscillator
in the 1st state-space quadrant. As described by (5), there are
two eigenvectors (v1,2) in which the 1st and 3rd elements
are equal, as well as the2nd and the4th, and other two
eigenvectors (v3,4) in which the 1st and 3rd elements are
symmetric, as well as the2nd and the4th elements. If there
is an invariant set on this region, it must occur alongv3,4,
since oscillations do not occur alongv1,2, because the states
along these eigen-directions would oscillate in phase. Indeed,
there are no invariant sets alongv1,2, which are the stable
manifolds of the saddle point. Considering directions along
v3,4, and constrained to the fact that the saddle equilibrium
point given by (3) is a solution in the state space, lets consider
the setS1

⋂

S2,

S1 =
{

x1 ≥ 0, x2 ≥ 0 : x1 + x2 = 2c
β+1+γ

}

S2 =
{

v1, v2 : v1 + v2 = 2c
β+1+γ

}

and apply to this set the local invariant set theorem (or La Salle
theorem), [9]. This set is invariant for the dynamic system
given by (1), in Ωl = {x1 ≥ 0, x2 ≥ 0}, if every system
trajectory which starts from a point in this set remains in this
set for all future time, [9]. For a proof, lets determine∂Si

∂t
, for

i=1,2:

Ṡ1 =
1 + γ

−τ1

(

x1 + x2 −
2c

β + 1 + γ

)

−
β

τ1

(

v1 + v2 −
2c

β + 1 + γ

)

Ṡ2 =
1

τ2

[

x1 + x2 −
2c

β + 1 + γ
−

(

v1 + v2 −
2c

β + 1 + γ

)]

Writing the equations in matrix notation, (15), it is easily
concluded that the derivative is zero on the set. Thus,S1

⋂

S2

is an invariant set.

[

Ṡ1

Ṡ2

]

=

[

−
1+γ

τ1
−

β

τ1
1
τ2

− 1
τ2

]

[

S1

S2

]

= Q

[

S1

S2

]

(15)

Is this invariant set attractive? Lets consider a Lyapunov
function (which represents a measure of thedistance to the
invariant set, [9]) and its time derivative,

V =
1

2
(S2

1 + S2
2)

V̇ = S1Ṡ1 + S2Ṡ2 =
[

S1 S2

]

Q

[

S1

S2

]

.

The matrixQ is negative definite forβ andγ satisfying (13),
since all eigenvalues ofQ are negative forβ > −1 − γ and

γ > −1−1/k (which once more demonstrates that oscillations
are impossible forγ < 0, or x1 = x2). Thus, ∂V

∂t
is zero

only on the invariant set, and thus it is negative semi-definite.
Therefore, applying the local invariant set theorem, [9], results
that every solution inΩl tend to this invariant set ast → ∞.

Matsuoka proofed in [8] that the output of the neural oscilla-
tor is bounded without any input. Williamson, in [13], extends
the analysis for bounded inputs, and also demonstrates thatfor
oscillators connected to LTI dynamic systems, the close-loop
system variables are bounded. The output boundness, the ex-
istence of only unstable fixed points (for a certain range of the
parameters), and the uniqueness of the solutions, by checking
the Lipschitz condition, [13] (since the oscillator is linear by
parts, it is locally Lipschitz in each linear region, [13]),imply
that the oscillator has oscillatory solutions (not necessarily
periodic), [13]. Furthermore, Williamson, using a method
suggested in [5] based on the linearizedPoincaré map, [10],
also showed the local stability of a candidate limit cycle, by
imposing conditions for theFloquet multipliers, [10].

The Poincaré map maps then dimensional systeṁx =
f(x, t) into the n − 1 discrete systemxk+1 = p(xk), by
intersecting the flow with an − 1 dimensional hypersurface
transverse to the flow, [10]. Thus, it is possible to translate the
problem of close orbits to one of fixed points of a mapping,
as shown in Figure 5.

Fig. 5. Two surface sections transverse the flow of the neuraloscillator at
x1 = 0 and atx2 = 0.

V. A PPLICATION TO OSCILLATORY CONTROL OF A

HUMANOID ROBOT

The work here presented is part of the humanoid robot
project Cog, [4]. Under such framework, oscillatory motions
were integrated with a sliding modes controller for position
control of the end-effector.

On previous work on neural oscillators, the parameters need
to be inserted off-line, using a trial-and-error approach to
estimate their value. An automatic approach operating on the
frequency domain for selecting the parameters was proposed
in [2], [1]. However, a time-domain analysis is required to
both provide additional insight into the dynamics of the non-
linear model, and as an alternative, more intuitive method to
tune the parameters.



Tools and toys are often used in a manner that is composed
of some repeated motion – consider hammers, bells, saws,
rattles, drummers, brushes, files, etc. Therefore, strategies for
the oscillatory control of movements of a humanoid robot are
imperative, especially if they result onnatural movements,
which is the case of Matsuoka neural oscillators, since they
track the natural frequency of the dynamic system to which
they are coupled. As results in Figure 6 show, playing musical
instruments is an application where tuning of oscillationsplays
a rather important role. The wrong set of parameters may result
in no oscillations or else low-amplitude or low-frequency
oscillations, which is an undesirable behavior. But using the
tools described in this paper, tuning is fast and effective.

Fig. 6. The humanoid robot Cog playing two musical instruments –a drum
(left) and a tamborine (right), after tuning of the neural oscillators. The robot
first reaches the instrument using a Sliding Modes Controller[3].

Such production of sounds is closely associated to the neural
oscillator’s property of entraining the natural frequencyof the
dynamic system to which it is coupled. Figure 7 shows results
for two different experiments consisting of having the robot
shake a Castonete and a Rattle for producing musical sounds,
with and without activation of joint feedback. Clear rhythmic
sounds are produced with feedback. But without it the robot’s
arm shakes loose (no entrainment), and the rhythmic sound
just does not come out.

Feedback OffFeedback On

Feedback On

Feedback Off

Playing 
with a 
Castonete

Playing 
with a 
rattle

Fig. 7. Rhythmic sounds produced by having the robot play two musical
instruments – a Castonete, and a rattle – with and without joint feedback. No
entrainment occurs, and therefore rhythmic production of sounds is inhibited,
without joint feedback.

VI. D ISCUSSION ANDCONCLUSIONS

Piece-wise linear analysis, Lorenz maps, contraction analy-
sis, invariant set theory andPoincaré maps were used to infer
stability properties of the neural oscillator. These mathematical
tools were also used to bring insight to the oscillator state-
space dynamics.

The oscillator dynamics was characterized in terms of its
parameters. This way, the design of oscillators for controlis
facilitated, as well as the evaluation of transients and frequency
bandwidth. This analysis provides, therefore, theoretical sup-
port for the control of robotic arms using Matsuoka neural
oscillators. In addition, these oscillators are widely applied
on walking robots to generate rhythmic walking patterns [11],
[12], for which this analysis will be an useful design tool.
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