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This paper presents an approach to detecting, segmenting, and recognizing rhythmi-
cally moving objects that generate sound as they move. We show selectivity and robust-
ness in the face of distracting motion and sounds. Our method does not require accurate
sound localization, and in fact is complementary to it. The work is implemented on the
humanoid robot Cog1 . We are motivated by the fact that objects that move rhythmically
are common and important for a humanoid robot. The humanoid form is often argued
for so that the robot can interact well with tools designed for humans, and such tools
are typically used in a repetitive manner, with sound generated by physical abrasion or
collision; consider hammers, chisels, saws etc. We also work with the perception of toys
designed for infants – rattles, bells etc. – which could have utility for entertainment/pet
robotics. Our goal is to build the perceptual tools required for a robot to learn to use
tools and toys through demonstration. We show that our approach also applies to robot
perception of itself and humans, and relate our work to findings in infant development
research.

Keywords: Cross-modal perception; humanoid robotics; object segmentation; object

recognition; machine learning

1. Introduction

Tools are often used in a manner that is composed of some repeated motion –

consider hammers, saws, brushes, files, etc. This repetition could potentially aid a

robot to robustly perceive these objects and their actions. But how? We believe

that a key resource in the robust perception of objects and events is the perception

of amodal properties – that is, properties such as synchronicity and rhythm that

manifest themselves across several different senses but are specific to none of them.

Amodal properties are by their nature less sensitive to variation of context such as

lighting or background noise which affect the individual senses of the robot. Studies

of infant development suggest that the presence or absence of amodal properties

has a profound impact on attention, learning, and development2. There is evidence

that they are particularly important for unfamiliar, novel situations, which are

1
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Fig. 1. The experimental platform. The humanoid robot Cog 1 is equipped with cameras in an
active vision head, and a microphone array across the torso. A human demonstrates some repetitive
action to the robot, such as using a hammer, while the robot watches and listens.

exactly the scenarios of deepest concern to us; it is relatively easy to build an

object recognition system for a finite set of known objects, but unconstrained or

changing environments are currently much harder to deal with. In previous work,

synchronous movement of an object in response to prodding was used as a grouping

cue for unfamiliar objects, which could then train a classical object recognition

system3. In this work, we choose rhythmic motion as a grouping cue that works

both within and across the robot’s senses. The value of this cue is that it gives

a great deal of redundancy, both from its multi-modal quality and its repetitive

nature.

We focus on detecting amodal cues in the visual and auditory senses. The ad-

vantage of combining information across these two modalities is that they have

complementary properties. Since sound waves disperse more readily than light, vi-

sion retains more spatial structure – but for the same reason it is sensitive to

occlusion and the relative angle of the robot’s sensors, while auditory perception is

quite robust to these factors. The spatial trajectory of a moving object can be re-

covered quite straightforwardly from visual analysis, but not from sound. However,

the trajectory in itself is not very revealing about the nature of the object. We use

the trajectory to extract visual and acoustic features – patches of pixels, and sound

frequency bands – that are likely to be associated with the object. Both can be used

for recognition. Sound features are easier to use since they are relatively insensitive

to spatial parameters such as the relative position and pose of the object and the

robot.

In this paper, the humanoid robot Cog is presented with tools or toys in use (see

Figure 1). The paper works through a variety of cases for processing and associating

information across multiple sensory modalities. Our approach, as described in Sec-

tion 2, is motivated by development of cross-modal perception in infants. It relies

on having the robot detect simple repeated events from multiple sensors at frequen-
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Fig. 2. Features such as color and pitch are specific to a particular sense (sight and hearing
respectively). But not all features are so specific. Several are amodal and can manifest themselves
across multiple senses. For example, smooth and rough objects can generally be distinguished
both by sight and touch. Timing is a particularly productive feature, giving rise to a set of nested

amodal features.

cies relevant for human interaction (Section 3). We demonstrate in Section 4 that

repetitive amodal information (such as signal synchrony and timing) is useful to

filter out undesirable percepts as well as to associate diverse events across multiple

sensor modalities. Section 5 presents both acoustic and visual unimodal segmen-

tation and recognition algorithms. Training data for building an acoustic classifier

is automatically generated by the visual identification apparatus. A dynamic pro-

gramming approach is then used in Section 6 to extract cross-modal features by

matching patches of auditory and visual data. Such features are applied for build-

ing a cross-modal recognizer.

Amodal information, besides being useful to bind multi-modal object percepts,

can also be applied to bind sounds and linguistic events to people, which is the

topic of Section 7. By extending cross-modal learning to account for proprioceptive

information, and integrating such data with acoustic and visual percepts, the robot

identifies not only the acoustic rhythms generated by its body parts, but also its

own visual appearance. This way, the robot is able to learn multiple complementary

properties about objects, people and itself.

2. The development of intermodal perception in infants

Infants are not born perceiving the world as an adult does; rather, their perceptual

abilities develop over time. This process is of considerable interest to roboticists who

seek hints on how to approach adult-level competence through incremental steps.

Historically, the development of perception in infants has been described using two

diametrically opposed classes of theory: integration and differentiation 4. In a theory

of integration, the infant learns to process its individual senses first, and then begins

to relate them to each other. In a theory of differentiation, the infant is born with

unified senses, which it learns to differentiate between over time. The weight of

empirical evidence supports a more nuanced position (as is usually the case with

such dichotomies). On the one hand, young infants can detect certain intersensory

relationships very early5 – but on the other hand, there is a clear progression over
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time in the kinds of relations which can be perceived (Lewkowicz 6 gives a timeline).

Time is a very basic property of events that gets encoded across the different

senses but is unique to none of them. Consider a bouncing ball – the audible thud

of the ball hitting the floor happens at the same time as a dramatic visual change

in direction. Although the acoustic and visual aspects of the bounce may be very

different in nature and hard to relate to each other, the time at which they make

a gross change is comparable. The time of occurrence of an event is an amodal

property – a property that is more or less independent of the sense with which it

is perceived. Other such properties include intensity, shape, texture, and location;

these contrast with properties that are relatively modality-specific such as color,

pitch, and smell7 (see Figure 2).

Time can manifest itself in many forms, from simple synchronicity to complex

rhythms. Lewkowicz proposes that the sensitivity of infants to temporal relation-

ships across the senses develops in a progression of more complex forms, with each

new form depending on earlier ones6. In particular, Lewkowicz suggests that sensi-

tivity to synchronicity comes first, then to duration, then to rate, then to rhythm.

Each step relies on the previous one initially. For example, duration is first estab-

lished as the time between the synchronous beginning and the synchronous end of

an event as perceived in multiple senses, and only later does duration break free of

its origins to become a temporal relation in its own right that doesn’t necessarily

require synchronicity.

Bahrick2 proposes that the perception of the same property across multiple

senses (intersensory redundancy) can aid in the initial learning of skills which can

then be applied even without that redundancy. For example, in one experiment 8 in-

fants exposed to a complex rhythm tapped out by a hammer presented both visually

and acoustically can then discriminate that rhythm in either modality alone – but if

the rhythm is initially presented in just one modality, it cannot be discriminated in

either (for infants of a given age). The suggested explanation is that intersensory re-

dundancy helps to direct attention towards amodal properties (in this case, rhythm)

and away from mode-specific properties. In general, intersensory redundancy has a

significant impact on attention, and can bias figure/ground judgements 2. Another

experiment9 provides evidence that an amodal relation (in this case texture, which

is common to visual and tactile sensing) provides a basis for learning arbitrary

relations between modality-specific properties (in this case the particular colored

surface of a textured object).

Such results and theories are very relevant to robotics. For an autonomous robot

to be capable of developing and adapting to its environment, it needs to be able

to learn. The field of machine learning offers many powerful algorithms, but these

require training data to operate. Infant development research suggests ways to ac-

quire such training data from simple contexts, and use this experience to bootstrap

to more complex contexts. We need to identify situations that enable the robot to

temporarily reach beyond its current perceptual abilities, giving the opportunity
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Fig. 3. When watching a person using a hammer, the robot detects and group points moving in the
image with similar periodicity11 to find the overall trajectory of the hammer and separate it out
from the background. The detected trajectory is shown on the left (for clarity, just the coordinate
in the direction of maximum variation is plotted), and the detected object boundary is overlaid
on the image on the right.

for development to occur10. An example of this in the robotic domain is the ac-

tive segmentation system implemented previously on Cog, where the robot initially

needed to come into physical contact with objects before it could learn about them

or recognize them, since it used the contingent motion of the objects to segment

them from the background, but after this familiarization period it could recognize

objects without further contact. In this paper, we exploit repetition – rhythmic

motion, repeated sounds – to achieve segmentation and recognition across multiple

senses.

3. Detecting repeated events

We are interested in detecting conditions that repeat with some roughly constant

rate, where that rate is consistent with what a human can easily produce and

perceive. This is not a very well defined range, but we will consider anything above

10Hz to be too fast, and anything below 0.1Hz to be too slow. Repetitive signals

in this range are considered to be events in our system. For example, waving a flag

is an event, clapping is an event, walking is an event, but the vibration of a violin

string is not an event (too fast), and neither is the daily rise and fall of the sun (too

slow). Such a restriction is related to the idea of natural kinds12, where perception

is based on the physical dimensions and practical interests of the observer.

To find periodicity in signals, the most obvious approach is to use some version

of the Fourier transform. And indeed our experience is that use of the Short-Time

Fourier Transform (STFT) demonstrates good performance when applied to the

visual trajectory of periodically moving objects11. For example, Figure 3 shows a

hammer segmented visually by tracking and grouping periodically moving points.

However, our experience also leads us to believe that this approach is not ideal

for detecting periodicity of acoustic signals. Of course, acoustic signals have a rich

structure around and above the kHz range, for which the Fourier transform and

related transforms are very useful. But detecting gross repetition around the single
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Fig. 4. Extraction of an acoustic pattern from a periodic sound (a hammer banging). The algorithm
for signal segmentation is applied to each normalized frequency band. The box on the right shows
one complete segmented period of the signal. Time and frequency axes are labeled with single and
double arrows respectively.

or fractional Hz range is very different. The sound generated by a moving object

can be quite complicated, since any constraints due to inertia or continuity are

much weaker than for the physical trajectory of a mass moving through space. In

our experiments, we find that acoustic signals may vary considerably in amplitude

between repetitions, and that there is significant variability or drift in the length of

the periods. These two properties combine to reduce the efficacy of Fourier analysis.

This led us to the development of a more robust method for periodicity detection,

which is now described. In the following discussion, the term signal refers to some

sensor reading or derived measurement, as described at the end of this section. The

term period is used strictly to describe event-scale repetition (in the Hz range), as

opposed to acoustic-scale oscillation (in the kHz range).

Period estimation – For every sample of the signal, we determine how long it

takes for the signal to return to the same value from the same direction

(increasing or decreasing), if it ever does. For this comparison, signal values

are quantizing adaptively into discrete ranges. Intervals are computed in one

pass using a look-up table that, as we scan through the signal, stores the

time of the last occurrence of a value/direction pair. The next step is to find

the most common interval using a histogram (which requires quantization

of interval values), giving us an initial estimate pestimate for the event period
13.

Clustering – The previous procedure gives us an estimate pestimate of the event

period. We now cluster samples in rising and falling intervals of the signal,

using that estimate to limit the width of our clusters but not to constrain

the distance between clusters. This is a good match with real signals we

see that are generated from human action, where the periodicity is rarely

very precise. Clustering is performed individually for each of the quantized

ranges and directions (increasing or decreasing), and then combined after-
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wards. Starting from the first signal sample not assigned to a cluster, our

algorithm runs iteratively until all samples are assigned, creating new clus-

ters as necessary. A signal sample extracted at time t is assigned to a cluster

with center ci if ‖ ci − t ‖2< pestimate/2. The cluster center is the average

time coordinate of the samples assigned to it, weighted according to their

values.

Merging – Clusters from different quantized ranges and directions are merged into

a single cluster if ‖ ci − cj ‖2< pestimate/2 where ci and cj are the cluster

centers.

Segmentation – We find the average interval between neighboring cluster centers

for positive and negative derivatives, and break the signal into discrete

periods based on these centers. Notice that we do not rely on an assumption

of a constant period for segmenting the signal into repeating units. The

average interval is the final estimate of the signal period.

The output of this entire process is an estimate of the period of the signal, a

segmentation of the signal into repeating units, and a confidence value that reflects

how periodic the signal really is. This method not only relaxes the assumption of

constant periodicity, but is also computationally inexpensive. The period estimation

process is applied at multiple temporal scales. If a strong periodicity is not found

at the default time scale, the time window is split in two and the procedure is

repeated for each half. This constitutes a flexible compromise between both the

time and frequency based views of a signal: a particular movement might not appear

periodic when viewed over a long time interval, but may appear as such at a finer

scale.

Figure 3 shows an example of using periodicity to visually segment a hammer

as a human demonstrates the periodic task of hammering, while Figure 4 shows

segmentation of the sound of the hammer in the time-domain. For these examples

and all other experiments described in this paper, our system tracks moving pixels in

a sequence of images from one of the robot’s cameras using a multiple object tracking

algorithm based on a pyramidal implementation of the Lukas-Kanade algorithm.

A microphone array samples the sounds around the robot at 16kHz. The Fourier

transform of this signal is taken with a window size of 512 samples. The Fourier

coefficients are grouped into a set of frequency bands for the purpose of further

analysis, along with the overall energy.

4. Priming for attention

Human studies have shown that attention in one of the senses can be modified

by input from the other senses. For example, Bahrick2 describes an experiment

in which two movies of actions such as clapping hands are overlaid, and the sound

corresponding to just one of the movies is played. Adult and infant attention is found

to be directed to the matching action. In adults, there is a large reported difference

between what is perceived when the sound is off (ghostly figures moving through
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Fig. 5. The image on the right shows a car and a ball moving simultaneously, with their trajectories
overlaid. The spectrogram during this event is shown on the left. Sound is only generated by the
rolling car – the ball is silent. A circle is placed on the object (car) with which the sound is bound.
The sound energy and the visual displacements of the objects are given.

each other) and when the sound is on (a strong sense of figure and background).

4.1. Priming visual foreground with sound

In this section, we consider the case of multiple objects moving in the robot’s visual

field, only one of which is generating sound. The robot uses the sound it hears to

filter out uncorrelated moving objects and determine a candidate for cross-modal

binding. This is a form of context priming, in which an external signal (the sound)

directs attention towards one of a set of potential candidates.

Figure 5 shows measurements taken during an experiment with two objects

moving visually, at different rates, with one - a toy car - generating a rolling sound,

while the other - a ball - is moving silently. The acoustic signal is linked with the

object that generated it (the car) using period matching. The movement of the ball

is unrelated to the period of the sound, and so that object is rejected. In contrast, for

the car there is a very definite relationship. The sound energy signal has two clear

peaks per period of motion, since the sound of rolling is loudest during the two

moments of high velocity motion between turning points in the car’s trajectory.

This is a common property of sounds generated by mechanical rubbing, so the

binding algorithm takes this possibility into account by testing for the occurrence

of frequencies at double the expected value.

4.2. Priming acoustic foreground with vision

We now consider the case of one object moving in the robot’s field of view, and

one ‘off-stage’, with both generating sound. This is symmetric to the case already

covered. Matching the correct sound to the visible object is achieved by mapping

the time history of each individual coefficient band of the audio spectrogram (see

Figure 6) to the visual trajectory of the object. We segment the sound of the object
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Fig. 6. The two spectrogram/trajectory pairs shown are for a shaking toy car and snake rattle.
The left pair occurs with only the car visible, and the right pair occurs with only the snake visible.
The line in each spectrogram represents the cutoff pitch frequency between the car and snake.
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Fig. 7. The car and the cube, both moving, both making noise. The line overlaid on the spectrogram

(right) shows the cutoff determined automatically between the high-pitched bell in the cube and
the low-patched rolling sound of the car. A spectrogram of the car alone can be seen in Figure 5.

from the background by clustering the frequency bands with the same period (or

half the period) as the visual target, and assign those bands to the object.

Within the framework being described, visual information is used to prune the

range of frequency bands of the original sound. The coefficient bands of the audio

visual are segmented into clusters of bands that characterize the sound of an object.

For the experiment shown to the left in Figure 6, the coefficients ranging from 0

to 2.6Hz are assigned to the object. Afterwards, a band-pass filter is applied to the

audio-signal to filter out the other frequencies, resulting in the clear sound of the

car with the sound of the rattle removed or highly attenuated. For the experiment

shown in the right part of Figure 6 the roles of the car and snake were switched.

A band-pass filter between 2.6-2.8Hz is applied to the audio-signal to filter out the

frequencies corresponding to the car, resulting in the snake’s sound.

4.3. Matching multiple sources

This experiment considers two objects moving in the robot’s field of view, both

generating sound, as presented in Figure 7. Each frequency band is mapped to

one of the visual trajectories if coherent with its periodicity. For each object, the

lower and the higher coefficient band are labeled as the lower and higher cut-off
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Experiment visual
period
found

sound
period
found

bind
sound,
vision

candidate
binds

correct
binds

incorrect
binds

hammer 8 8 8 8 8 0

car and ball 14 6 6 15 5 1
plane & mouse/remote 18 3 3 20 3 0

car (snake in backg’d) 5 1 1 20 1 0
snake (car in backg’d) 8 6 6 8 6 0

car & cube

{

car

cube

9
10

3
8

3
8

11
11

3
8

0
0

car & snake

{

car

snake

8
8

0
5

0
5

8
8

0
5

0
0

Table 1. Evaluation for four binding cases of cross-modal rhythms of increasing complexity. The
simplest is when a single object (the hammer) is in view, engaged in a repetitive motion and a single
repetitive sound source is also heard. This corresponds to a run of roughly 1 minute, for which
binding is easy as shown by the data. The next case is when multiple moving objects are visible,
but only one repeating sound is heard. Two experiments were made – a car and a ball visible and
only the car generating sound, and a plane and other objects visible but only the plane generating
sound. Since an object’s sound is strongly affected by environment noise, highest confidence is
required for this modality, which reduces the number of periodic detections, and consequently the
number of bindings. The third case corresponds to two repeating sounds with different periods,
and a single visible moving object (experiments for car with snake rattle in background and vice-
versa). The car generates mainly low frequency sounds, but the rattle generates high frequency
sounds with some weak low frequency components that cause interference with the detection of
the car’s sound. This is the reason for a weak percentage of bindings for the car. Finally, multiple
sound and visual source can be bound together appropriately (two experiments: car and cube
rattle; and car and snake rattle). Bindings occur more often for objects producing sounds with
high frequency energies.

frequencies, respectively, of a band-pass filter assigned to that object. The complex

sound of both the moving car-toy and the cube-rattle are thus segmented into the

characteristic sound of the car and sound of the rattle through band-pass filtering.

Multiple bindings are thus created for multiple oscillating objects producing distinct

sounds.

It is worth stressing that the real world is full of objects making all kinds of

noise. However, the system is robust to such disturbances. On the experiments pre-

sented throughout this paper, people were speaking occasionally while interacting

with the robot, while other people were making everyday sounds while working. If

the distracting sound occurs at the same range of frequencies as the sound of the

oscillating object, then a binding might just not occur for that specific time, but

occur after a few seconds when the interference noise switches to other frequencies

or disappears. Table 1 shows how well the methods described for binding sounds

with objects work on a series of experiments.
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visual segmentation binding detection multiple obj. tracking

tambourine segmentations

robot is shown tambourine

Fig. 8. Here the robot is shown a tambourine in use (top left). The robot detects that there is
a periodically moving visual source, and a periodic sound source, and that the two sources are
causally related and should be bound. All images in these figures are taken directly from recordings
of real-time interactions. The images on the bottom left show the visual segmentations recorded
for the tambourine. The background behind the tambourine, a light wall with doors and windows,
is correctly removed. The panel on the right shows a real-time view of the robot’s status during the
experiment. The robot is continually collecting visual and auditory segmentations, and checking
for cross-model events. It also compares the current view with its database and performs object
recognition to correlate with past experience.

5. Differentiation

Our system can extract both the acoustic signature and the visual appearance of ob-

jects independently, by detecting periodic oscillations within each sensor modality.

Segmented features extracted from visual and acoustic segmentations can then serve

as the basis for an object recognition system. Visual and acoustic cues are both in-

dividually important for recognizing objects, and can complement each other when,

for example, the robot hears an object that is outside its view, or it sees an object

at rest (for an approach in the visual domain see Arsenio14 or Fitzpatrick15, and

Krotkov16 has looked at the recognition of sound generated by a single contact

event). In our system, the robot’s perceptual system comprises several unimodal

algorithms running in parallel to extract informative percepts within and across

the senses (see the display panel in Figure 8).

5.1. Visual segmentation and recognition

Object segmentation is a fundamental problem in computer vision, and is par-

ticularly difficult on the unstructured, non-static, noisy, real-time, low resolution

images that robots have to deal with. We approach segmentation by detecting and
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Train toy tracked 
and segmented

Unidentified object
– new category

New object 
presented

Object not identified 
– new category

Car toy tracked
and segmented

…
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Fig. 9. Figure illustrating a sequence from an on-line experiment of several minutes on the hu-
manoid robot Cog. (1) The robot is tracking a toy car (top row), and new template instances
of it are being inserted into a database. A random set of templates from this database is shown

on the bottom row. (2) A new object (a toy train) is presented. It was never seen before, so it
is not recognized and a new category is created for it. (3) The toy train is tracked. (4) A new,
unknown object presented, for which a new category is created on the object recognition database.
(5) Templates from the new object are stored.

interpreting natural human behavior such as waving or shaking objects, clustering

periodically-moving pixels in an image into a unified object (following the proce-

dure described by Arsenio17). The object templates produced by segmentation are

used as the basis for training an object recognition system, which enables object

identification in several contexts and under different perspective views. The object

recognition algorithm begins by clustering objects into classes according to their

identity. This was implemented using color histograms; objects were classified based

on the relative distribution of their color pixels. New object templates are classified

according to their similarity with other object templates in an object database.

A multi-target tracking algorithm (which tracks good features 18 using the Lucas-

Kanade Pyramidal algorithm) was developed to keep track of object identity as it

changes location and pose. An on-line experiment for object segmentation, track-

ing and recognition of new objects on the humanoid robot is shown in Figure 9.

Arsenio19 presents both a qualitative and quantitative analysis for recognition of

previously learned objects.

5.2. Auditory segmentation and recognition

The repetitive nature of the sound generated by an object under periodic motion can

be analyzed to extract an acoustic ‘signature’ for that object. We search for repeti-

tion in a set of frequency bands independently, then collect those frequency bands

whose energies oscillate together with a similar period. Specifically, the acoustic

signature for an object is obtained by applying the following steps:

(1) The period of repetition for each frequency band is detected using the procedure

developed in Section 3.

(2) A period histogram is constructed to accumulate votes for frequency bands hav-

ing the same estimated period (or half the period – it is common to have sounds
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2) Average 
sound images

3) Eigenobjects corresponding 
to the three highest eigenvalues

1) 7 random sound samples for each of 4 objects. From top to 
bottom: hammer, cube rattle, car and snake rattle, respectively.

kH
z

Normalized time

Fig. 10. Sound segmentation and recognition. Acoustic signatures for four objects are shown along
the rows. (1) Seven sound segmentation samples are shown for each object, from a total of 28 (car),
49 (cube rattle), 23 (snake rattle) and 34 (hammer) samples. (2) The average acoustic signature
for each object is shown. The vertical axis corresponds to the frequency bands and the horizontal
axis to time normalized by the period. (3) The eigensounds corresponding to the three highest
eigenvalues are shown.

that occur once per repetition, for example at one endpoint of the trajectory,

or twice per repetition, for example at two instants of maximum velocity). The

histogram is smoothened by adding votes for each bin of the histogram to their

immediate neighbors as well.

(3) The maximum entry in the period histogram is selected as the reference period.

All frequency bands corresponding to this maximum are collected and their re-

sponses over the reference period are stored in a database of acoustic signatures.

Since the same objects can be shaken or waved at different velocities resulting in

varying periodicity, it is important to normalize temporal information relative

to the reference period.

A collection of annotated acoustic signatures for each object are used as input

data (see Figure 10) for a sound recognition algorithm by applying the eigenobjects

method, which is also widely used for face recognition20. This method is a modified

version of Principal Component Analysis. A sound image is represented as a linear

combination of base sound signatures (or eigensounds). Only eigensounds corre-

sponding to the three highest eigenvalues – which represent a large portion of the

sound’s energy – are retained. Classification consists of projecting novel sounds to

this space, determining the coefficients of this projection, computing the L2 distance

to each object’s coefficients in the database, and selecting the class corresponding

to the minimum distance.

Cross-modal information aids the acquisition and learning of unimodal percepts

and consequent categorization in a child’s early infancy. Similarly, visual data is
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employed here to guide the annotation of auditory data to implement a sound

recognition algorithm. Training samples for the sound recognition algorithm are

classified into different categories by the visual object recognition system or from

information from the visual object tracking system. This enables the system, after

training, to classify sounds of unknown, not visible objects.

The system was evaluated quantitatively be randomly selecting 10% of the seg-

mented data for validation, and the remaining data for training. This process was

randomly repeated three times. It is worth noting that even samples received within

a short time of each other often do not look very similar, due to noise on the segmen-

tation process, background acoustic noise, other objects’ sounds during experiments,

and variability on how objects are moved and presented to the robot. For example,

the car object is heard both alone and with a rattle (either visible or hidden).

The recognition rate for the three runs averaged to 82% (86.7%, 80% and 80%).

Recognition rates by object category were: 67% for the car, 91.7% for the cube

rattle, 77.8% for the snake rattle and 83.3% for the hammer. Most errors arise

from mismatches between car and hammer sounds. Such errors could be avoided

by extending our sound recognition method to use derived features such as the

onset/decay rate of a sound, which is clearly distinct for the car and the hammer

(the latter generates sounds with abrupt rises of energy and exponential decays,

while sound energy from the toy car is much smoother). Instead, we will show that

these differences can be captured by cross-modal features to correctly classify these

objects.

6. Integration

Different objects have distinct acoustic-visual patterns which are a rich source of

information for object recognition, if we can recover them. The relationship between

object motion and the sound generated varies in an object-specific way. A hammer

causes sound after striking an object. A toy truck causes sound while moving rapidly

with wheels spinning; it is quiet when changing direction. A bell typically causes

sound at either extreme of motion. All these statements are truly cross-modal in

nature, and we explore here using such properties for recognition.

6.1. Cross-Modal segmentation/recognition

As was just described, features extracted from the visual and acoustic segmentations

are what is needed to build an object recognition system. Each type of features are

important for recognition when the other is absent. But when both visual and

acoustic cues are present, then we can do even better by looking at the relationship

between the visual motion of an object and the sound it generates. Is there a loud

bang at an extreme of the physical trajectory? If so we might be looking at a

hammer. Are the bangs soft relative to the visual trajectory? Perhaps it is a bell.

Such relational features can only be defined and factored into recognition if we can
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relate or bind visual and acoustic signals. Therefore, the feature space for recognition

consists of:

. Sound/Visual period ratios – the sound energy of a hammer peaks once per

visual period, while the sound energy of a car peaks twice (for forward and

backward movement).

. Visual/Sound peak energy ratios – the hammer upon impact creates high peaks

of sound energy relative to the amplitude of the visual trajectory. Although such

measure depends on the distance of the object to the robot, the energy of both

acoustic and visual trajectory signals will generally decrease with depth (the

sound energy disperses through the air and the visual trajectory reduces in

apparent scale).

Human actions are therefore used to create associations along different sensor

modalities, and objects can be recognized from the characteristics of such associ-

ations. Our approach can differentiate objects from both their visual and acoustic

backgrounds by finding pixels and frequency bands (respectively) that are oscillat-

ing together. This is accomplished through dynamic programming, applied to match

the sound energy to the visual trajectory signal. Formally, let S = (S1, . . . , Sn) and

V = (V1, . . . , Vm) be sequences of sound and visual trajectory energies segmented

from n and m periods of the sound and visual trajectory signals, respectively. Due to

noise, n may be different to m. If the estimated sound period is half the visual one,

then V corresponds to energies segmented with 2m half periods (given by the dis-

tance between maximum and minimum peaks). A matching path P = (P1, . . . , Pl)

defines an alignment between S and M , where max(m, n) ≤ l ≤ m + n − 1, and

Pk = (i, j), a match k between sound cluster j and visual cluster i. The matching

constraints are imposed by:

The boundary conditions are P1 = (1, 1) and Pl = (m, n).

Temporal continuity satisfies Pk+1 ∈ {(i + 1, j + 1), (i + 1, j), (i, j + 1)}. This

restricts steps to adjacent elements of P .

The function cost ci,j is given by the square difference between Vi and Sj periods.

The best matching path W can be found efficiently using dynamic programming,

by incrementally building an m × n table caching the optimum cost at each table

cell, together with the link corresponding to that optimum. The binding W will

then result by tracing back through these links, as in the Viterbi algorithm.

Figure 11 shows cross-modal features for a set of four objects. It would be

hard to cluster automatically such data into groups for classification. But as in

the sound recognition algorithm, training data is automatically annotated by visual

recognition and tracking. After training, objects can be categorized from cross-

modal cues alone. The system was evaluated quantitatively by selecting randomly

10% of the data for validation, and the remaining data for training. This process

was randomly repeated fifteen times. The recognition rate averaged over all these

runs were, by object category: 100% for both the car and the snake rattle, 86.7% for
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Hammer
Cube rattle
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Confusion matrix car cube snake hammer

car 30 0 0 0
cube 0 52 7 1
snake 0 0 45 0

hammer 0 5 0 25

Fig. 11. Object recognition from cross-modal clues. The feature space consists of period and peak
energy ratios. The confusion matrix for a four-class recognition experiment is shown. The period
ratio is enough to separate well the cluster of the car object from all the others. Similarly, the
snake rattle is very distinct, since it requires large visual trajectories for producing soft sounds.
Errors for categorizing a hammer originated exclusively from erroneous matches with the cube
rattle, because hammering is characterized by high energy ratios, and very soft bangs are hard
to identify correctly. The cube rattle generates higher energy ratios than the snake rattle. False
cube rattle recognitions resulted mostly from samples with low energy ratios being mistaken for
the snake rattle.

the cube rattle, and 83% for the hammer. The overall recognition rate was 82.1%.

Such results demonstrate the potential for recognition using cross-modal cues.

6.2. Cross-modal enhancement of detection

There is evidence that, for humans, simple visual periodicity can aid the detection

of acoustic periodicity. If a repeating segment of noise is played, the repetition can

be detected for much longer periods if a light is flashing in synchrony with some

point in the period21. More generally, there is evidence that the cues used to detect

periodicity can be quite subtle and adaptive22, suggesting there is a lot of potential

for progress in replicating this ability beyond the ideas already described. We believe

that cross-modal priming can be used to refine detection, both for detecting signals

that would otherwise be missed, and ignoring signals that would otherwise distract.

Much of the noise in the results of the previous section were symptomatic of

a general problem: the sound generated by a periodically moving object can be

much more complex and ambiguous than its visual trajectory. The extrema of an
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Fig. 12. An experiment in which a plane is being pushed across wood while a mouse is shaken in
the background. Shown are the highest quality acoustic matches for this sound (right) and the
object with which they correspond (left). Matches against the mouse are much lower and below
threshold.

approximately repeating trajectory can be found with ease, and used to segment

out single periods of oscillation within an object’s movement. Single periods of the

sound signal can be harder to find, since there is more ambiguity – for example,

some objects make noise only at one point in a trajectory (such as a hammer), others

make noise at the two extrema (some kinds of bell), others make noise during two

times of high velocity between the extrema (such as a saw), and so on. For cases

where periodicity detection is difficult using sound, it makes sense to define the

period of an action in the visual domain based on its trajectory, and match against

this period in the sound domain – instead of detecting the period independently

in each domain. We have developed an approach, where for each object moving

visually, fragments of the sound are taken for periods of that object, aligned, and

compared. If the fragments are consistent, with sound and vision in phase with

each other, then the visual trajectory and the sound are bound. This is a more

stringent test than just matching periods, yet avoids the problem of determining a

period reliably from sound information. Figure 12 shows results for an experiment

where two objects are moving, a mouse and a plane. Only the plane is generating

sound. The sound is a rough noise with silence at the two extrema of the plane’s

motion, and hence appears to have a frequency of double that of the trajectory.

By coincidence, this is close to the frequency of oscillation of the mouse, so simple

period matching is difficult. But by using the simple visual period to segment the

acoustic data, small differences can be amplified as the sound and vision of a near

match drift around in phase while a true match stays exactly in phase.
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the robot sees a person shaking head and saying “ no”

segmentation binding tracking

the robot watches a person jumping, hears them landing

segmentation binding tracking

Fig. 13. (left) In this experiment, the robot sees people shaking their head. In the top row, the
person says “no, no, no” in time with his head-shake. The middle row shows the recorded state of
the robot during this event – it binds the visually tracked face with the sound spoken. Recorded
segmentations for these experiments are shown on the lower row. (right) Result for one human
actor jumping up and down like crazy in front of the robot. The thud as he hit the floor was
correctly bound with segmentations of his body (bottom row).

7. Beyond objects: detecting the self and others

The cross-modal binding method we developed for object perception also applies to

perceiving people. Humans often use body motion and repetition to reinforce their

actions and speech, especially with young infants. If we do the same in our interac-

tions with Cog, then it can use those cues to link visual input with corresponding

sounds. For example, Figure 13 shows a person shaking their head while saying “no!

no! no!” in time to his head motion. The figure shows that the robot extracts a good

segmentation of the shaking head, and links it with the sound signal. Such actions

appear to be understood by human infants at around 10-12 months.

Sometimes a person’s motion causes sound, just as an ordinary object’s motion

might. Figure 13 shows a person jumping up and down in front of Cog. Every time

he lands on the floor, there is a loud bang, whose periodicity matches that of the

tracked visual motion. We expect that there are many situations like this that the

robot can extract information from, despite the fact that those situations were not

considered during the design of the binding algorithms. The images in these figures

are taken from online experiments – no offline processing is done.

So far we have considered only external events that do not involve the robot.

Now we turn to the robot’s perception of its own body. Cog treats proprioceptive

feedback from its joints as just another sensory modality in which periodic events

may occur. These events can be bound to the visual appearance of its moving body
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appearance, 
sound, and 
action of the 
arm all 
bound 
together

robot moves its arm while 
looking in a mirror

visual segmentations produced by the robot watching 
motion of its body (whether self-generated or imposed)

Fig. 14. In the experiment shown to the left, Cog is looking at itself in a mirror, while shaking its
arm back and forth. The reflected image of its arm is bound to the robot’s sense of its own motion,
and the sound of the motion. This binding is identical in kind to the binding that occurs if the
robot sees and hears its own arm moving directly without a mirror. However, the appearance of
the arm is from a quite different perspective than Cog’s own view of its arm.

part – assuming it is visible – and the sound that the part makes, if any (in fact

Cog’s arms are quite noisy, making an audible “whirr-whirr” when they move back

and forth).

An important milestone in child development is reached when the child recog-

nizes itself as an individual, and identifies its mirror image as belonging to itself 23.

Self-recognition in a mirror is also the focus of extensive study in biology. Work on

self-recognition in mirrors for chimpanzees24 suggests that animals other than hu-

mans can also achieve such competency, although the interpretation of such results

requires care and remains controversial. Self-recognition is related to the notion of

a theory-of-mind, where intents are assigned to other actors, perhaps by mapping

them onto oneself, a topic of great interest in robotics25,26. Proprioceptive feedback

provides very useful reference signals to identify appearances of the robot’s body

in different modalities. That is why we extended our binding algorithm to include

proprioceptive data.

Children between 12 and 18 months of age become interested in and attracted

to their reflection27. Such behavior requires the integration of visual cues from the

mirror with proprioceptive cues from the child’s body. As shown in Figure 14, the

binding algorithm was used not only to identify the robot’s own acoustic rhythms,

but also to identify visually the robot’s mirror image (an important milestone in
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the development of a child’s theory of mind28). It is important to stress that we

are dealing with the low-level perceptual challenges of a theory of mind approach,

rather than the high-level inferences and mappings involved. Correlations of the

kind we are making available could form a grounding for a theory of mind and

body-mapping, but are not of themselves part of a theory of mind – for example,

they are completely unrelated to the intent of the robot or the people around it,

and intent is key to understanding others in terms of the self29,25. Our hope is

that the perceptual and cognitive research will ultimately merge and give a truly

intentional robot that understands others in terms of its own goals and body image

– an image which could develop incrementally using cross-modal correlations of the

kind explored in this paper.

8. Conclusions and Discussion

We wish our system to be scalable, so that it can correlate and integrate multiple

sensor modalities (currently sight, sound, and proprioception). To that end, we

detect and cluster periodic signals within their individual modalities, and only then

look for cross-modal relationships between such signals. This avoids a combinatorial

explosion of comparisons, and means our system can be gracefully extended to deal

with new sensor modalities in future (touch, smell, etc).

Most of us have had the experience of feeling a tool become an extension of

ourselves as we use it (see30 for a literature review). Many of us have played with

mirror-based games that distort or invert our view of our own arm, and found that

we stop thinking of our own arm and quickly adopt the new distorted arm as our

own. About the only form of distortion that can break this sense of ownership is

a delay between our movement and the proxy-arm’s movement. Such experiences

argue for a sense of self that is very robust to every kind of transformation except

latencies. Our work is an effort to build a perceptual system which, from the ground

up, focuses on timing just as much as content. This is powerful because timing is

truly cross-modal, and leaves its mark on all the robot’s senses, no matter how they

are processed and transformed.

Other work in robotics has taken advantage of cross-modal cues for word learning
31. We are motivated by evidence from human perception that strongly suggests that

timing information can transfer between the senses in profound ways. For example,

experiments show that if a short fragment of white noise is recorded and played

repeatedly, a listener will be able to hear its periodicity. But as the fragment is

made longer, at some point this ability is lost. But the repetition can be heard for

far longer fragments if a light is flashed in synchrony with it21 – flashing the light

actually changes how the noise sounds. More generally, there is evidence that the

cues used to detect periodicity can be quite subtle and adaptive 22, suggesting there

is a lot of potential for progress in replicating this ability beyond the ideas already

described.

Although the potential for expanding this work is vast, from a practical per-
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spective complex levels of functionality have already been accomplished. Consider

Figure 8, which shows a partial snapshot of the robot’s state during one of the

experiments described in the paper. The robot’s experience of an event is rich, with

many visual and acoustic segmentations generated as the event continues, relevant

prior segmentations recalled using object recognition, the relationship between data

from different senses detected and stored, and objects tracked to be further used

by statistical learning processes for object location. We believe that this kind of

experience will form one important part of a perceptual toolbox for autonomous

development, where many very good ideas have been hampered by the difficulty of

robust perception.

A lot about the world can be communicated to a humanoid robot through hu-

man demonstration. The robot’s learning process will be facilitated by sending it

repetitive information through this communication channel. If more than one com-

munication channel is available, such as the visual and auditory channels, both

sources of information can be correlated for extracting richer pieces of informa-

tion. We demonstrated in this paper a specific way to take advantage of correlating

multiple perceptual channels at an early stage, rather than just by analyzing them

separately - the whole is truly greater than the sum of the parts.
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