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Abstract. Human speech provides a natural and intuitive interface for both communicating with humanoid
robots as well as for teaching them. In general, the acoustic pattern of speech contains three kinds of informa-
tion: who the speaker is, what the speaker said, and how the speaker said it. This paper focuses on the question
of recognizing affective communicative intent in robot-directed speech. We present an approach for recognizing
four distinct prosodic patterns that communicate praise, prohibition, attention, and comfort to preverbal infants.
These communicative intents are well matched to teaching a robot since praise, prohibition, and directing the
robot’s attention to relevant aspects of atask, could be used by a human instructor to intuitively facilitate the
robot’s learning process. We integrate this perceptual ability into our robot’s ”emotion” system, thereby allow-
ing a human to directly manipulate the robot’s affective state. This has a powerful organizing influence on the
robot’s behavior, and will ultimately be used to socially communicate affective reinforcement. Communicative
efficacy has been tested with people very familiar with the robot as well as with nave subjects.

1 Introduction

As robots take on an increasingly ubiquitous role in society, they must be easy for the average citizen to use and
interact with. They must also appeal to persons of different age, gender, income, education, and so forth. This
raises the important question of how to properly interface untrained humans with these sophisticated technologies
in amanner that is intuitive, efficient, and enjoyableto use.

From the large body of human-technology research, we take as a working assumption that technological at-
tempts to foster human-technology relationships will be accepted by a majority of people if the technological
gadget displays rich social behavior [1], [2]. According to Reeves and Nass, a socia interface may very well be a
universal interface because humans have evolved to be expertsin social interaction [1]. Similarity of morphology
and sensing modalities makes humanoid robots one form of technology particularly well suited to this.

If Reeves and Nass findings hold true for humanoid robots, then those that participatein rich human-stylesocial
exchangewith their users offer anumber of advantages. First, people would find working with them more enjoyable
and they would feel more competent. Second, communicating with them would not require any additional training
since humans are already expertsin socia interaction. Third, if the robot could engage in various forms of socia
learning (imitation, emulation, tutelage, etc.), then it would be easier for the user to teach new tasks. Ideally, the
user could teach the robot just as they would another person. Our group is particularly interested in this socialy
situated form of learning for humaoid robots, and we have argued for the many advantages social cues and skills
could offer robots that learn from people[3].

As one might imagine, a humanoid robot that could actually interact with people in a human-like way and
be able to interpret, respond, and deliver human-style social cues (even at the level of a human infant) is quite a
sophisticated machine. Over the past three years, we have been building infant-level social competencies into our
robot, Kismet, so that we might explore social development and socially situated learning between a robot and its
human caregiver.

This paper explores one such competence: the ability to recognize affective communicative intent in robot-
directed speech. Kismet has a fully integrated synthetic nervous system (SNS) that encompasses perceptual, at-
tentional, motivational, behavioral, and motor capabilities [4]. Within the motivational system are homeostatic
regulation processes and emotional processes [5]. As a whole, the motivation system provides affective informa-
tion to the rest of the synthetic nervous system to influence behavior. Previous work has demonstrated how such
systems can be used to bias learning both at goal-directed and affective levels[6], [7], [8].

We are working towards implementing similar learning mechanisms on Kismet but with an added twist: the
ability of the human caregiver to directly modulate the robot’s affective state through verbal communication. This
provides the human caregiver with a natural and intuitive means for shaping the robot’s behavior and for influ-
encing what the robot learns. Particularly salient forms of vocal feedback include praise (positive reinforcement),
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prohibition (negative reinforcement), attentional bids (to direct the robot’s attention to the important aspects of the
task), and encouragement (to keep the robot motivated to try different things). Often these types of information are
communicated affectively as well as linguistically in human speech.

In therest of this paper we discuss previouswork in recognizing emotion and affective intent in human speech.
We discuss Fernald’'s work in depth to highlight the important insights it provides in terms of which cues are
most useful for recognition of affective communicative intent as well as how it may be used by human infants to
organize their behavior. We then outline a series of design issues particular for integrating this competence into
our robot, Kismet. We present a detailed description of our approach and how we have integrated it into Kismet's
affective circuitry. The performance of the system is evaluated with nave subjects as well as the robot’s caregivers.
We discuss our results, suggest future work, and summarize our findings.

2 Emotion Recognition in Speech

There has been an increasing amount of work in identifying those acoustic features that vary with the speaker’s
affective state [9]. Changesin the speaker’s autonomic nervous system can account for some of the most significant
changes where the sympatheti c and parasympathetic subsystems regulate arousal in opposition. For instance, when
asubject isin a state of fear, anger, or joy, the sympathetic nervous system is aroused. This induces an increased
heart rate, higher blood pressure, changes in depth of respiratory movements, greater subglottal pressure, dryness
of the mouth, and occasional muscle tremor. The resulting speech is faster, louder, and more precisely enunciated
with strong high frequency energy, a higher average pitch, and wider pitch range. In contrast, when a subject is
tired, bored, or sad, the parasympathetic nervous system is more active. This causes a decreased heart rate, lower
blood pressure, and increased salavation. The resulting speech is typically slower, lower-pitched, more slurred,
and with little high frequency energy. Hence, the effects of emotion in speech tend to alter the pitch, timing, voice
quality, and articulation of the speech signal [10]. However, severa of these features are also modulated by the
prosodic effects that the speaker uses to communi cate grammatical structure and lexical correlates. For recognition
tasks, this makes isolating those feature characteristics modul ated by emotion challenging.

There have been a number of vocal emotion recognition systems developed in the past few years that use
different variations and combinations of those acoustic features with different types of learning algorithms [11],
[12]. To give a rough sense of performance, a five-way classifier operating at approximately 80% is considered
state of the art. Thisisimpressive considering that humans cannot reliably discern a speaker’s emotional state from
speech alone. Some have attempted to use multimodal cues (facial expression with expressive speech) to improve
recognition performance [13].

3 Affective Speech and Communicative I ntent

However, for the purposes of training a robot, the raw emotional content of the speaker’s voice is only part of the
message. It tellsuslittle about the intent of the message. A few researchers have devel oped recognition systemsthat
can recognize speaker approval verses speaker disapproval from child-directed speech [14], or recognize praise,
prohibition, and attentional bids from infant-directed speech [30].

However, developmental psycholinguists can tell us quite a lot about how preverbal infants achieve this, and
how caregivers exploit it to regulate the infant’s behavior. Infant-directed speech is typically quite exaggerated in
the pitch and intensity (often called motherese[27]). Moreover, mother’sintuitively use selective prosodic contours
to express different communicative intensions. Based on a series of cross-linguistic analyses, there appear to be
a least four different pitch contours (approval, prohibition, comfort, and attentional bids), each associated with
a different emotional state [15], [16], [17] (see figure 1). Mothers are more likely to use falling pitch contours
than rising pitch contours when soothing a distressed infant [18], to use rising contours to elicit attention and to
encourage aresponse [28], an to use bell shaped contours to maintain attention once it has been established [19].
Expressions of approval or praise, such as” Good girl!” are often spoken with an exaggerated rise-fall pitch contour
with sustained intensity at the contour’s peak. Expressions of prohibitions or warnings such as "Don’t do that!”
are spoken with low pitch and high intensity in staccato pitch contours. Fernald suggests that the pitch contours
observed have been designed to directly influence the infant’'s emotive state, causing the child to relax or become
more vigilant in certain situations, and to either avoid or approach objects that may be unfamiliar.

4 Affective Intent in Robot-Directed Speech

Inspired by this work, we have implemented a five-way recognizer that can distinguish Fernald’s prototypical
prosodic contours for praise, prohibition, comfort, attentional bids, and neutral speech. There are several design
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Fig. 1. Fernald’s prototypical prosodic contours for approval, attentional bid, prohibition, and soothing.

issues that must be addressed to successfully integrate Fernald’s ideas into a robot like Kismet. Aswe have argued
previously, this could provide a human caregiver with a natural and intuitive means for communicating with and
training a robotic creature. The initial communication is at an affective level, where the caregiver socially manip-
ulates the robot’s affective state. For Kismet, the affective channel provides a powerful means for modulating the
robot’s behavior.

4.1 Robot Aesthetics

As discussed above, the perceptual task of recognizing communicative intent is significantly easier in infant-
directed speech than in adult-directed speech. Even human adults have a difficult time recognizing intent from
adult-directed speech without the linguistic information. However, it is aways off before robots have natural 1an-
guage, but we can extract the affective content of the vocalization from prosody. This places a constraint on how the
robot appears physically, how it moves, and how it expressesitself. If the robot looks and behaves as a very young
creature, people will be more likely to treat it as such and naturally exaggerate their prosody when addressing the
robot. This manner of robot-directed speech would be spontaneous and seem quite appropriate.

4.2 Real-time Performance

Another design constraint is that the robot must be able to interpret the vocalization and respond to it at natural
interactive rates. The human can tolerate small delays (perhaps a second or so), but long delays will break the
natural flow of the interaction. Long delays also interfere with the caregiver’s ability to use the vocalization as a
reinforcement signal. Given that the reinforcement should be used to mark a specific event as good or bad, long
delays could cause the wrong action to be reinforced and confuse the training process.

4.3 VoiceasTraining Signal

People should be able to use their voice as a natural and intuitive training signal for the robot. The human voice
is quite flexible and can be used to convey many different meanings, affective or otherwise. The robot should be
able to recognize when it is being praised and associate it with positive reinforcement. Similarly, the robot should
recognize scolding and associate it with negative reinforcement. The caregiver should be able to acquire and direct
the robot’s attention with attentional bids to the relevant aspects of the task. Comforting speech should be soothing
for the robot if it isin adistressed state, and encouraging otherwise.
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4.4 Voiceas Saliency Marker

This raises a related issue, which is the caregiver’'s ability to use their affective speech as a means of marking
a particular event as salient. This implies that the robot should only recognize a vocalization as having affective
content in the cases where the caregiver specifically intends to praise, prohibit, soothe, or get the attention of the
robot. The robot should be able to recognize neutral robot-directed speech, evenif it is somewhat tender or friendly
in nature (as is often the case with motherese).

45 Acceptable vs Unacceptable Misclassification

Given that humans are not perfect at recognizing the affective content in speech, chances are the robot will make
mistakes as well. However, some failure modes are more acceptable than others. For a teaching task, confusing
strongly valenced intent for neutrally valenced intent is better than confusing oppositely valenced intents. For
instance, confusing approval for an attentional bid, or prohibition for neutral speech, is better than interpreting a
prohibition for praise. Ideally, the recognizer’s failure modes will minimize these sorts of errors.

4.6 Expressive Feedback

Nonetheless, mistakes in communication will be made. This motivates the need for feedback from the robot back
to the caregiver. Fundamentally, the caregiver is trying to communicate their intent to the robot. The caregiver has
no ideawhether or not the robot interpreted the intent correctly without some form of feedback. By interfacing the
output of the recogni zer to Kismet’'s emotional models, therobot’sability to expressitself through facial expression,
voice quality, and body posture will convey the robot’s affective interpretation of the message to the caregiver. This
enables people to reiterate themselves until they believe they have been properly understood. It also enables the
caregiver to reiterate the message until the intent is communicated strongly enough ("What the robot just did was
very good, and | want the robot to be really happy about it”).

4.7 Speaker Dependence vs I ndependence

An interesting question is whether the recognizer should be speaker dependent or speaker independent. There are
obviously advantages and disadvantages to both, and the appropriate choice depends on the application. Typically,
it is easier to get higher recognition performance from a speaker dependent system than a speaker independent
system. In the case of a persona robot, this is a good alternative since the robot should be personalized to a
particular human over time, and should not be preferentially tuned to others. If the robot must interact with awide
variety of people, then the speaker independent system is preferable. The underlying question in both casesis what
level of performanceis necessary for peopleto fedl that the robot is responsive and understands them well enough
so that it is not challenging or frustrating to communicate with it and train it.

5 Robotic Physicality

Kismet is an expressive robotic creature with perceptual and motor modalities tailored to natural human commu-
nication channels (see figure 2. Kismet has three degrees of freedom to control gaze direction, three degrees of
freedom to control its neck, and fifteen degrees of freedom in other expressive components of the face (such as
ears, eyebrows, lips, and eyelids). Kismet is able to display a wide assortment of facial expressions which mirror
its affective state, as well as produce numerous facial displays for other communicative purposes[20].

To perceive its caregiver, Kismet uses a unobtrusive wireless microphone (worn by the human) and four color
CCD cameras. Two wide field of view (fov) cameras are mounted centrally and move with respect to the head.
They are used to direct the robot’s attention toward people or toys and to compute a distance estimate. There is
also a camera mounted within the pupil of each eye. These fovea cameras are used for higher resolution post-
attentional processing, such as eye detection. The positions of the neck and eyes are important both for expressive
postures and for directing the cameras towards behaviorally relevant stimuli. We have found that the manner in
which the robot moves eyes and directs its gaze has profound social consequences when engaging people, beyond
just steering its cameras to look at interesting things [21].

Aesthetically, Kismet is designed to have an infant-like appearance of a fanciful robotic creature. The key
set of features that evoke nurturing responses of human adults has been studied across many different cultures
[23], and these features have been explicitly incorporated into Kismet's design [22]. As a result, people tend to
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Fig. 2. Kismet is an expressive robotic creature designed for natural social interaction with people. See text.

intuitively treat Kismet as a very young creature, and modify their behavior in characteristic baby-directed ways
[24]. Oneimportant implication of thisisthe natural use of "motherese” in Kismet-directed speech. Even the nave
subjects (male and female) use exaggerated prosody to addressthe robot. Thisallows usto readily exploit Fernald’'s
affective communicative intent contours that she found to exist in infant-directed speech.

Our hardware and software control architectures have been designed to meet the challenge of rea-time pro-
cessing of visual signals (approaching 30 Hz) and auditory signals (frame size of 10 ms) with minimal latencies
(j 500 ms). Kismet's vision system is implemented on a network of nine 400 MHz commercial PCs running the
QNX real-time operating system. Kismet’'s emotion, behavior, and expressive systems run on a collection of four
Motorola 68332 processors. The affective speech recognition systems runs on Windows NT, and the low level
speech processing software® runs on Linux. Even more so than Kismet's physical form, the control network is
rapidly evolving as new behaviors and sensory modalities come on line.

6 TheAlgorithm
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Fig. 3. The affective speech recognition system.

! This software was developed at MIT by the Spoken Language Systems Group
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6.1 TheAlgorithmic Flow

As shown in figure 3, the affective speech recognizer receives robot directed speech as input. The speech signal

is analyzed by the low level speech processing system, producing in real time time-stamped pitch (Hz), percent
periodicity (a measure of how likely a frame is a voiced segment), energy (dB), and phoneme values 2. The next
module performsfiltering and pre-processing to reduce the amount of noise in the data. The pitch value of aframe
issimply set to zero if the corresponding percent periodicity indicates that the frameis more likely to be unvoiced.

The resulting pitch and energy data are then passed through the feature extractor, which cal culates a set of selected
features (F; to F},). Finally, based on the trained model, the classifier determines whether the computed features
are derived from an approval, an attentional bid, a prohibition, a soothing, or a neutral utterance.

6.2 Trainingthe System

Data Collection We made recordings of two female adults who frequently interact with Kismet as caregivers. The
speakers were asked to express all five communicativeintents (approval, attentional bid, prohibition, soothing, and,
neutral) during the interaction. Recordings were made using a wireless microphone whose output was sent to the
speech processing system running on Linux. For each utterance, this phase produced a 16-bit single channel, 8 kHz
signal (in a.wav format) as well as its corresponding pitch, percent periodicity, energy, and phoneme values. All
recordings were performed in Kismet's usual environment to minimize variability in noise due to the environment.
We then eliminated samples containing extremely loud noises and label ed the remaining data set according to the
speakers' communicative intents during the interaction. There were atotal of 726 samplesin the final data set.

Data Preprocessing As mentioned above, the pitch value of aframe was set to zero if the corresponding percent
periodicity was lower than a threshold value, indicating that the frame was more likely to be unvoiced. Even after
this procedure, observation of the resulting pitch contours still indicated a lot of noise. Specifically, a significant
number of errors were discovered in the high pitch value region (above 500 Hz). Therefore, additional preprocess-
ing was performed to al pitch data. For each pitch contour, a histogram of ten regions was constructed. Using the
heuristic that pitch contour was relatively smooth, we determined that if only a few pitch values were located in
the high region while the rest were much lower (and none resided in between), then the high values were likely
to be noise. Note that this process did not eliminate a high but smooth pitch contour since pitch values would be
distributed evenly across nearby regions.

Classification Method In al training phases we modeled each class of data using the Gaussian mixture model,
updated with the EM algorithm and a Kurtosis-based approach for dynamically deciding the appropriate number
of kernels[29]. Due to the limited set of training data, we performed cross-validation in all classification process-
es. Essentially, we held out a subset of data and built a classifier using the remaining training data, which was
then tested on the held out test set. This process was repeated 100 times per classifier. Mean and variance of the
percentage of correctly classified test data were calculated to estimate the classifier’s performance.

Feature Selection: First Pass Asshown in figure 4, the preprocessed pitch contour in the labeled data resembles
Fernald's prototypical prosodic contoursfor approval, attention, prohibition, and comfort/soothing. In thefirst pass
of training, we attempted to recognize these proposed patterns by using a set of global pitch and energy related
features (see table 5). All pitch features were measured using only non-zero pitch values. We hypothesized that
although none of these features directly encoded any temporal information about the pitch contour, they would
till be useful in distinguishing some classes. For example, approval and attentional bids were expected to generate
high pitch variance while prohibition should have lower pitch mean and high energy level.

Using this feature set, we applied a sequential forward feature selection process to construct an optimal clas-
sifier. Each possible feature pair’s classification performance was measured. The 66 feature pairs were then sorted
based on their performances, from highest to lowest. Successively, a feature pair from the sorted list was added
into the selected feature set in order to determine the best n features for an optimal classifier.

First Pass Results Table 6 illustrates each feature pair’s classification performance. The combination of F'; (pitch
mean) and Fy (energy variance) produces the best performance (72.09%) while combining F', (pitch range) and

2 The phoneme information is not currently used in the recognizer
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F (delta pitch mean) results in the worst performance (32.68%). These feature pairs are sorted based on their
performances, and figure 7 shows classification results as the top pairs in the sorted list are added sequentially
into the feature set. Classification performance increases as more features are added, reaches maximum (78.77%)
with five features in the set, and levels off above 60% with six or more features. Table 8 provides a closer 1ook
at the classifier constructed using these best eight feature pairs. It is clear that all seven classifiers perform best in
recognizing prohibition, but not as well in classifying the other classes. Figure 9 plots the feature space of the first
classifier (F} and Fy) which explainswhy ahigh number of approval, attention, soothing, and neutral sampleswere
misclassified. There are three clusters in the feature space. The prohibition class forms the first cluster, which is
well separated from the rest. Approval and attention samples form the second cluster, with some overlap between
the two classes. Soothing and neutral class form the last cluster, aso with some overlap.
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Fig. 7. Classification performance using sequential forward selection.

Feature Selection: Second Pass Results obtained in thefirst passreveal ed that the global pitch and energy features
were useful for separating some classes from the rest, but not sufficient for constructing an high performance 5-
way classifier. In the second pass, instead of having one optimal classifier that simultaneously classifies all five
classes, we implemented several mini classifiers executing in stages. In the beginning stages, the classifier would
use global pitch and energy featuresto separate some classes aswell asthey could. The remaining clustered classes
were then passed to additional classification stages. Obviously, we had to consider new features in order to build
these additional classifiers. Utilizing prior information, we included a new set of features encoding the shape of
the pitch contour, which turned out to be useful in separating the difficult classes.

Second Pass Results Figure 10 illustrates the classification results of the best ten feature pairs obtained in thefirst
pass, including the number of misclassified samples in each class. It is clear that all feature pairs work better in
separating prohibition and soothing than other classes. The F';-Fy pair generates the highest overall performance
and the least number of errors in classifying prohibition. We then carefully looked at the feature space of this
classifier (see fig 9) and made several additional observations. The prohibition samples are clustered in the low
pitch mean and high energy variance region. The approval and attention classes form a cluster at the high pitch
mean and high energy variance region. The soothing samples are clustered in the low pitch mean and low energy
varianceregion. The neutral samples have low pitch mean and are divided into two regionsin terms of their energy
variance values. The neutral sampleswith high energy variance are clustered separately from the rest of the classes
(in between prohibition and soothing), while the ones with lower energy variance are clustered within the soothing
class. These findings are consistent with the proposed prior knowledge. Approval, attention, and prohibition are
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associated with high intensity while soothing exhibits much lower intensity. Neutral samples span from low to
medium intensity, which makes sense because the neutral classincludes awide variety of utterances.
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Fig. 10. Classification results of the best ten feature pairs.

Based on this observation, we concluded that in the first classification stage, we would use energy-related
features to classify soothing and neutral with low intensity from the other higher intensity classes (see fig 11). In
the second stage, if the utterance had a low intensity level, we would execute another classifier to decide whether
it is soothing or neutral. If the utterance exhibited high intensity, we would use the F'; — Fy pair to classify among
prohibition, approval-attention cluster, and high intensity neutral. An additional stage would berequired to classify
between approval and attention if the utterance happened to fall within the approval-attention cluster.
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Fig. 11. The classification stages.

Sage 1: Soothing-Low Intensity Neutral vs Everything Else The first two columnsin table 12 show classification
performances of the top 4 feature pairs which are sorted based on how well each pair classifies soothing and low
intensity neutral against other classes. Thelast two columnsillustrate the classification results as each pair is added
sequentialy into the feature set. The final classifier was constructed using the best feature set (energy variance,
maximum energy, and energy range), with an average performance of 93.57%. The resulting feature spaceis shown
in figure 13.

Sage 2A: Soothing vs Low Intensity Neutral Since the global and energy features were not sufficient in separating
these two classes, we had to introduce new featuresinto the classifier. Fernald's prototypical prosodic patterns for
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soothing proposed smooth pitch contours exhibiting a frequency downsweep. Visual observations of the neutral
samples in the data set indicated that neutral speech generated flatter and coarse pitch contours as well as less
modulated energy contours. Based on these postul ations, we constructed a classifier using five features, i.e. number
of pitch segments, average length of pitch segments, minimum length of pitch segments, slope of pitch contour, and
energy range. The slope of pitch contour indicated whether or not the contour contained a downsweep segment.
It was calculated by performing a 1-degree polynomial fitting on the remaining segment of the contour after the
maximum peak. This classifier's average performanceis 80.29%.

Sage 2B: Approval-Attention vs Prohibition vs High Intensity Neutral We have discovered that a combination of
pitch mean and energy variance works well in this stage. The resulting classifier's average performanceis 89.99%.
Based on Fernald’s prototypical prosodic patterns and the feature space shownin figure 14, we specul ated that pitch
variance would be a useful feature for distinguishing between prohibition and approval-attention cluster. Adding
pitch variance into the feature set increases classifier's average performanceto 92.13%.
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Fig. 14. Festure space: approval-attention vs prohibition.

Sage 3: Approval vs Attention Since approval and attention classes span across the sameregionin the global pitch
and energy feature space, we utilized prior knowledge provided by Fernald's prototypical prosodic contours to
introduce anew feature. As mentioned above, approvalsare characterized by an exaggerated rise-fall pitch contour.
We hypothesized that the existence of this particular pitch pattern would be a useful feature in distinguishing
between the two classes. Wefirst performed a 3-degree polynomial fitting on each pitch segment. We then analyzed
each segment’s slope sequence and looked for a positive slope followed by a negative slope with magnitudes higher
than athreshold value. We recorded the maximum |ength of pitch segment contributingto therise-fall pattern which
was zero if the pattern was non-existent. This feature, together with pitch variance, was used in the final classifier
and generated an average performance of 70.5%. Thisclassifier’'s feature spaceis shownin figure 15. Approval and
attention are the most difficult to classify because both classes exhibit high pitch and intensity. Although the shape
of the pitch contour helped to distinguish between the two classes, it is very difficult to achieve high classification
performance without looking at the linguistic content of the utterance.

Overall Performance The fina classifier was evaluated using a new test set generated from the same speakers,
containing 371 utterances. Figure 16 shows the resulting classification performance and comparesit to an instance
of the cross-validation results of the best classifier obtained in the first pass. Both classifiers perform very well on
prohibition utterances. The second pass classifier performssignificantly better in classifying the difficult classes, i.e.
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Fig. 15. Feature space: approval vs attentional bid.

approval vs attention and soothing vs neutral, thereby verifying that features encoding the shape of pitch contours
derived based on prior knowledge provided by Fernald’s prototypical prosodic patterns are very useful.

It isimportant to note that both classifiers produce acceptable failure modes, i.e. strongly valenced intents are
misclassified as neutrally valenced intents and not as oppositely valenced ones. All classes are sometimes misclas-
sified as neutral. Approval and attentional bids are generally classified as one or the other. Approval utterances are
occasionally confused for soothing and vice versa. Only one probihition utterance was misclassified as an atten-
tional bid, which is acceptable. Thefirst pass made one unacceptable error of confusing aneutral as prohibition. In
the second pass classifier, some neutral utterances are classified as approval, attention, and soothing. This makes
sense because the neutral class covers awide variety of utterances.
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Fig. 16. Overal classification performance.

7 Integration with the Emotion System

The output of the recognizer is integrated into the rest of Kismet’s synthetic nervous system as shown in figure 17.
Its entry point is at the auditory perceptual system, where it is fed into an associated releaser process. In genera,
there are many different kinds of releasers defined for Kismet, each combining different contributions from a
variety of perceptual and motivational systems. For the purposes here, we only discuss those releasersrelated to the
input from the vocal affect classifier. The output of each vocal affect releaser representsits perceptual contribution
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to the rest of the SNS. Each releaser combines the incoming recognizer signal with contextual information (such
asthe current "emotional” state) and computesits level of activation according to the magnitude of itsinputs. If its
activation passes above threshold, it passes its output onto the affective assessment stage so that it may influence
emotional behavior.
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Fig.17. System architecture for Kismet. See text.

Within this assessment phase, each releaser is evaluated in affective terms by an associated somatic mark-
er(SM) process. Thismechanismisinspired by the Somatic Marker Hypothesis of [25] where incoming perceptual
information is " tagged” with affective information. Table 18 summarizes how each vocal affect releaser is somat-
icaly tagged. We have applied a slight twist to Fernald’s work in using approvals and prohibitions to modul ate
the valence of Kismet's affective state in addition to arousal (Fernald focuses on the impact of these contours on
arousal levels of infants).

There are three classes of tags the SM uses to affectively characterize its perceptual (as well as motivational
and behavioral) input. Each tag has an associated intensity that scales its contribution to the overall affective state.
The arousal tag specifies how arousing this percept is to the emotional system. Positive values correspond to a
high arousal stimulus whereas negative values correspond to ato low arousal stimulus. The valence tag specifies
how good or bad this percept is to the emotional system. Positive values correspond to a pleasant stimulus whereas
negative values correspond to an unpleasant stimulus. The stance tag specifies how approachable the percept is.
Positive values correspond to advance whereas negative values correspond to retreat.

Because there are potentially many different kinds of factors that modulate the robot’s affective state (e.g.,
behaviors, motivations, perceptions), this tagging process converts the myriad of factors into a common currency
that can be combined to determine the net affective state. For Kismet, the [arousal, valence, stance] trio is the
currency the emotion system uses to determine which emotional response should be active. This occurs in two
phases.

First, all somatically marked inputs are passed to the emotion elicitor stage. Each emotion process has as
elicitor associated with it that filters each of the incoming [A4, V,.S] contributions. Only those contributions that
satisfy the [A, V, §] criteria for that emotion process are allowed to contribute to its activation. This filtering is
done independently for each class of affective tag. For instance, a valence contribution with a large negative value
will not only contribute to the sad emotion process, but to thef ear , anger , and di st r ess processes aswell.
Given all these factors, each elicitor computesiits net A, V, S] contribution and activation level, and passes them
to the associated emotion process.

In the second stage, the emotion processes compete for activation based on their activation level. Thereis an
emotion process for each of Ekman’s six basic emotions [26]. Ekman posits that these six emotions are innate in
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Fig. 18. Affective tags for the output of the affective intent recognizer.

humans, and all others are acquired through experience. The ” Ekman six” encompass|j oy, anger, di sgust,
fear,sorrow andsurpri se.

If the activation level of the winning emotion process passes above threshold, it is allowed influence the be-
havior system and the motor expression system. There are actually two threshold levels, one for expression and
one for behavior. The expression threshold is lower than the behavior threshold; this allows the facial expression
to lead the behavioral response. This enhances the readability and interpretation of the robot’s behavior for the
human observer. For instance, given that the caregiver makes an attentional bid, the robot’s face will first exhibit
an aroused and interested expression, then the orienting response becomes active. By staging the responsein this
manner, the caregiver getsimmediate expressive feedback that the robot understood his/her intent. For Kismet, this
feedback can come in a combination of facial expression, tone of voice, or posture. The facial expression also sets
up the human'’s expectation of what robot behavior will soon follow. As a result, the human observing the robot
not only can see what the robot is doing, but has an understanding of why. Readabiltity is an important issue for
social interaction with humans.

8 Useof Behavioral Context toimprove interpretation

Most affective speech recognizers are not integrated into robots equipped with affect systems that are embedded
in asocia environment. As a result, they have to classify each utterance in isolation. However, for Kismet, the
surrounding socia context can be exploited to help reduce false categorizations; or at least to reduce the number
of "bad” misclassifications (such as mixing up prohibitions for approvals).

8.1 Transition Dynamics of the Emotion System

Some of this contextua filtering is performed by the transition dynamics of the emotion processes. These processes
cannot instantaneously become active or inactive. Decay rates and competition for activation with other emotion
processes give the currently active process a base-level of persistence before it becomes inactive. Hence, for a
sequence of approvalswhere the activation of the robot’'shappy processis very high, an isolated prohibition will

not be sufficient to immediately switch the robot to a negatively valenced state.

However, if the caregiver in fact intended to communi cate disapproval to therobot, reiteration of the prohibition
will continue to increase the contribution of negative valence to the emotion system. This serves to inhibit the
positively valenced processes and to excite the negatively valenced processes. Expressive feedback from the robot
is sufficient for the caregiver to recognize when the intent of the vocalization has been communicated properly
and has been communi cated strongly enough. The smooth transition dynamics of the emotion system enhancesthe
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natural ness of the robot’s behavior since a person would expect to have to " build up” to adramatic shift in affective
state from positive to negative, as opposed to being able to flip the robot’s emotional state like a switch.

8.2 Using Social Context to Disambiguate I ntent

The affective state of the robot can also be used to help disambiguate the intent behind utterances with very similar
prosodic contours. A good example of thisisthe difference between utterancesintended to soothe verses utterances
intended to encourage the robot. The prosodic patterns of these vocalizations are quite similar, but the intent varies
with the social context. The communicative function of soothing vocalizations are to comfort a distressed robot
- there is no point in comforting the robot if it is not in a distressed state. Hence, the affective assessment phase
somatically tags these types of utterances as soothing when the robot is distressed, and as encouraging otherwise.

9 Experiments

9.1 Moaotivation

We have shown that the implemented classifier performs well on the primary caregivers' utterances. Essentially,
the classifier is trained to recognize the caregivers' different prosodic contours, which are shown to coincide with
Fernald’s prototypical patterns. In order to extend the use of the affective intent recognizer, we would like to
evaluate the following issues:

— Will naive subjects speak to the robot in an exaggerated manner (in the same way as the caregivers)? Will
Kismet's infant-like appearance urge the speakers to use motherese?

— If so, will the classifier be able to recognize their utterances, or will it be hindered by variationsin individual’s
style of speaking or language?

— How will the speakers react to Kismet's expressive feedback, and will the cues encourage them to adjust their
speech in away they think that Kismet will understand?

9.2 Experimental Setup

Five female subjects, ranging from 23 to 54 years old, were asked to interact with Kismet in different languages
(English, Russian, French, German, and Indonesian). Subjects were instructed to express each communicative
intent (approval, attention, prohibition, and soothing) and signal when they felt that they had communicated it to
the robot. We did not include the neutral class because we expected that many neutral utterances would be spoken
during the experiment. All sessions were recorded on video for further evaluations.

9.3 Results

A set of 266 utterances were collected from the experiment sessions. Very long and empty utterances (those con-
taining no voiced segments) were not included. An objective observer was asked to label these utterances and to
rate them based on the perceived strength of their affective message (except for neutral). As shown in the classifi-
cation results (see figure 19), compared to the caregiver test set, the classifier performs almost as well on neutral,
and performs decently well on all the strong classes, except for soothing and attentional bids. As expected, the
performance reduces as the perceived strength of the utterance decreases.

A closer look at the misclassified soothing utterances showed that a high number of utterances were actu-
ally soft approvals. The pitch contours contained a rise-fall segment, but the energy level was low. A 1-degree
polynomial fitting on these contours will generate a flat slope and thus classified as neutral. A few soothing utter-
ances were confused for neutral despite having the downsweep frequency characteristic because they contained too
many words and coarse pitch contours. Attentional bids generated the worst classification performance. A careful
observation of the classification errors revealed that many of the misclassified attentional bids contained the word
“kis-met” spoken with a bell-shaped pitch contour. Thiswas detected by the classifier as the characteristic rise-fall
pitch segment found in approvals. We also found that many other common words used in attentional bids, such as
“hey” and “hell0”, also generated a bell-shaped pitch contour. Interestingly, these attentional bids appear to carry
stronger affective message because they do not occur as much in the medium strength utterances, which are thus
easier to classify. These are obviously very important issues to be resolved in future efforts to improve the system.

Based on these findings, we can draw several conclusions. Firstly, a high number of utterances are perceived
to carry strong affective message, which implies the use of exaggerated prosody during the interaction session



Humanoi ds2000 17

that we hoped for. The remaining question is whether or not the classifier will generalize to the naive speakers
exaggerated prosodic patterns. Except for the two special cases discussed above, experiment results indicate that
the classifier performs very well in recognizing the naive speakers prosodic contours although it is trained only
on the primary caregivers utterances. Moreover, the same failure modes occur in the naive speakers test set. No
strongly valenced intents were misclassified as oppositely valenced ones. It is very encouraging to discover that
the classifier not only generalizesto perform well on naive speakers using different languages, but it also does not
make any (or at least very few) unacceptable misclassifications.
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Fig. 19. Classification performance on naive speakers.

10 Discussion

Results from these initial studies and other informal observations suggest that people do naturally exaggerate
their prosody (characteristic of motherese) when addressing Kismet. People of different genders and ages often
comment that they find the robot to be ”cute”, which encourages this manner of address. Naive subjects appear
to enjoy interacting with Kismet and are often impressed at how life-like it behaves. This also promotes natural
interactions with the robot, making it easier for them to engage the robot asif it were a very young child or adored
pet.

All of our female subjects spoke to Kismet using exaggerated prosody characteristic of infant-directed speech.
It is quite different from the manner in which they spoke with the experimenters. We have informally noticed
the same tendency with children (approximately twelve years of age) and adult males. It is not surprising that
individual speaking styles vary. Both children and women (especially those with young children or pets) tend to
be uninhibited, whereas adult males are often more reserved. For those who are relatively uninhibited, their styles
for conveying affective communicative intent vary. However, Fernald’s contours hold for the strongest affective
statementsin al of the languages that were explored in this study. This would account for the reasonable classifier
performance on vocalizations belonging to the strongest affective category of each class. Asargued previoudly, this
is the desired behavior for using affective speech as an emotion-based saliency marker for training the robot.

The subjects in the study made ready use of Kismet's expressive feedback to assess when the robot ” under-
stood” them. The robot’s expressive repertoire is quite rich, including both facial expressions and shifts in body
posture. The subjects varied in their sensitivity to the robot’s expressive feedback, but al used facial expression,
body posture, or a combination of both to determine when the utterance had been properly communicated to the
robot. All subjects would reiterate their vocalizations with variations about a theme until they observed the appro-
priate change in facial expression. If the wrong facial expression appeared, they often used strongly exaggerated
prosody to " correct” the " misunderstanding” .




18 Cynthia Breazea and Lijin Aryananda

Kismet's expression through face and body posture becomes more intense as the activation level of the corre-
sponding emotion process increases. For instance, small smiles verses large grins were often used to discern how
"happy” the robot appeared. Small ear perks verses widened eyes with elevated ears and craning the neck forward
were often used to discern growing levels of "interest” and " attention” . The subjects could discern these intensity
differences and several modulated their own speech to influence them.

During course of the interaction, several interesting dynamic socia phenomena arose. Often these occurred
in the context of prohibiting the robot. For instance, several of the subjects reported experiencing a very strong
emotional response immediately after " successfully” prohibiting the robot. In these cases, the robot’s saddened
face and body posture was enough to arouse a strong sense of empathy. The subject would often immediately stop
and look to the experimenter with an anguished expression on her face, claiming to feel "terrible” or "guilty”. In
this emotional feedback cycle, the robot’s own affective response to the subject’s vocalizations evoked a strong and
similar emotional responsein the subject as well.

Another interesting social dynamic we observed involved affective mirroring between robot and human. In this
situation, the subject might first issue a medium strength prohibition to the robot, which causes it to dip its head.
The subject responds by lowering her own head and reiterating the prohibition, this time a bit more foreboding.
This causes the robot to dip its head even further and look more dejected. The cycle continues to increase in
intensity until it bottoms out with both subject and robot having dramatic body postures and facial expressionsthat
mirror the other. This technique was employed to modulate the degree to which the strength of the message was
”communicated” to the robot.

11 Limitationsand Extensions

The ability of naive subjectsto interact with Kismet in this affective and dynamic manner suggeststhat its response
rate is of acceptable performance. However, the timing delays in the system can and should be improved. Thereis
about a500m s delay from the time speech endsto receiving an output from the classifier. Much of thisdelay isdue
to the underlying speech recognition system, where there is a trade-off between shipping out the speech features
to the NT machine immediately after a pause in speech, or waiting long enough during that pause to make sure
that speech has completed. There is another delay of oneto two seconds associated with interpreting the classifier
in affective terms and feeding it through an emotional response. The subject will typically issue one to three short
utterances during this time (of a consistent affective content). It is interesting that people seem to rarely issue just
one short utterance and wait for aresponse. Instead, they prefer to communi cate affective meanings in a sequence
of afew closely related utterances (" That’s right Kismet. Very good! Good robot!™). In practice, people do not seem
to be bothered by or notice the delay. The majority of delays involve waiting for a sufficiently strong vocalization
to be spoken, since only these are recognized by the system.

Given the motivation of being able to use natural speech as atraining signal for Kismet, it remains to be seen
how the existing system needsto be improved or changed to serve this purpose. Naturally occurring robot-directed
speech doesn’t comein nicely packaged sound bites. Often thereis clipping, multiple prosodic contours of different
types in long utterances, and other background noise (door’s slamming, people talking, etc.). Again, targeting
infant-caregiver interactions goes some waysin alleviating these issues, asinfant-directed speech is slower, shorter,
and more exaggerated. However, our collection of robot-directed utterances demonstrates a need to address these
issues carefully.

The recognizer in its current implementation is specific to female speakers, and it is particularly tuned to
women who can use motherese effectively. Granted not all people will want to use motherese to instruct their
robots. However, at this early state of research we are willing to exploit naturally occurring simplifications of
robot-directed speech to explore human-style socialy situated learning scenarios. Given the classifier's strong
performance for the caregivers (those who will instruct the robot intensively), and decent performance for other
femal e speakers (especialy for prohibition and approval), we are quite encouraged at these early results. Future
improvementsinclude either training a male adult model, or making the current model more gender neutral.

For instructional purposes, the question remains ”how good is good enough?’. Seventy to eighty percent per-
formance of five-way classifiers for recognizing emotional speech isregarded as state of the art. In practice, within
and instructional setting, this may be an unacceptable number of misclassifications. Asaresult, we have taken care
in our approach to minimize the number of " bad” misclassifications, to exploit the socia context to reduce misclas-
sifications further (such as soothing verses neutral), and to provide expressive feedback to the caregivers so they
can make sure that the robot properly ”understood” their intent. By incorporating expressive feedback, we have
aready observed some intriguing social dynamics that arise with naive female subjects. We intend to investigate
these social dynamics further so that we may use them to advantage in instructional scenarios.
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To provide the human instructor with greater precision in issuing vocal feedback, we will need to look beyond
how something is said to what is said. Since the underlying speech recognition system (running on the Linux
machine) is speaker independent, this will boost recognition performance for both males and females. It is also
a fascinating question of how the robot could learn the valence and arousal associated with particular utterances
by bootstrapping from the correlation between those phonemic sequences that show particular persistence during
each of the four classes of affective intents. Over time, Kismet could associate the utterance " Good robot!” with
positive valence, " No, stop that!” with negative valence, "Look at this!” with increased arousal, and " Oh, it's ok.”
with decreased arousal by grounding it in an affective context and Kismet's emotional system. Developmental
psycholinguists posit that human infants learn their first meanings through this kind of affectively-grounded social
interaction with caregivers [19]. Using punctuated words in this manner gives greater precision to the human
caregiver’'s ability to issue reinforcement, thereby improving the quality of instructive feedback to the robot.

12 Conclusions

Human speech provides a natural and intuitive interface for both communicating with humanoid robots as well
as for teaching them. We have implemented and demonstrated a fully integrated system whereby a humanoid
robot recognizes and affectively responds to praise, prohibition, attention, and comfort in robot-directed speech.
These communicative intents are well matched to human-style instruction scenarios since praise, prohibition, and
directing the robot’s attention to relevant aspects of atask, could beintuitively used to train arobot. Communicative
efficacy has been tested and demonstrated with the robot’s caregivers as well as with naive subjects. We have
argued how such an integrated approach lends robustness to the overall classification performance. Importantly,
we have discovered someintriguing social dynamicsthat arise between robot and human when expressive feedback
is introduced. This expressive feedback plays an important role in facilitating natural and intuitive human-robot
communication.
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