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MIT AI Lab

May 17, 2002

1



New sok Features

• Persistent Data: allocate storage which is preserved across death/respawn of
a sok process.

• Dump and Restore: can dump the state of sok processes (persistent data and
connections) to files, and restore them later.
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New Sensory Input

• Tactile Sense: 22 FSR pressure sensors on hand, wired up to produce 6 ana-
log tactile signals.

• Joint Pain: process monitors joint angle and produces a linear “pain” signal
when joints are within 10% of their limits.
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New Motor Output

• Old geometric musculoskeletal model is Out:

lAB = ‖~pA − ~pB‖

~τj = ~F × ~r =
F

lAB
(~pB − ~pA)× (~pB − ~qj)

– Point-to-point action; no notion of a tendon which could wrap around joints.

– Anchor points must be placed away from skeleton.

• New simple musculoskeletal model is In:

lm = ΣjRmjθj

τj = ΣmRmjFm

– Still allows for polyarticular coupling.

– No compilation necessary; coupling can be changed at runtime.
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Polyarticular Muscles

Many muscles in the human body span more than one joint, e.g. biceps and triceps.

• Kinematically redundant.

• Positive effects on limb dynamics:

– Single-joint linear springs alone cannot produce isotropic stiffness in end-
point coordinates.

– Polyarticulate muscles can make the musculoskeletal system more efficient
(biomechanically).
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Mechanical Efficiency
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To do work along ~x — that is, to apply a force along that vector — the arm must
move into the blue configuration.

(A) The joints apply torques ~τa and ~τb in the same directions as they are displaced,
thus both contributing to the output work.
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Mechanical Efficiency
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(B) Joint a applies torque ~τa in opposition to its displacement.

Joint a is absorbing energy, which must have been provided by joint b.
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Fatigue Model
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A complete metabolic model simulates major organs involved with energy produc-
tion and consumption. Long-term exertion causes build-up of lactic acid in muscle
tissue, leading to fatigue. Heart rate and fuel availability affect the rate of lactic acid
accumulation.
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Fatigue Model

• Lactic acid level in each muscle used to modulate force output.

• Level is exposed to the rest of the system, to be used as an indicator of fatigue
or soreness.

• Hook for modifying the blood glucose level (simulating ingestion of food).

• Hook for injecting epinephrine into the system, which could be linked to an
emotional system to provide a physically realized reaction to stress.
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Task 0: Sitting up straight
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• Chooser picks random ~x0 target, according to distribution.

• Smooth trajectory generator sends ~x0 stream to springs.

• Feedback from joint pain modifies the distribution.
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Learning and Choosing from a Distribution

• Record samples (~xi, pi), where ~xi is a commanded position and pi is a value
[0,1] calculated from the reward/pain signal.

• Estimate p(~x) by summing over samples:

p(~x) =
Σpig(~x− ~xi)

Σg(~x− ~xi)
, where g = C exp

(−|~x− ~xi|2
σ2

)

• To choose from the distribution:

– Choose ~x from a uniform distribution over [~xmin, ~xmax].

– Calculate p = p(~x).

– Choose q uniformly from [0,1] (or [0, pmax]).

– If q ≤ p, return ~x. Else, start over.
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Task 1: Dealing with Gravity — Bias Force

• Gravity exerts a constant force on the body.

• To maintain a posture, motors must exert a counter-torque.

Basic Spring Law: F = K(x− x0)

• For any raised posture, F must be non-zero, so position error is non-zero, so
K must be large to keep error small.

Introduce a bias force: F = K(x− x0) + F0

• Let F0 be the force needed to counteract gravity, ~F0(~θ).

• If ~F0(~θ) is accurate, limbs become “weightless”.

• Stiffness can be lower; effective workspace becomes larger.
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Learning the Bias Force
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• Move arm randomly by commanding equilibrium position ~x0.

• Record (~θ, ~F ) samples at 40 Hz.

• After the recording cache is full, generate a model and try again.
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Bias Force Learning Results

Only tried on lower three joints, R3 → R3: tractable, graphable.

(Model learned on fourth run; 10,000 samples.)
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Bias Force Learning Results

Effective workspace did increase:

• Maximum θ range: [2.8353, 3.2693, 2.7429]

• (~θmax − ~θmin) during first run: [1.7332, 2.5049, 1.7598]

• (~θmax − ~θmin) during fourth run: [2.6859, 2.5039, 2.0216]
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Practical Limitations of Parzen Estimates

• Takes lots of samples to cover a 6-dimensional space.

• Samples are cheap, easy to collect, but. . .

• Calculating estimates takes time:
(sole process, 800MHz PIII)

– 10,000 samples, R6 → R6: 0.0083ms = 120Hz

– 100,000 samples, R6 → R6: 0.076ms = 13Hz
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Episodic Learning (i.e. “off-line”)

1. Record data.

2. Generate model.

3. Use model, while recording more data.

4. Merge model (discounted) and new data into new model.

5. Rinse, repeat.

Why?

• Can optimize model so that estimation is very fast (real-time controller).

• Can take as long as necessary to generate/update model, on a different pro-
cessor, perhaps even while “sleeping”.
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Trade Space for Time (and accuracy)

• Using collected samples, precompute y estimates over a lattice spanning the
input space.

• For some input ~x, compute ~y(~x) by interpolating between the lattice points
which surround ~x.

• For N -dimensional domain, requires interpolation over (only) 2N lattice points.

Drawbacks:

• For K lattice points per linear dimension, requires KN total!

K = 5, N = 9 =⇒∼ 2× 106

• To generate, need to perform Parzen estimate for each lattice point!
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Hyperspheres vs. Hypercubes

For S samples, S evaluations of g() per lattice point.

OR, KN evaluations of g() per sample.

For sample (~xi, ~yi), only consider lattice points ~x such that |~x− ~xi| < rmax, where
rmax ' 2.5σ.

• For rmax ≈ 1
2K, volume of sphere grows as 2−NKN .

• Matter of fact, volume of unit sphere drops as 1
n!.
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More Problems

• Still, a lot of memory:

– R9 → R6, K = 5 ⇒ 2million pts × 6× 4 bytes ⇒ 48MB

– Even more bytes: weighting factor, variance. . .

• What if I actually implement polyarticular muscles?
Then ~θ 7→ ~F0 is no longer a function!
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Task 2: Blind Reaching (hardwired)
Another exercise in learning a distribution. . .
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Phase 1: Do random reaching, but modify target distribution in response to tactile
feedback.
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Task 2: Blind Reaching (hardwired)

Phase 2: Add negative reinforcement from joint pain.

Phase 3: Incorporate bias force model.

• Note that as F0 is learned, the relation of ~x0 to ~θ will change. The distribution
will need to evolve as F0 develops.

Phase 4: Undo hardwiring.
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Discovering models on the fly (“data mining”)

• Look at two (not so) randomly chosen ports, ~x and ~y.

– . . . the “hypothesis”

• Figure out appropriate time scales (FFT?).

• Decide if data streams are correlated:

– Event correlation: simultaneous activity

– Minimum in entropy of (~x(t), ~y(t + ∆t)) set versus delay ∆t.

– Construction of reliable function ~x ­ ~y.

24



Task 3: Hand-(Arm-Head)-Eye Correlation

“Learn where the hand is in visual space”, or
“Learn how to move the hand to a point in visual space”

(~r, ~e,~h) 7→ ~θ

(~r, ~e,~h) 7→ ~x0

Serves two purposes:

• Motor model: generate reach target to a visual stimulus.

• Sensory model: predict where the hand will be seen; explain a visual stimulus.
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Two classes of models

• control — causal relationship between two perceptual or motor data streams

• policy — learning the reward/reinforcement from an activity or a context

Mechanisms for using models

• implementing policy — inhibition : subsuming random or reflexive control with
context-sensitive initiation.

– (+) reward — generative inhibition: let something else take over

– (–) reward — protective inhibition: don’t do something stupid

• prediction/feed-forward control — ???
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Some More Modules in the works

• reflex

• activator/context

• inhibitor

• subsumer
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