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1 Introduction 
This paper explores one dimension along which word 
spotting and speech recognition differ: the nature of the 
background model.  In word spotting, a relatively small 
number of keywords float on a sea of unknown words.  
In speech recognition, an occasional unknown word 
punctuates utterances that are otherwise completely in-
vocabulary.  Despite this difference in viewpoint, in 
some circumstances implementations of the two may 
become very similar.  When transcribed data is avail-
able for a domain, word spotting benefits from the 
more detailed background model this can support [9].  
The manner in which the background is modeled in 
these cases is reminiscent of speech recognition.  For 
example, a large vocabulary with good coverage may 
be extracted from the corpus, so that relatively few 
words in an utterance remain unmodeled.  In this case, 
the situation is qualitatively similar to OOV modeling 
in a conventional speech recognizer, except that the 
vocabulary is strictly divided into “filler” and “key-
word”. 

This paper describes a mechanism for bootstrapping 
from a relatively weak background model for word-
spotting, where OOV words dominate, to a much 
stronger model where many more word or phrase clus-
ters have been “moved to the foreground” and explic-
itly modeled.  With this increase in vocabulary comes 
an increase in the potency of language modeling, 
boosting performance on the original vocabulary.   

The following sections show how a conventional 
speech recognizer can be convinced to cluster fre-
quently occurring acoustic patterns, without requiring 
the existence of transcribed data.   

2 Boot-strapping the lexicon 
A recognizer with a phone-based OOV model is able to 
recover an approximate phonetic representation for 
words or word sequences that are not in its vocabulary.  
If commonly occurring phone sequences can be lo-
cated, then adding them to the vocabulary will allow 

the language model to capture their co-occurrence with 
words in the original vocabulary, potentially boosting 
recognition performance.  This suggests building a 
“clustering engine” that scans the output of the speech 
recognizer, correlates OOV phonetic sequences across 
all the utterances, and updates the vocabulary with any 
frequent, robust phone sequences it finds.  While this is 
feasible, the kind of judgments the clustering engine 
needs to make about acoustic similarity and alignment 
are exactly those at which the speech recognizer is 
most adept.  This section describes a way to convince 
the speech recognizer to perform clustering almost for 
free, eliminating the need for an external module to 
make acoustic judgments. 

The clustering procedure is shown in Figure 1.  An 
ngram-based language model is initialized randomly, 
or trained up using whatever data is available  – for ex-
ample, a small collection of transcribed utterances.  
Unrecognized words are explicitly represented using a 
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Figure 1: The iterative clustering procedure. 
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phone-based OOV model, described in the next sec-
tion.  The recognizer is then run on a large set of un-
transcribed data.  The phonetic and word level outputs 
of the recognizer are compared so that occurrences of 
OOV words are assigned a phonetic transcription.  A 
randomly cropped subset of these are tentatively en-
tered into the vocabulary, without any attempt yet to 
evaluate their significance (e.g. whether they occur 
frequently, whether they are dangerously similar to a 
keyword, etc.).  The hypotheses made by the recog-
nizer are used to retrain the language model, making 
sure to give the newly added vocabulary items some 
probability in the model.  Then the recognizer runs us-
ing the new language model and the process iterates.  
The recognizer’s output can be used to evaluate the 
worth of the new “vocabulary” entries.  The following 
sections detail how to eliminate vocabulary items the 
recognizer finds little use for, and how to detect and 
resolve competition between similar items. 

2.1 Extracting OOV phone sequences 
The recognizer used the OOV model described in [1] , 
contributed by Issam.  This model can match an arbi-
trary sequence of phones, and has a phone bigram to 
capture phonotactic constraints.  The OOV model is 
placed in parallel with the models for the words in the 
vocabulary.  A cost parameter can control how much 
the OOV model is used at the expense of the in-
vocabulary models.  This value was fixed at zero 
throughout the experiments described in this paper, 
since it was more convenient to control usage at the 
level of the language model.  The bigram used in this 
project is exactly the one used in [1], with no training 
for the particular domain.   

2.2 Recovering phonemic representations 
It is useful to convert the extracted phone sequences to 
phonemes if they are to be added as baseforms in the 
lexicon.  Although the sequences could be kept in their 
original form by creating a dummy set of units for the 
baseforms that are passed verbatim by the phonological 
rules, converting to phonemes adds some small amount 
of generalization over allophones to the sequence’s 
pronunciation, and reduces the amount of competing 
forms that have to be dealt with later (see Section 2.4).  
I make the conversion in a naïve way, classifying sin-
gle or paired phonetic units into a set of equivalence 
classes that correspond to phonemes.  For example, 
taps and cleanly enunc iated stops are mapped to the 
same phoneme, with explicit closures being dropped.  
Although the procedure does not capture some contex-
tual effects, it achieves perfectly adequate performance 
(see Section 3). 

Phoneme sequences are given an arbitrary name and 
added to the list of vocabulary and baseforms.  To en-
sure that the language model assigns some probability 
to these new vocabulary items the next time the recog-
nizer runs, a collection of randomly generated sen-
tences is added to those output of the recognizer used 
in re-training. 

2.3 Dealing with rarely-used additions 
If a phoneme sequence introduced into the vocabulary 
is actually a common sound sequence in the acoustic 
data, then the recognizer will pick it up and use it.  
Otherwise, it just will not appear very often in hy-
potheses.  After each iteration a histogram of phoneme 
sequence occurrences in the output of the recognizer is 
generated, and those below a threshold are cut. 

2.4 Dealing with competing additions 
Very often, two or more very similar phoneme se-
quences will be added to the vocabulary.  If the sounds 
they represent are in fact commonly occurring, both are 
likely to prosper and be used more or less inter-
changeably by the recognizer.  This is unfortunate for 
language modeling purposes, since their statistics will 
not be pooled and so will be less robust.  Happily, the 
output of the recognizer makes such situations very 
easy to detect.  In particular, this kind of confusion can 
be uncovered through analysis of the N-best utterance 
hypotheses. 

If we imaging a set of N-best hypotheses aligned and 
stacked vertically, then competition is indicated if two 
vocabulary items exhibit both of these properties: 

§ Horizontally repulsive – if one of the items ap-
pears in a single hypothesis, the other will not ap-
pear in its vicinity. 

§ Vertically attractive – the items frequently occur 
in the same part of a collection of hypotheses for a 
particular utterance. 

Since the utterances in this domain are generally short 
and simple, it did not prove necessary to rigorously 
align the hypotheses.  Instead, items were considered 
to be aligned based simply on the vocabulary items 
preceding and succeeding them.  It is important to 
measure both the attractive and repulsive conditions to 
distinguish competition from vocabulary items that are 
simply likely or unlikely to occur in close proximity. 

Accumulating statistics about the above two properties 
across all utterances gives a reliable measure of 
whether two vocabulary items are essentially acousti-
cally equivalent to the recognizer.  If they are, they can 
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be merged or pruned so that the statistics maintained 
by the language model will be well trained.  For clear-
cut cases, the competing items are merged as alterna-
tives in the baseform entry for a single vocabulary unit.  
A better alternative might have been to use class n-
grams and put the items into the same class, but this 
works fine.  For less clear-cut cases, one item is simply 
deleted. 

Here is an example of this process in operation in the 
very first iteration of the algorithm after new vocabu-
lary items have been added.  These are the 10-best hy-
potheses for the given utterance:  

“what is the phone number for victor zue” 

    <oov> phone (n ah m b er) (m ih t er z) (y uw) 
    <oov> phone (n ah m b er) (m ih t er z) (z y uw)  
    <oov> phone (n ah m b er) (m ih t er z) (uw) 
    <oov> phone (n ah m b er) (m ih t er z) (z uw) 
    <oov> phone (ah m b er f) (m ih t er z) (z y uw) 
    <oov> phone (ah m b er f) (m ih t er z) (y uw)  
    <oov> (ax f aa n ah) (m b er f axr) (m ih t er z) (z y uw) 
    <oov> (ax f aa n ah) (m b er f axr) (m ih t er z) (y uw)  
    <oov> phone (ah m b er f) (m ih t er z) (z uw)  
    <oov> phone (ah m b er f) (m ih t er z) (uw) 

The “<oov>” symbol corresponds to an out-of-
vocabulary sequence.  The phone sequences within 
parentheses are uses of items added to the vocabulary 
in the last iteration.  From this single utterance, we ac-
quire evidence that: 

§ The entry for (ax f aa n ah) may be competing 
with the keyword “phone”.  If this holds up statisti-
cally across all the utterances, the entry will be de-
stroyed.  The keyword vocabulary is given spe-
cial status, since they represent a link to the 
outside world that should not be modified.   

§ (n ah m b er), (m b er f axr) and (ah m b er f) 
may be competing.  They are compared against 
each other because all of them are followed by 
the same sequence (m ih t er z) and many of 
them are preceded by the same word “phone”. 

§ (y uw), (z y uw), and (uw) may be competing 

All of these will be patched up for the next iteration.  
Section 3 shows stable baseforms created through this 
process. 

This use of the N-best utterance hypotheses is reminis-
cent of their application to computing a measure of 
recognition confidence in [3]. 

2.5 Testing for convergence 
For any iterative procedure, it is important to know 
when to stop.  If we have transcribed data, we can track 
the keyword error rate on that data and halt when the 
increment in performance is sufficiently small. 

If there is no transcribed data, then we cannot directly 
measure the error rate.  We can however bound the rate 
at which it is changing by comparing keyword loca-
tions in the output of the recognizer between iterations.  
If few keywords are shifting location, then the error 
rate cannot be changing above a certain bound.  We 
can therefore place a convergence criterion on this 
bound rather than on the actual keyword error rate.  It 
is important to just measure changes in keyword loca-
tions, and not changes in vocabulary items added by 
clustering.  Items that do not occur often tend to be 
destroyed and rediscovered continuously, making 
comparisons difficult. 

3 Qualitative Results 
This section describes, through examples, the kinds of 
vocabulary discovered by the clustering procedure.  
Numerical, performance-related results are reported in 
Section 4.   

Results given here are from a clustering session with 
an initial vocabulary of five keywords (email, 
phone, room, office, address), run on the train-
ing data, and not using the transcripts for that data at 
all. 

Here are the top 10 clusters discovered on this very 
typical run, ranked by decreasing frequency of occur-
rence: 

1 n ah m b er 6 p l iy z 
2 w eh r ih z 7 ae ng k y uw 
3 w ah t ih z 8 n ow 
4 t eh l m iy 9 hh aw ax b aw 
5 k ix n y uw 10 g r uw p 

These clusters are used consistently by the recognizer 
in places corresponding to: “number, where_is, 
what_is, tell_me, can_you, please, thank_you, no, 
how_about, group,” respectively.  The first, 
/n ah m b er/, is very frequent because of “phone num-
ber”, “room number”, and “office number”.  Once it 
appears as a cluster the language model is immediately 
able to improve recognition performance on those 
keywords. 
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The word groups picked out are actually rather like the 
merged words often placed in a conventional lexicon – 
“where_is”, “what_is” etc. 

Other high-frequency clusters correspond to common 
first names (Karen, Michael).  Victor Zue, 
/ih t er z uw/, and Jim Glass, /jh ih n b ae s/, get clus-
ters all to themselves.  Note the loss of the initial frica-
tive in Victor – this is typical (see also the rendering of 
thank_you as /ae ng k y uw/).  This may be partially 
due to the characteristics of speech over a phone line, 
where much of the high frequency component is lost.  
The remaining clusters are less likely to correspond to 
anything meaningful and have little effect on recogni-
tion performance.  Parts of people’s names are com-
mon. 

Curiously the cluster corresponding to yes, /y eh s/, 
consistently takes longer to appear and is lower in fre-
quency than no, /n ow/, which is very frequent.  Possi-
bly people were saying “no!” to the early phone-in 
recognizer much more than they were saying “yes!” 

Every now and then a “parasite” appears such as 
/dh ax f ow n/ (from an instance of “the phone” that the 
recognizer fails to spot) or /iy n eh l/ (from “email”).  
These have the potential to interfere with the detection 
of the keywords they resemble acoustically.  But as 
soon as they have any success, they are detected and 
eliminated as described in Section 2.4.  It is possible 
that if a parasite doesn’t get greedy, and for example 
limits itself to one person’s pronunciation of a key-
word, that it will not be detected, although I didn’t see 
any examples of this happening. 

Many simple sentences can be modeled completely 
after clustering, without need to fall back on the ge-
neric OOV phone model.  For example, the utterances: 

 What is Victor Zue’s room number 
 Please connect me to Leigh Deacon 

are recognized as: 

  (w ah t ih z) (ih t er z uw) room (n ah m b er) 
  (p l iy z) (k ix n eh k) (m iy t uw) (l iy d iy) (k ix n) 

All of which are entries in the vocabulary and so con-
tribute to the language model.  All the discovered vo-
cabulary items are assigned one or more baseforms as 
described in Section 2.4.  These baseforms often cover 
trivial variations in a feature of one or two phones.  For 
example, following the format of the baseforms file we 
have: 

t_eh_l_m_iy: ( t eh l m iy , d eh l m iy ) 
   

p_l_iy_z: ( p l iy z , p l iy s ) 
   

w_er_k: ( w er k , w ao r k ) 

Other baseforms contain more variation: 

n_ah_m_b_er: ( n ah m b er , ah m b er , 
   en ah m b er ) 
   

w_ah_t_ih_z: ( w ah t ih z , w a h d ih z , 
   w ah t s , w ah t s t , 
   w ah t er , w ah s dh ax ) 

The nasal in /n ah m b er/ is sometimes recognized, 
sometimes not, so both pronunciations are added to a 
single baseform.  Short, often unstressed words such as 
the definite and indefinite articles are not clustered by 
the algorithm.  Their influence instead appears in base-
forms, for example the /w ah s dh ax/ entry above. 

4 Quantitative Results 
For experiments involving small vocabularies, it is ap-
propriate to measure performance in terms of Keyword 
Error Rate (KER).  I take this to be: 

%100 
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KER  , with: 

F : Number of false or poorly localized detections 
M : Number of missed detections 
T : True number of keyword occurrences in data 

A detection is only counted as such if it occurs at the 
right time.  Specifically, the midpoint of the hypothe-
sized time interval must lie within the true time interval 
the keyword occupies.  I take forced alignments of the 
test set as ground truth.  This means that for testing it is 
better to omit utterances with artifacts and words out-
side the full vocabulary, so that the forced alignment is 
likely to be sufficiently precise. 

The experiments here are designed to identify when 
clustering leads to reduced error rates on a keyword 
vocabulary.  Since the form of clustering addressed in 
this paper is fundamentally about extending the vo-
cabulary, we would expect it to be useless if the vo-
cabulary is already large enough to give good cover-
age.  We would expect it to offer the greatest im-
provement when the vocabulary is smallest.  To meas-
ure the effect of coverage, the full vocabulary was 
made smaller and smaller by incrementally removing 
the most infrequent words.  A set of keywords were 
chosen and kept constant and in the vocabulary across 
all the experiments so the results would not be con-
founded by properties of the keywords themselves (for 
example, the most common word “the” would make a 
very bad keyword since it is often unstressed and 
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loosely pronounced).  The same set of keywords were 
used as in Section 3. 

Clustering is again performed without making any use 
of transcripts.  To truly eliminate any dependence on 
the transcripts, an acoustic model trained only on Pega-
sus data was used.  This reduced performance but 
made it easier to interpret the results. 

Figure 2 show a plot of error rates on the test data as 
the size of the vocabulary is varied to provide different 
degrees of coverage.  The most striking result is that 
the clustering mechanism reduces the sensitivity of 
performance to drops in coverage.  In this scenario, the 
error rate achieved with the full vocabulary (which 
gives 84.5% coverage on the training data) is 33.3%. 
When the coverage is low, the clustered solution error 
rate remains under 50% — in relative terms, the error 
increases by at most a half of its best value.  Straight 
application of a language model gives error rates that 
more than double or treble the error rate. 
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Figure 2: Keyword error rate of baseline recognizer 
and clustering recognizer as total coverage varies. 

As a reference point, the keyword error rate using a 
language model trained with the full vocabulary on the 
full set of transcriptions with an acoustic model trained 
on all available data gives an 8.3% KER. 

5 Conclusions 
Speech recognizers are painstakingly engineered to 
factor all available data into making judgments of 
acoustic similarity.  This makes them a natural tool for 
clustering acoustic data that is hard to beat (and I 
tried).  A recognizer that generates N-best hypotheses 
is particularly suited to this task. 

The clustering mechanism described in this paper can 
build a language model based on untranscribed data.  

In the interval between the start of acoustic data collec-
tion and the point at which enough data has been tran-
scribed to provide reasonable coverage, clustering has 
the potential to boost performance.  This might be use-
ful in off-the-shelf systems designed for non-experts, 
so that the user sees a quicker return on their efforts. 

An important issue not touched on at all here is 
whether it is possible to train an acoustic model from 
untranscribed data.  This seems a much harder prob-
lem.  But in the low-coverage regime clustering is 
aimed at, the language model is likely to be the limit-
ing factor to performance. 
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