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Abstract

The development of image-guided neurosurgery methods over the past decade has per-
mitted major advances in minimally invasive therapy. A variety of imaging techniques
provide vital information about the internal structure of the brain to the neurosur-
geon, such as the locations of blood vessels, white matter tracts and regions of cortical
function. Time constraints during a neurosurgical procedure, however, limit the intra-
operative image acquisitions to low resolution, anatomical scans. Therefore, in order
to combine preoperative images with the updated scans for visualization, accurate
registration is necessary. The opening of the skull and the dura, as well as resec-
tion of the tumor, causes the brain to deform non-rigidly. It has been determined
previously that a suitable way to model these deformations is via a biomechanical
model that treats the brain as a homogeneous, isotropic, linear elastic solid. The
calculated deformation is then applied to all the available preoperative images. This
thesis extends the biomechanical model-based non-rigid registration algorithm to ap-
ply deformations to diffusion tensor magnetic resonance images (DT-MRI) and takes
into account the underlying white matter structure derived from them in an attempt
to better model the brain. DT-MRI provides magnitude and directional information
of the diffusion of water, which has been shown to correspond to the anisotropy of
the brain tissue. This is then used to compute anisotropic, local material parameters
as inputs to the model. Experiments performed on synthetic data and retrospective
surgical cases were used to evaluate the results of the registration algorithm across a
range of elasticity parameters and in comparison to the earlier model.

Thesis Supervisor: W. E. L. Grimson
Title: Bernard Gordon Professor of Medical Engineering

Thesis Supervisor: Simon K. Warfield
Title: Assistant Professor of Radiology, Harvard Medical School

2



Acknowledgments

First, I would like acknowledge the support and guidance of Dr. Eric Grimson, my

advisor at MIT. I so appreciate his help in exploring thesis projects, deciding on

research goals, and revising this thesis. He has made the research group a great place

to work.

The guidance of Dr. Simon Warfield, my advisor at the Surgical Planning Lab-

oratory, was also invaluable. In addition to the high-level ideas, he helped with so

many of the practical implementation details.

Many thanks to Dr. Ion-Florin Talos for providing the seemingly endless manual

registrations, segmentations, and landmark identifications that required his expertise,

as well as contributing a clinical perspective.

Thanks to all others at the SPL, especially Dr. Ron Kikinis, for much helpful

advice, and Dr. Steve Haker, for figuring out math problems that stumped me. Also,

thanks to everyone who has added features to and maintained the Slicer software,

and to those whose work I have extended directly, Dr. Matthieu Ferrant and Alida

Tei. Their documentation made my life so much easier.

All of those in the Vision Group at MIT have made me feel so welcome over the

last two years and have always made themselves available to answer questions and give

advice. A special thanks to Lauren O’Donnell for spending a lot of time helping me

to understand DT-MRI and double-checking my results. The moral support provided

by everyone has been so important to me the past few months especially.

Finally, thanks to the Whitaker Foundation for the financial support provided by

a graduate fellowship.

3



Contents

1 Introduction 10

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Context of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Organization of Thesis Document . . . . . . . . . . . . . . . . . . . . 16

2 Related Work 18

2.1 IGNS Registration Methods . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Marker-Based Techniques . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Biomechanical Models . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Material Properties of the Brain . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 In Vitro Measurements . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 In Vivo Measurements . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Magnetic Resonance Elastography . . . . . . . . . . . . . . . . 24

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Finite Element Modeling of Elastic Membranes and Volumes 25

3.1 Stress and Strain Equations . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Rotation of Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Finite Element Framework . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Non-Rigid Registration Algorithm 34

4.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4



4.2 Preoperative Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Visualization for Surgical Planning . . . . . . . . . . . . . . . 38

4.3 Intraoperative Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.4 Intraoperative Visualization . . . . . . . . . . . . . . . . . . . 44

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Diffusion Tensor MRI 48

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Tensor Glyphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.2 Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Spatial Transformations of Tensor Volumes . . . . . . . . . . . . . . . 52

5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.3 Sample Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 DTI-MRI and Material Parameters . . . . . . . . . . . . . . . . . . . 56

6 Registration Results 59

6.1 Fiber Phantom Experiment . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Retrospective Surgical Cases . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Estimating Elasticity Parameters . . . . . . . . . . . . . . . . 62

6.2.2 Comparison to Isotropic Model . . . . . . . . . . . . . . . . . 64

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5



7 Conclusions 69

7.1 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Perspectives and Future Work . . . . . . . . . . . . . . . . . . . . . . 71

6



List of Figures

1-1 A photo of the open magnet system (http://www.slicer.org) . . . . . . 11

1-2 Preoperative models of the tumor (green), ventricles (lavender), white

matter tracts (yellow), fMRI activation (gold), arteries (red), and veins

(blue) superimposed on a sagittal slice of a grey-scale MRI image. . . 12

1-3 Preoperative models of tumor (green), ventricles (blue), fMRI activa-

tion (aqua), blood vessels (red), and white matter tracts (yellow) on

an intraoperative axial slice. . . . . . . . . . . . . . . . . . . . . . . . 15

1-4 Cross-section of fiber phantom after volumetric deformation. . . . . . 16

2-1 These two sagittal slices show brain shift that occurred during a neu-

rosurgical procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3-1 A transversely isotropic material, where the plane of isotropy p is per-

pendicular to the fiber direction f . . . . . . . . . . . . . . . . . . . . 28

4-1 The meshes resulting from segmenting the brain and lateral ventricles. 38

4-2 A sagittal slice with the arteries (red), veins(blue), ventricles (laven-

der), fMRI activation (gold), white matter tracts (yellow), and tumor

(green)superimposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4-3 Axial slice from intraoperative scan, after the skull has been opened. 40

4-4 Sagittal slice from the preoperative volume rigidly registered to the

intraoperative volume. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4-5 Sagittal slice of the deformation fields calculated by the biomechanical

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7



4-6 Sagittal slice from the preoperative volume warped to match the intra-

operative volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-7 An intraoperative axial slice with the blood vessels (red), ventricles

(blue), fMRI activation (gold), white matter tracts (yellow), and tumor

(green) superimposed. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5-1 Visualization of tensor data as 3D glyphs corresponding the magnitude

and direction of the diffusion tensor at each voxel. Regions of high

anisotropy, such as the corpus callosum and the corticospinal tract,

are in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5-2 Estimated locations of example white matter tracts derived from DT-

MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5-3 A 45◦ rotation of the DT-MRI image, with and without tensor reori-

entation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5-4 Result of deforming DT-MRI volume to an intraoperative image where

the tumor has been resected and brain shift has occurred. . . . . . . . 57

6-1 Volume rendering of the rectangular solid, containing four fibers along

its length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6-2 Cross-section of fiber phantom after volumetric deformation . . . . . 61

6-3 Cross-section of fiber phantom, where tensor glyphs show the prefer-

ential diffusion of water along the fibers. . . . . . . . . . . . . . . . . 61

6-4 Image representing the magnitude of the difference in displacement in

the three directions (surgical case 3). . . . . . . . . . . . . . . . . . . 66

6-5 Sagittal slices of the magnitude of the difference in displacement fields

for two surgical cases. Note there is no intra-subject registration used

here, so the slices do not correspond. . . . . . . . . . . . . . . . . . . 67

8



List of Tables

6.1 Maximum difference in displacement fields generated with varying Pois-

son’s ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Max. stiffness ratio α and the displacement error averaged over the 5

landmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Comparison of error in landmark displacement for rigid registration,

the isotropic model, and the isotropic model. . . . . . . . . . . . . . . 64

6.4 Differences in deformation fields between the anisotropic and isotropic

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Computation time comparison between anisotropic and isotropic models. 68

9



Chapter 1

Introduction

1.1 Motivation

Medical imaging has played an increasingly important role in surgical planning and

treatment because it provides valuable information about anatomical structure and

function. This has been particularly helpful for neurosurgical procedures, where the

surgeon is faced with the challenge of removing as much tumor as possible without

damaging the healthy brain tissue surrounding it. Because healthy and diseased brain

tissue often appears visually similar, and because critical structures underneath the

brain surface are not visible as it is being cut, tumor resection is a daunting task.

Vital anatomical information, such as the orientation and location of dense white

matter fiber bundles, may not be visible at all. Regions important to function are

often visually indistinguishable and may have been displaced or even infiltrated by

the growth of the tumor. However, an abundance of information is available to the

neurosurgeon from data derived from a variety of imaging modalities that can address

these difficulties.

The development of image-guided neurosurgery (IGNS) methods over the past

decade has permitted major advances in minimally invasive therapy delivery [7, 12,

16, 18, 19, 33, 42, 43]. These techniques, carried out in operating rooms equipped

with special purpose imaging devices, such as the open magnet system at the Surgi-

cal Planning Laboratory at the Brigham and Women’s Hospital (Figure 1-1), allow
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Figure 1-1: A photo of the open magnet system (http://www.slicer.org)
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surgeons to look at updated images acquired during the procedure, which give the

surgeon a better understanding of the current locations of the deeper structures of

the brain. A number of imaging modalities have been used for image guidance; MRI

has an important advantage over other modalities due to its high spatial resolution

and superior soft tissue contrast, which has proven to be particularly useful for IGNS.

Figure 1-2: Preoperative models of the tumor (green), ventricles (lavender), white
matter tracts (yellow), fMRI activation (gold), arteries (red), and veins (blue) super-
imposed on a sagittal slice of a grey-scale MRI image.

Due to the time constraints of neurosurgical procedures and the low magnetic

field of the open magnet system, intraoperative MRI usually results in relatively

low resolution, noisy images. However, visualization during IGNS can be enhanced

by preoperatively acquired data, whose acquisition and subsequent processing are

12



not limited by any time restriction. For example, conventional magnetic resonance

images (MRI) provide high resolution anatomical information with increased spatial

resolution and contrast. Functional MRI provides maps that are correlated with the

activation of specific regions of the brain as certain tasks are performed. Magnetic

resonance angiography (MRA) provides the locations of blood vessels, and diffusion

tensor MRI (DT-MRI) provides information on the structure of the white matter by

measuring the diffusion of water molecules in multiple directions. Figure 1-2 displays

an example of the models that can be created from these imaging modalities.

Multi-modality registration allows pre-surgical data, including modalities that

cannot currently be acquired intraoperatively such as those described above, and

nuclear medicine scans such as PET and SPECT, to be visualized together with

intraoperative data. Registration requires estimating, tracking, and characterizing

complex shapes and motions in order to best deform the preoperative image volumes

to match the intraoperative images. In such applications, physics-based deformable

modeling provides an appropriate mechanism for modeling tissue properties and es-

timating the motion. Accurate registration results therefore depend on the quality

of the model. As the brain is better represented, the results, and our confidence in

them, should be improved.

The goal of this thesis was to extend a physics-based biomechanical model for

non-rigid registration, designed and developed by Ferrant[6], by incorporating the

underlying structure of the brain tissue to better capture changes in the brain shape

as it deforms. The deformations estimated by the model were then applied to preoper-

atively acquired data of different modalities, including fMRI, MRA, and DT-MRI, in

order to make the information provided by such data available to the surgeon during

the procedure. To meet the real-time constraints of neurosurgery, Tei [38] developed

a series of scripts to run Ferrant’s registration algorithm, which take advantage of

high performance computing. The changes to the model described in this thesis were

invisible to those scripts to maintain this capability. In addition, the computation

time required for assembling and solving the Finite Element Model must remain on

the order of a few minutes.
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1.2 Context of Work

Several image-based and physics-based matching algorithms have been developed to

capture changes in image volumes across time or across subjects. Hill[14] reviews

several of these methods. Those specific to IGNS and biomechanical modeling will

be discussed in Chapter 2. Ferrant et al.[8] employed a biomechanical model, which

treats the brain as an isotropic, linear elastic material. The approach was to use

a Finite Element (FE) discretization, by constructing an unstructured grid repre-

senting the geometry of key brain structures in the intraoperative dataset, in order

to model important regions while reducing the number of equations that need to be

solved. The rapid execution times required by neurosurgical operations were achieved

by using parallel hardware configurations, along with parallel and efficient algorithm

implementations. This work extends the model to allow for anisotropy and heteroge-

neous elasticity parameters within each segmented structure.

The deformation of the brain is rapidly and accurately captured during neuro-

surgery using intraoperative images and the biomechanical registration algorithm.

This model has allowed us to align preoperative data to volumetric scans of the brain

acquired intraoperatively, and thus to improve intraoperative navigation by displaying

brain changes in three dimensions to the surgeon during the procedure. An example

of this intraoperative visualization is shown in Figure 1-3.

1.3 Contributions

Overall, the goal of this thesis is to extend the current implementation of the non-rigid

registration algorithm [6] to incorporate the underlying structure of the brain tissue

into the biomechanical model, while still maintaining the ability to use the results of

the registration in near real-time.

The registration software [6, 38] was extended to make it possible to apply the

deformation field, calculated from the volumetric deformation of the model, to DT-

MRI images. Visualizations of the deformed DT-MRI and white matter structure are

14



Figure 1-3: Preoperative models of tumor (green), ventricles (blue), fMRI activation
(aqua), blood vessels (red), and white matter tracts (yellow) on an intraoperative
axial slice.

then available in addition to the MRI, MRA, fMRI volumes and models.

The linear elastic Finite Element model implementation was extended to allow

for inhomogeneity and anisotropy according to the diffusion tensor data. DT-MRI

provided magnitude and directional information of the diffusion of water, which has

been shown to correspond to the anisotropy of brain tissue. Local elasticity param-

eters are calculated from the degree of anisotropy of the corresponding voxels, the

direction of the anisotropy, and input material parameter estimates.

Using synthetic data to represent an elastic solid containing fibers along its length,

we used diffusion information to modify the internal deformation of the solid given the

15



(a) After isotropic deformation (b) After anisotropic deformation

Figure 1-4: Cross-section of fiber phantom after volumetric deformation.

same surface boundary conditions. Figure 1-4 shows a cross-section of the phantom

after deformation calculated by the isotropic and anisotropic models.

The registration algorithm was then applied to several surgical cases retrospec-

tively. From the results of those cases, the elasticity parameter estimates can be

optimized. Finally, the registration results were compared to those of the isotropic

linear elastic model in order to evaluate the amount, if any, of improvement made by

extending the model.

1.4 Organization of Thesis Document

This work presents an anisotropic, heterogeneous, linear elastic biomechanically-based

method for tracking non-rigid brain deformations during IGNS procedures. The first

part of the thesis (Chapter 2) describes previous related work in the field. The

second part describes the preoperative image acquisition and processing, as well as

the implementation details of the registration algorithm (Chapters 3 to 5). The third

part presents results for synthetic data and for several neurosurgical cases (Chapter

6). The last part of this document (Chapter 7) reiterates the contributions of this

thesis and describes directions for future research related to this work. The overview

of each chapter follows.
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Chapter 2 summarizes related work in registration for image guided neuro-

surgery, biomechanical modeling, and estimations of the material properties of the

brain.

Chapter 3 explains the design of the Finite Element model. Also, the relationship

between the DT-MRI data and the material parameters required by the model is

defined.

Chapter 4 describes the acquisition of preoperative image volumes and the non-

rigid registration algorithm.

Chapter 5 describes diffusion tensor MRI acquisition and its physical basis. The

techniques for processing, visualization, and warping according to a known deforma-

tion are described as well.

Chapter 6 presents the verification with the synthetic data and evaluates the

performance of the model in comparison with the isotropic linear elastic model.

Chapter 7 presents a discussion of the results described in this thesis. In addition,

this chapter draws conclusions and provides directions for future research related to

this work.

17



Chapter 2

Related Work

2.1 IGNS Registration Methods

In order to take advantage of image guidance during a neurosurgical procedure, di-

agnostic image data must be correlated to the corresponding site of pathology in the

patient in physical space, which can be accomplished with localized probe tracking

[16, 35]. Sets of images are then acquired at various timesteps throughout the surgery

in order to track the changes that occur as the skull and dura are opened and sections

of the tumor are resected. These images are typically lower resolution, and the pro-

cessing and additional acquisitions that were available preoperatively are no longer

practical. Therefore, in order to most effectively continue to use the preoperative

images and models, accurate registration between preoperative image volumes and

images that are acquired throughout the surgery is necessary.

The first issue in utilizing preoperative images in conjunction with intraoperative

image sets is to correct for patient motion, which is generally limited to rotation and

translation of the skull. Detection and correction of such movement errors during the

acquisition of images is a basic prerequisite for accurate treatment and have therefore

been a focus of much of the research in IGNS registration in order to provide a

continuous update of the patient’s head position during surgery. These rigid-body

techniques will be described in section 2.1.1. However, clinical experience in IGNS in

deep brain structures and with large resections has exposed the limitations of these
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registration and visualization approaches. During neurosurgical procedures, the brain

undergoes non-rigid deformations. The spatial coordinates of brain structures and

adjacent lesions may change significantly. The leakage of cerebro-spinal fluid after

opening the dura, the administration of anaesthetic and osmotic agents, hemorrhage,

hyperventilation, and retraction and resection of tissue are all contributing factors to

the deformation [7]. Figure 2-1 shows an example of brain shift during a neurosurgical

case.

(a) Preoperative image (b) Intraoperative image

Figure 2-1: These two sagittal slices show brain shift that occurred during a neuro-
surgical procedure.

Samset and Hirschberg[35] found that the target shift, characterizing the motion

of the region of interest, can be even more severe than the gross brain shift. This moti-

vates the investigation of improved visualization methods and registration algorithms

that can capture the non-rigid deformations the brain undergoes during neurosurgery,

which will be described in section 2.1.2.

2.1.1 Marker-Based Techniques

There are a variety of methods that utilize fiducial markers in order to account for

the translation and rotation of the head as the patient moves. This rigid body model
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allows for extremely fast and robust calculations of the transformation, yielding near-

continuous updating of the image volume according to the motion of the head.

Specifically, Lee et al. [19] present several numerical algorithms for rigid-body

registration of line fiducial objects to their marks in cross-sectional planar images,

such as those obtained in CT and MRI, given the correspondence between the marks

and line fiducials. They provide reliable registration of incomplete fiducial patterns

when up to two-thirds of the total fiducials are missing for the image, and the trans-

formation can be calculated in as little as less than half a second. Kozak et al. [18]

also register according to the locations of fiducial markers, but automate a segmen-

tation algorithm for locating the centroid of the markers in image space. This allows

for a semiautomatic registration, which they show to be an improvement in accu-

racy and reproducibility over manual registration. Maurer et al. [16] describe an

extrinsic-point-based, interactive image-guided neurosurgical system as well. Multi-

modal image-to-image and image-to-physical space registration is accomplished using

implantable markers. Instead of artificial markers, Westermann and Hauser [43] use

feature correspondence to determine the rigid body transformation for motion cor-

rection. This provides on-line tracking of the patient’s head.

These methods provide continuous, fast tracking, but depend on markers, which

are typically on the exterior of the skull and limit the registration to rigid deforma-

tions. These techniques provide no information on how the brain actually deforms.

To go beyond the problem of patient motion and account for the non-rigid deforma-

tion that occurs inside the skull as the surgery progresses, a second focus of research

has been in developing biomechanical models to capture, and even predict, these

non-rigid changes.

2.1.2 Biomechanical Models

Because there are a multitude of factors involved in the deformation of the brain,

there is a wide range of models available. Most either represent the brain as some

kind of elastic solid or consolidated material. Necessary parameter values are generally

determined via a literature study of direct measurements, described in section 2.2.
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These models are also used for comparisons to physical measurements of material

parameters, development of brain atlases, and predictions of brain injury, as well as

other applications. Additionally, similar models are used for other organs such as the

heart.

Davatzikos [4] describes a technique based on elastically deformable models for

the spatial transformation of brain images. A deformable surface algorithm is used to

find a parametric representation of the outer cortical surface and then to define a map

between corresponding cortical regions in two brain images. Based on the resulting

map, a 3D elastic warping transformation is determined. This transformation models

images as inhomogeneous elastic objects, which are deformed into registration with

each other by external force fields. The elastic properties of the images can vary from

one region to the other, allowing more variable brain regions, such as the ventricles,

to deform more freely than less variable ones. Instead of defining a representation of

corresponding cortical surfaces, Hagemann et al. [12] implement a two-dimensional

case where a set of homologous landmarks must be specified, which determine cor-

respondences. Extending the linear elastic model further, Rexilius [33] computes

elasticity parameters for every voxel based on a segmentation of white matter, grey

matter, cerebro-spinal fluid and background. A linear elastic model has also been

implemented for the left ventricle of the heart [30]. Papademetris estimates a dense

motion field using a transversely anisotropic linear elastic model, which accounts for

the fiber directions in the left ventricle.

The approach of Miga et al. [25] focuses on gravity-induced deformation which

results from the drainage of cerebrospinal fluid from the cranial cavity. It is based

on a Finite Element rendering of consolidation physics, where the mechanics of the

continuum are characterized by an instantaneous deformation at the contact area,

followed by subsequent additional displacement over time as interstitial fluid drains

in the direction of strain-induced pressure gradients (i.e. from high to low pressure)

when subjected to load.

West et al. [42] also model tissue deformation with consolidation mechanics,

but represent the brain as a porous medium where displacement is coupled to fluid
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pressure. Hydraulic conductivity is defined as a scalar for each tissue element, except

in areas with directional preference, in which case it is replaced by the diffusion

tensor. The computed pressure field shows signs of localized disturbances which are

congruent with zones having a high degree of anisotropy.

These biomechanical models are limited primarily by two factors. The most sig-

nificant at the present time is the computational overhead associated with calculating

a Finite Element solution for each update, which limits the complexity of the model

that is practical for use in IGNS. The second is that in order to capture deformations

well, some knowledge of material properties of the brain is required. Determination

of these properties will be discussed in the next section.

2.2 Material Properties of the Brain

Traditionally, material parameters are measured either in vivo in animal studies or

in vitro with excised animal or human brain tissue. In determining these parameters,

it is important to keep in mind that there are differences across species and before

and after removal of tissue. Fresh adult human brain tissue properties were found to

be slightly stiffer than adult porcine properties but considerably less stiff than the

human autopsy data [32]. To overcome these issues, in vivo measurements of human

brain parameters are desired. Recently, Magnetic Resonance Elastography has been

developed to provide a map of elasticity parameters, derived from MRI, across the

image.

2.2.1 In Vitro Measurements

Miller [26] constructed a large deformation, linear, viscoelastic model and evaluated

material constants based on unconfined compression experiment results on swine brain

tissue. Miller and Chinzei also implemented non-linear[27] and hyper-viscoelastic[28]

models and performed similar in vitro experiments. Their most recent model accounts

well for brain tissue deformation behavior in both tension and compression for strain

rates ranging over five orders of magnitude. Additionally, Morrison et al. [15] designed
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and characterized an in vitro system capable of mechanically injuring cultured tissue

at high strain rates.

These experiments did not take into account the anisotropy of brain tissue, partic-

ularly in white matter. Shuck and Advani [37] dealt with the experimental determi-

nation and analytical characterization of in vitro human brain dynamic constitutive

properties in pure shear. Values of the storage and loss components of the dynamic

shear modulus were computed and a four parameter, linear, viscoelastic model rep-

resenting brain tissue properties was presented. Prange and Margulies [32] measured

mechanical properties of adult porcine gray and white matter brain tissues in shear as

well. Consistent with local neuroarchitecture, gray matter showed the least amount

of anisotropy, and corpus callosum exhibited the greatest degree of anisotropy.

2.2.2 In Vivo Measurements

Miller [29] compared the previously described hyper-viscoelastic model to an in vivo

indentation experiment. The predicted forces were about 31 percent lower than those

recorded during the experiment. Because the coefficients in the model had been iden-

tified based on experimental data obtained in vitro, and large variability of mechanical

properties of biological tissues, they considered such agreement to be very good. Nu-

merical studies showed also that the linear, viscoelastic model of brain tissue is not

appropriate for the modelling brain tissue deformation even for moderate strains.

Miga et al. [22] first presented preliminary results using a heterogeneous model

with an expanding temporally located mass and show that they are capable of pre-

dicting an average total displacement to 5.7 percent in an in vivo porcine model. In

further experiments [24], they developed and quantified the deformation character-

istics of the model and investigated interstitial pressure with transient behavior in

brain tissue when subjected to an acute surgical load consistent with neurosurgical

events. Results demonstrated that porous-media consolidation captures the hydraulic

behavior of brain tissue.
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2.2.3 Magnetic Resonance Elastography

Elasticity image reconstruction in MR elastography may serve the important function

of providing patient-specific material properties. One approach [23] utilizes regional

image similarity as a vehicle for guiding mechanical property updates in an FEM

elasticity image reconstruction framework. A similar method [39] details a Finite

Element based nonlinear inversion scheme for magnetic resonance elastography.

Dynamic MR elastography is based on the visualization of propagating shear waves

in harmonically excited tissue. The actual elasticity information can be reconstructed

from the wave pattern by different approaches resulting in maps of wave numbers,

wave speeds, or direct images of shear stiffness or shear moduli. The analysis of

MRE data usually aims to convert wave images into elastograms, i.e. locally resolved

images of the elastic properties of tissue. For example, Braun et al. [2] simulate a

two-dimensional shear wave pattern by solving the equation for a field of coupled

harmonic oscillators with spatially varying coupling and damping coefficients in the

presence of an external force.

2.3 Summary

For this thesis, the first steps in extending Ferrant’s biomechanical model [6] are to

allow for inhomogeneous material parameters, as in [12], and to allow for anisotropy,

as in [30]. The more complex models are left for future work. Because we wish to

compare the results of our model to the earlier one, we start with initial estimates of

elasticity parameters from [6] of 3100Pa for Young’s modulus and 0.45 for Poisson’s

ratio, which are within the well accepted range for brain tissue. However, we also

require a measure of the relative stiffness along and across fibers in the white matter.

The studies of anisotropic brain tissue in [32, 37] are limited to in vitro experiments of

certain regions of the brain, such as the corpus callosum, and do not link the material

properties to the diffusion properties in those regions. However, it has been shown the

cross-fiber direction is typically between 2x and 10x stiffer than the fiber direction,

which we use as a basis of our experiments described in Chapter 6.

24



Chapter 3

Finite Element Modeling of Elastic

Membranes and Volumes

For the biomechanical model implemented by Ferrant [6] and extended here, the brain

is treated as a linear elastic solid. This chapter introduces the required elasticity

theory and the framework for the Finite Element modeling of elastic volumes and

surfaces.

3.1 Stress and Strain Equations

Assuming a linear elastic continuum with no initial stresses or strains, the deformation

energy of an elastic body submitted to externally applied forces can be expressed as

[47]:

E =
1

2

∫

Ω
σT ε dΩ +

∫

Ω

~F T~u dΩ, (3.1)

where ~u = ~u(~x) is the displacement vector, ~F = ~F (~x) the vector representing the

forces applied to the elastic body (forces per unit volume, surface forces or forces

concentrated at nodes), and Ω the body on which one is working. ε is the strain

tensor:
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ε =















εx γxy γzx

γxy εy γyz

γzx γyz εz















(3.2)

and σ the stress tensor:

σ =















σx τxy τzx

τxy σy τyz

τzx εyz σz















(3.3)

In the case of linear elasticity, each stress component is directly proportional to

each strain component, linked by the elastic stiffnesses, Dijkl which compose a fourth-

rank tensor [13].

σij =
3
∑

k=1

3
∑

l=1

Dijklεkl (3.4)

As the above equation stands, there are 81 components in the stiffness tensor.

However, because of symmetry and reciprocal relations, σ and ε can be represented

in vector notation as:

~ε = (εx, εy, εz, γxy, γyz, γzx)
T (3.5)

~σ = (σx, σy, σz, τxy, τyz , τzx)
T

. (3.6)

Thus the stiffness tensor becomes a 6x6 symmetric matrix for a general anisotropic

material (21 independent components).

~σ = D~ε (3.7)

Additionally, the strain vector ~ε now relates to the displacement ~u as follows:

~ε =

(

∂~u

∂x
,
∂~u

∂y
,
∂~u

∂z
,
∂~u

∂x
+

∂~u

∂y
,
∂~u

∂y
+

∂~u

∂z
,
∂~u

∂x
+

∂~u

∂z

)

(3.8)
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~u = L~u (3.9)

In the case of an orthotropic material, the material has three mutually perpendic-

ular planes of elastic symmetry. Hence there are three kinds of material parameters:

• the Young’s moduli Ei relate tension and the stretch in the main orthogonal

directions,

• the shear moduli Gij relate tension and stretch in other directions than those

of the planes of elastic symmetry,

• the Poisson’s ratios νij represent the ratio of the lateral contraction due to

longitudinal stress in a given plane.

If the material’s main orthogonal directions coincide with the coordinate axes, one

has:

Ex = ∂σx

∂εx
Ey = ∂σy

∂εy
Ez = ∂σz

∂εz

Gxy = ∂τxy

∂γxy
Gyz = ∂τyz

∂γyz
Gzx = ∂τzx

∂γzx

νxy = − ∂εy

∂εx
νyz = − ∂εz

∂εy
νzx = −∂εx

∂εz

(3.10)

Thus for an orthotropic material there are nine unknown parameters. The elas-

ticity matrix then becomes:
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D =
1

∆



































1−νyzνyz

EyEz

νxy+νzxνyz

EyEz

νzx+νyzνxy

EyEz
0 0 0

νxy+νzxνyz

EyEz

1−νzxνzx

ExEz

νyz+νxyνzx

EyEz
0 0 0

νzx+νyzνxy

EyEz

νyz+νxyνzx

EyEz

1−νxyνxy

ExEy
0 0 0

0 0 0 Gxy∆ 0 0

0 0 0 0 Gyz∆ 0

0 0 0 0 0 Gzx∆



































(3.11)

where:

∆ =
1 − νxyνxy − νyzνyz − νzxνzx − νxyνyzνzx − νxyνyzνzx

ExEyEz
(3.12)

In the case of a transversely isotropic material, the elastic deformation parameters

in the plane orthogonal to the transverse isotropy direction do not differ. In Figure 3-

1, the fiber direction f has one set of material properties and the cross fiber direction

p has another.

Figure 3-1: A transversely isotropic material, where the plane of isotropy p is per-
pendicular to the fiber direction f .

The Young’s moduli, shear moduli and Poisson’s ratios in plane p are identical. In

this example, for transverse isotropy along the z axis, this means that Ex = Ey = Ep,
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Gzx = Gyz = Gf , and νzx = νyz = νfp. The shear modulus for the plane of isotropy

is calculated from known parameters by Gxy = Ep

2(1+νp)
. The number of unknown

material parameters is therefore limited to five for a transversely isotropic material

to determine the elasticity matrix in Equation 3.11.

For a material with the maximum symmetry, i.e. an isotropic material, the mate-

rial properties are the same in every direction. The elasticity matrix of an isotropic

material then has the following symmetric form:

D =
E(1 − ν)

(1 + ν)(1 − 2ν)



































1 ν
(1−ν)

ν
(1−ν)

0 0 0

ν
(1−ν)

1 ν
(1−ν)

0 0 0

ν
(1−ν)

ν
(1−ν)

1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν)

0

0 0 0 0 0 1−2ν
2(1−ν)



































(3.13)

In this case, Young’s modulus and Poisson’s ratio are the same in any direction.

There are no independent shear moduli and the total number of independent param-

eters is reduced to two.

3.2 Rotation of Axes

For medical applications, the material’s main orthogonal directions rarely coincide

with the coordinate axes. In fact, the main orthogonal directions are not even consis-

tent across the volume. However, if the local stiffness matrix D in the local coordinate

system is known, it is possible to calculate the rotated D in the global coordinate

system, defined as D′.

In this case, we assume that we can estimate the principal fiber direction and

degree of anisotropy from the diffusion tensor at each voxel (see Chapter 5 for further

detail). We can calculate a stiffness matrix for the transversely isotropic material,

where the fiber direction is the axis of anisotropy and the cross-fiber direction de-
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termines the corresponding isotropic plane. The coordinate system is defined by the

eigenvectors of the diffusion tensor, sorted according to the size of the corresponding

eigenvalue. Each of the eigenvectors is a column vector and forms the coordinate

system matrix X.

X =
(

~x1 ~x2 ~x3

)

=















e11 e12 e13

e21 e22 e23

e31 e32 e33















(3.14)

This local stiffness matrix must then be rotated from the local coordinate system

defined by the fiber direction into the global coordinate system.

Here we define the global coordinate system, X′, in the standard way.

X′ =
(

~x′
1 ~x′

2 ~x′
3

)

=
(

~x ~y ~z

)

=















1 0 0

0 1 0

0 0 1















(3.15)

The directional cosine matrix defined in [13] determines the transformation.

A =















cos(~x′
1, ~x1) cos(~x′

1, ~x2) cos(~x′
1, ~x3)

cos(~x′
2, ~x1) cos(~x′

2, ~x2) cos(~x′
2, ~x3)

cos(~x′
3, ~x1) cos(~x′

3, ~x2) cos(~x′
3, ~x3)















(3.16)

Substituting in our values for X and X′, the transformation matrix is simply X.

Returning to the earlier notation, the transformation is applied to the fourth-rank

stiffness tensor.

D′
ijkl =

3
∑

m=1

3
∑

n=1

3
∑

o=1

3
∑

p=1

AimAjnAkoAlpDmnop (3.17)

However, this can be simplified with the vector notation [47] to:

D′ = TDTT (3.18)

where
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T =



































e2
11 e2

21 e2
31 2e21e11 2e31e21 2e31e11

e2
12 e2

22 e2
32 2e22e12 2e32e22 2e32e12

e2
13 e2

23 e2
33 2e23e13 2e33e23 2e33e13

e11e12 e21e22 e31e32 e21e12 + e11e22 e31e22 + e21e32 e31e12 + e11e32

e12e13 e22e23 e32e33 e22e13 + e12e23 e32e23 + e22e33 e32e13 + e12e33

e11e13 e21e23 e31e33 e21e13 + e11e23 e31e23 + e21e33 e31e13 + e11e33



































(3.19)

3.3 Finite Element Framework

Equation 3.1 is valid whether one is working with a surface or a volume. We model

our active surfaces, which represent the boundaries of the objects in the image, as

elastic membranes, and the surrounding and inner volumes as 3D volumetric elastic

bodies.

Within a finite element discretization framework, an elastic body is approximated

as an assembly of discrete finite elements interconnected at nodal points on the ele-

ment boundaries. This means that the volumes to be modeled need to be meshed,

i.e. divided into elements. Our volumetric and surface meshing algorithms will be

described in Chapter 4.

The continuous displacement field u within each element is approximated as a

function of the displacement at the element’s nodal points uel
i weighted by its shape

functions N el
i = N el

i (x).

u =
Nnodes
∑

i=1

N el
i uel

i (3.20)

The elements we use are tetrahedra (number of nodes per element Nnodes = 4) for

the volumes and triangles for the membranes (Nnodes = 3), with linear interpolation

of the displacement field. Hence, the shape function of node i of element el is defined

as:
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N el
i = K

(

ael
i + bel

i x + cel
i y + del

i z
)

(3.21)

where K = 1
6V el for a tetrahedron, and K = 1

2Sel for a triangle. The computation of

V el, Sel and the interpolation coefficients is detailed by [47].

The discretization of the domain allows us to solve for displacements only at the

location of the discretization nodes of the domain. The displacement within each

element is linked to the nodal displacements through its associated shape functions.

Through such a discretization, and because the integral over the whole domain can

be seen as the sum of the integrals over every element, it is possible to evaluate the

equilibrium equations separately on every element, and to sum up the contribution

of every triangle to which a vertex is connected to build a global equilibrium matrix

system.

For every node i of each element el, we define the matrix Bel
i = LiN

el
i . The

function to be minimized on each element el can thus be expressed as

E
(

uel
i , · · · ,uel

Nnodes

)

=
1

2

∫

Ω

Nnodes
∑

i=1

Nnodes
∑

j=1

uelT

i BelT

i DBel
j uel

j dΩ +
∫

Ω

Nnodes
∑

i=1

FN el
i uel

i dΩ

(3.22)

We seek the minimum of this function by solving for

∂E
(

uel
i , · · · ,uel

Nnodes

)

∂uel
i

= 0 ; i = 1, · · · , Nnodes (3.23)

The earlier equation then becomes:

∫

Ω

Nnodes
∑

j=1

BelT

i DBel
j uel

j dΩ = −
∫

Ω
FN el

i dΩ ; i = 1, · · · , Nnodes (3.24)

This last expression can be written as a matrix system for each finite element:

Keluel = −Fel (3.25)
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Matrices Kel and vector Fel are defined as follows.

Kel
i,j =

∫

Ω
BelT

i DBel
j dΩFel

i =
∫

Ω
FN el

i dΩ (3.26)

where every element i, j refers to pairs of nodes of the element el. Kel
i,j is a 3x3 matrix,

and Fel
i is a 3x1 vector. The 12x12 matrix Kel, and the vector Fel are computed for

each element. The coefficients i, j of the local matrices are summed up at the locations

g(i), g(j) in the global matrix (where g(i) represents the number of the element’s node

in the entire mesh). The assembly of the local matrices then leads to a global system

Ku = −F, (3.27)

the solution of which will provide us with the deformation field corresponding to the

global minimum of the total deformation energy.

We now have constitutive equations that model surfaces as elastic membranes and

volumes as elastic bodies. Given externally applied forces F to a discretized body

characterized by a rigidity matrix K, solving the previous equation provides us with

the resulting displacements.

The resulting displacements can then be used to characterize the deformation the

brain has undergone during the course of surgery using the stress and strain tensors.

Using shape functions, stress and strain tensors can be derived from the displacement

field at every nodal point i, given every tetrahedron of the FE model to which the

node belongs, and using the following relationships:

εi = LiNiui (3.28)

σi =
∑

el|i∈el

DLiN
el
i ui (3.29)
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Chapter 4

Non-Rigid Registration Algorithm

4.1 Methodology Overview

The steps, both pre- and intra-procedural, of the registration method used for this

thesis can be summarized as follows:

1. Preoperative image acquisition, processing and visualization: Before

the surgery, a conventional grey-scale MRI scan, functional MRI, MRA, and

DT-MRI datasets are acquired. These images are processed to locate key struc-

tures, such as regions of cortical activation, blood vessels, and white matter

tracts. They are then manually registered to the grey-scale MRI by the neu-

rosurgeon. For the segmentations required for registration, a binary curvature

driven evolution algorithm [46], which deforms contours according to a coupled

set of curve equations, is used to extract the surfaces of the brain and ventricles.

3D Slicer [10], an integrated software tool allowing for the display of all this data

simultaneously, is used for visualization and surgical planning. A sample pre-

operative view is shown in Figure 4-2 and other details of the acquisition and

processing are described in Section 4.2.

2. Intraoperative image acquisition: The open configuration MR scanner is

used to acquire intraoperative scans 3-5 times throughout the procedure, as

necessary. Section 4.3.1 lists the parameters for the image acquisitions and
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shows an example intraoperative image.

3. Intraoperative segmentation: The segmentation technique for the brain and

ventricles described above is performed on each of the acquired intraoperative

images.

4. Intraoperative rigid registration: The presurgical data is registered to the

intraoperative patient scan using an automated, Mutual Information-based al-

gorithm [40, 21] that optimizes the rotations about the three axes and the

translations along them. Section 4.3.3 explains the registration algorithm fur-

ther and shows an example of the result of the rigid registration.

5. Intraoperative non-rigid registration: An active surface matching method

deforms the preoperative surface meshes of the brain and ventricles to the cor-

responding segmentations of the intraoperative target. The resulting surface

displacements serve as boundary conditions to the biomechanical model, which

solves for the volumetric deformation. The deformation field is then applied

to the data acquired preoperatively. Algorithm details and deformation field

images are included in Section 4.3.3.

6. Intraoperative visualization: The matched preoperative data is visualized

using 3D Slicer. Section 4.3.4 provides an example of preoperative data mapped

onto an intraoperative slice and explains how the visualization is combined with

the optical tracking system.

4.2 Preoperative Steps

4.2.1 Image acquisition

Before surgery, an MRI examination is performed using a 1.5-Tesla clinical scanner

(Signa Horizon; GE Medical Systems, Milwaukee, WI). The standard protocol at

the Brigham and Women’s Hospital for IGNS cases includes the acquisition of the

following:
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• A T1-weighted, spoiled gradient echo (SPGR) volume (124 1.5mm thick sagittal

slices, TR=35msec, TE=5msec, Flip Angle=45, FOV=24cm, matrix=256x192,

NEX=1),

• A T2-weighted fast spin echo (FSE) volume (124 sagittal slices, TR=600msec,

TE=19msec, FOV=22cm, matrix=256x192, NEX=1),

• A phase-contrast MR angiograph (PC-MRA, 60 sagittal slices, TR=32msec,

Flip Angle=20, FOV=24 cm, matrix= 256x128, NEX=1),

• An fMRI exam (HORIZON EPIBOLD sequence, 21 contiguous 7mm coronal

slices, TE=50msec, TR=3sec, FOV=24cm, matrix=64x64, 6 alternating 30-

seconds epochs of stimulus and control tasks), given to patients whose pathology

is located within the vicinity of the motor cortex.

• A DT-MRI scan (TR=2.4s, TE=65msec, bhigh=1000s/mm2, blow=5s/mm2,

FOV=24cm, slice thickness=4mm, gap=1mm)

4.2.2 Processing

Segmentation

For the purposes of registration, the SPGR patient scan is segmented using a binary

curvature driven evolution algorithm, as described by Yezzi et al. in [46]. It is a

region-based approach to snakes designed to optimally separate the values of certain

image statistics over a known number of region types. Multiple sets of contours deform

according to a coupled set of curve evolution equations derived from a single global

cost functional. The coupling between evolution equations, which does not depend

upon the mutual proximities of each set of contours, causes every single pixel in the

image to influence the flow of every indvidual contour. This fully global approach

to segmentation is therefore robust to initial contour placement. It takes only a few

seconds to select a threshold and to click inside of the region to be segmented, but it

requires manual correction of misclassified skin and muscle. This procedure is utilized

to obtain a segmentation of both the brain and the lateral ventricles of the subject.
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Meshing

Medical images are represented by an array of a finite number of image samples,

or voxels. These could be used as discretizing elements of a Finite Element model;

however, to limit computational complexity, it is desirable to work with fewer ele-

ments. This implies that many elements will cover multiple image samples. Each

element should represent image samples that can be treated in the same way in the

model, such as those of a single tissue type. For computational ease and because

they provide better representations of the domains, triangular elements are chosen to

represent surfaces and tetrahedral elements to represent volumes.

A tetrahedral mesh generator, specifically suited for meshing anatomical struc-

tures using 3D labeled images, has been developed by Ferrant [6]. This approach

combines volume tetrahedralization and recursive mesh subdivision.

An initial multi-resolution, octree-like tetrahedral approximation of the volume to

be meshed is computed depending on the underlying image content. Next, an isovol-

ume tetrahedralization is computed on the initial multi-resolution tetrahedralization,

such that it accurately represents the boundary surfaces of the objects depicted in

the image.

The algorithm first subdivides the image into cubes of a given size, which de-

termine the resolution of the coarsest tetrahedra in the resulting mesh. The cubes

are then tetrahedralized, and at locations where the mesh needs better resolution

to follow the boundary surfaces, the tetrahedra are further divided adaptively into

smaller tetrahedra, yielding an octree-like mesh. This subdivision causes cracks for

tetrahedra that are adjacent to subdivided tetrahedra. In this case the neighboring

tetrahedra are remeshed using a precomputed case table. The resulting mesh con-

tains pyramids and prisms, which are further tetrahedralized. Finally, the labels of

the vertices of each tetrahedron are checked in a marching tetrahedra fashion. If the

tetrahedron lies across the boundary of two objects with a different label, it is subdi-

vided along the edges on the image’s boundary so as to have an exact representation

of the boundary between the objects. The resulting mesh contains prisms, which are
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further tetrahedralized. The surface meshes for an example surgical case are shown

in Figure 4-1.

Figure 4-1: The meshes resulting from segmenting the brain and lateral ventricles.

4.2.3 Visualization for Surgical Planning

We chose to use the 3D Slicer(http://www.slicer.org), developed mainly by Gering

and O’Donnell [10], an integrated surgical guidance and visualizations system which

provides capabilities for data analysis and on-line interventional guidance. The 3D

Slicer allows for the display of intraoperative images along with preoperative data.

This system is the platform of choice for IGNS procedures in the MRT room, providing

the visualization of virtual surgical instruments in the coordinate system of the patient

and patient image acquisitions. The images we constructed were presented on the

LCD monitor in the MRT operating room to increase the information available to

the surgeon as the operation progresses.

In the surgical planning stage, all preoperative datasets have been manually reg-

istered by the neurosurgeon to match the preoperative SPGR volume. An array of

information derived from fusing these multi-modality datasets containing informa-

tion on morphology (MRI, MRA, DT-MRI), cortical function (fMRI), and metabolic

activity (PET/SPECT) can be visualized simultaneously. Additionally, the segmen-

tations of the brain and ventricles created for the registration algorithm and other
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segmentations of key structures including the skin, tumor, arteries, veins, etc. can

be superimposed on the gray-scale images. Tractography derived from DT-MRI, ex-

plained in greater detail in Chapter 5, displays the locations of white matter tracts.

Models are combined in a 3D scene in Figure 4-2.

Figure 4-2: A sagittal slice with the arteries (red), veins(blue), ventricles (lavender),
fMRI activation (gold), white matter tracts (yellow), and tumor (green)superimposed.

4.3 Intraoperative Steps

4.3.1 Image acquisition

MRI scans are acquired intraoperatively through an open-configuration MR system

(Signa SP; GE Medical Systems, Milwaukee, WI). These images are collected 3 to
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Figure 4-3: Axial slice from intraoperative scan, after the skull has been opened.

5 times throughout the duration of every craniotomy, as necessitated by the pro-

cedure. These volumes are 3D SPGR (60 2.5mm thick axial slices, TR=28.6msec,

TE=12.8msec, FOV=24, matrix=256x128, NEX=1), with imaging times of about

four minutes. A sample intraoperative image is shown in Figure 4-3.

4.3.2 Processing

The same segmentation that was performed on the preoperative SPGR volume is

repeated on the intraoperative volume.

4.3.3 Registration

Rigid Registration

For rigid registration of the preoperative SPGR volume to the intraoperative SPGR,

a Mutual Information based registration algorithm, introduced by Wells et al. [40]

and Maes and Collignon [21], is used. The rotations about each of the axes and trans-

lations along each of the axes, for a total of six parameters, are optimized using the

Powell method with Mutual Information as the cost function. The rigidly registered

and resampled preoperative image is shown in Figure 4-4(b).
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(a) Intraoperative Image (b) Rigidly Registered Preoperative
Image

Figure 4-4: Sagittal slice from the preoperative volume rigidly registered to the in-
traoperative volume.

Active Surface Deformation

We model our active surfaces, which represent the boundaries of the objects in the

image, as elastic membranes, and the surrounding and inner volumes as 3D volumetric

elastic bodies, as described in Chapter 3. Within a finite element discretization

framework, an elastic body is approximated as an assembly of discrete finite elements

interconnected at nodal points on the element boundaries. The equations modeling

elastic membranes presented in Chapter 3 can be used to solve tracking problems in

3D images by means of deformable surface models. An active contour is characterized

by three parts [6]:

• internal forces – elasticity and bending moments describing the contour as a

physical object, designed to hold the curve together, and locally smooth (first

order terms) as well as keeping it from bending too much (second order terms);

• external forces – forces describing how the active contour is attracted to the

desired features of the image data;
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• iterative procedure – process which attempts to find the configuration that best

matches both the internal and external forces.

The 2D active contour model has been extended to 3D surfaces by Cohen and Cohen

[3], who also proposed to discretize the resolution of the equations governing the

behavior of the surfaces using finite elements. In this way, the iterative variation of

the surface can be discretized using finite differences, provided the time step τ is small

enough. Image-derived forces Fvt

(forces computed using the surface’s nodal position

v at iteration t) are applied to the active surface to deform it. The constitutive

equation for elastic membranes for the active surface yields the following iterative

equation:

vt − vt−1

τ
+ Kvt = −Fvt−1

, (4.1)

which can be written as:

(I + τK)vt = vt−1 − τFvt−1

. (4.2)

The external forces driving the elastic membrane towards the edges of the image

structure are integrated over each element of the mesh and distributed over the nodes

belonging to the element using its shape functions. The image force F is computed

as a decreasing function of the gradient such that it is minimized at the edges of the

image. For correct convergence, the surfaces need to be initialized very close to the

edges of the object to which they need to be matched. Prior information about the

surface to be matched gives an initial global repositioning of the surface and can be

very useful to account for global shape changes such as rescaling and rotation. The

distance measure can be efficiently computed by precomputing the distance from any

pixel to the reference surface using the Distance Transform algorithm described by

Ferrant [6]. Such a transform provides a good initialization for running an active

surface algorithm next that can then account for local shape changes of the surface.

Ferrant [6] increased the robustness and the convergence rate of the surface defor-

mation by computing the forces as a gradient descent on a distance map of the edges

42



in the target image. The external force can be described by the following expression:

F(x) = SminGexp∇(D(I(x))), (4.3)

where D(I(x)) represents the distance transformation of the target image at point x.

Smin is chosen so that the gradient points towards a point with a smaller distance

value, while Gexp is the contribution of the expected gradient sign on the labeled

image.

Biomechanical Volumetric Deformation

A model developed by Ferrant [6], and extended here to further incorporate the

object’s physical characteristics, has been implemented to improve the accuracy of

the deformable registration.

An algorithm for doing elastic image matching using a finite element discretiza-

tion was developed, with the idea of modifying the constitutive equation of volumetric

bodies described in the previous chapter to incorporate the image similarity constraint

into the expression of the potential energy of an elastic body submitted to external

forces. The elastic potential energy then serves as a physics-based regularity con-

straint to the image similarity term. The full details of the mathematical formulation

of the volumetric elastic image matching using the FE method are found in Chapter

3.

The implementation of this method for doing physics-based registration of images

uses boundary deformation of the important structures to infer a volumetric defor-

mation field. The algorithm presented in the previous section was used to track the

deformation of boundary surfaces of key objects and that deformation was used as

input to a volumetric FE elastic model. The approach yields a deformation field

satisfying the constitutive equations of the body, and can be used to characterize the

deformation the body has undergone from the initial to the target image. A sagittal

slice of the deformation fields for the displacement in x, y, and z are shown in Figure

4-5.
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(a) x displacement (b) y displacement (c) z displacement

Figure 4-5: Sagittal slice of the deformation fields calculated by the biomechanical
model.

Volumetric Deformation Field Application

Finally, the volumetric deformation fields are applied to the preoperative image

datasets. The warped grey-scale image is shown in Figure 4-6(b). Such deformed

data can then be visualized using an integrated visualization system as described in

the next section.

A new deformation field is calculated and applied to the previously matched data

on each new intraoperative scan. In this manner, successive scans can be matched

during the neurosurgical procedure. The entire method, including segmentation, rigid

and deformable registration (when implemented as a linear elastic model), is usually

completed in less than 12 minutes [38].

4.3.4 Intraoperative Visualization

Applying the non-rigid deformation algorithm to the preoperative data allows the vi-

sualization described in Section 4.2.3 to provide updated, reliable information during

IGNS procedures. An example result is shown in Figure 4-7. The scene presented

to the surgeon consists not only of models of critical brain structures, but also of

reformatted slices that are driven by a tracked surgical device. The location of the

imaging plane is specified with an optical tracking system (Flashpoint; Image Guided

Technologies, Boulder, CO). The spatial relationship (position and orientation) of

this system relative to the scanner is reported with an update rate of 10Hz. A visual-
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(a) Intraoperative Image (b) Warped Preoperative Image

Figure 4-6: Sagittal slice from the preoperative volume warped to match the intraop-
erative volume.

ization workstation (Ultra 30; Sun Microsystems, Mountain View, CAB) is connected

to the MR scanner with a TCP/IP network connection and contains two Sun Creator

3D graphics accelerator cards. One drives the 20-inch display in the control area of

the surgical suite, and the other outputs the 3D view to color LCD panels in the

scanner gantry.

Whenever the position and orientation of the optical tracking system change, or a

new image is acquired, a server process sends the new data to the 3D Slicer software

resident on the visualization workstation. In this way, surface models, are visualized

together with the tracked surgical instrument. Thus, presurgical data, non-rigidly

aligned to intraoperative images, augments interventional imaging to expedite tissue

characterization and precise localization and targeting.

4.4 Summary

In this chapter, the registration algorithm was presented. First, the grey-scale MRI,

fMRI, MRA, and DT-MRI datasets are acquired preoperatively for processing, visu-

alization, and surgical planning. After an automatic rigid registration to the intra-
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operative volume, the brain and ventricles are segmented from the grey-scale MRI.

Using these segmentations, tetrahedral meshes are generated for the brain and ven-

tricles. The corresponding surfaces are deformed to match the intraoperative target

segmentations. Those surface displacements serve as boundary conditions to the

Finite Element model, which solves for the displacements at each node of the pre-

operative volumetric mesh. Finally, the deformation field calculated by the FEM is

applied to each of the preoperative datasets for intraoperative visualization.

46



Figure 4-7: An intraoperative axial slice with the blood vessels (red), ventricles (blue),
fMRI activation (gold), white matter tracts (yellow), and tumor (green) superim-
posed.
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Chapter 5

Diffusion Tensor MRI

5.1 Background

Diffusion Tensor MRI (DT-MRI) is a technique developed to allow non-invasive quan-

tification of diffusion of water in vivo. The directional dependence of water diffusion

rates can be closely related to the anisotropy of the structure. Therefore, DT-MRI

can be used to infer the organization of tissue components.

In the brain, high anisotropy reflects both the underlying highly directional ar-

rangement of white matter fiber bundles forming white matter tracts and their intrin-

sic microstructure. This anisotropy can be characterized to distinguish the principal

orientation of diffusion, corresponding to the dominant axis of the bundles of axons

making up white matter tracts in an given voxel. DT-MRI can be used for a variety

of applications, such as determining brain connectivity measures [31], locating neu-

ronal fiber pathways [5, 20], identifying relationships between functional activation

patterns and structural properties of brain pathways [41], quantifying anisotropy in

brain tissue types [9, 36], and modeling the behavior of other organs, such as the

heart [34].

For the work in this thesis, non-rigid registration results depend on the represen-

tation of the brain by the biomechanical model. Because different histologic types

of brain white matter demonstrate significant and reproducible anisotropy differences

[36], it would be expected that they would deform differently and thus should be mod-
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eled differently. DT-MRI can provide information on this structure to be incorporated

into the model.

5.2 Image Acquisition

The diffusion tensor is measured by sensitizing the MRI signal intensity to the random

motion of water. The acquisition and processing techniques used for all the DT-MRI

data described in this work were implemented by Westin et al. [44] and are described

briefly below.

The imaging uses two strong gradient pulses, symmetrically positioned around a

180◦ refocusing pulse, allowing for controlled diffusion weighting. The first gradient

pulse induces a phase shift for all spins; the second gradient pulse inverts this phase

shift, thus canceling the phase shift for static spins. Spins having completed a change

of location due to Brownian Motion during the time period will experience different

phase shifts by the two gradient pulses, which means they are not completely refo-

cused and consequently will result in signal loss. For an anisotropic material, the

relationship between the diffusion weighted image S and the non-diffusion weighted,

but otherwise identical, image S0 is:

S = S0 exp−γ2δ2[∆−(δ/3)]gTDg (5.1)

where γ is the proton gyromagnetic ratio (42 MHz/Tesla), |g| is the strength of the

diffusion sensitizing gradient pulses, δ is the duration of the diffusion gradient pulses,

and ∆ is the duration of the diffusion gradient pulses.

In the typical case, the symmetric 3x3 diffusion tensor D has six degrees of free-

dom. To estimate the tensor, a minimum of six measurements of S, taken from

different non-collinear gradient directions, are needed in addition to the baseline im-

age data S0. Thus for each slice in the data set, seven images need to be collected

with different diffusion weightings and gradient directions. The resulting diffusion

tensor is a matrix of coefficients describing the diffusion of water molecules:
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(5.2)

Diagonalization of D gives three pairs of eigenvalues and mutually orthogonal

eigenvectors. Since molecular diffusion is hindered by encounters with cell membranes

and cytoskeletal structures, the water diffusion rate parallel to a fiber is higher than

perpendicular to it. The eigenvector corresponding to the largest eigenvalue (the

principle eigenvector) is therefore parallel to the local tangent of a fiber.

5.3 Visualization

Visualization of DT-MRI is especially challenging because each voxel has an associ-

ated tensor instead of a scalar grey-scale or label value. There are variety of tech-

niques, such as displaying ellipsoids with their axes corresponding to the eigenvectors

and their scalings along the axes as the eigenvalues, volume renderings where opacity,

color and shading are determined from the tensor information [17], planes spanned

by the major and medium eigenvectors [45] and other color scheme-based methods

derived from shape measures [44]. The 3D Slicer’s tensor module, developed by

O’Donnell, was used for all visualization of DT-MRI data for the work in this thesis,

as well as during the procedures in the MRT.

5.3.1 Tensor Glyphs

The tensor module displays glyphs overlayed on the grey-scale image, where the length

of the glyph corresponds to the largest eigenvalue, the direction corresponds to the

principle eigenvector, and the color corresponds to the degree of anisotropy. A sample

image is shown in Figure 5-1.
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Figure 5-1: Visualization of tensor data as 3D glyphs corresponding the magnitude
and direction of the diffusion tensor at each voxel. Regions of high anisotropy, such
as the corpus callosum and the corticospinal tract, are in red.

5.3.2 Tractography

Additionally, DT-MRI tractography [44], which is useful for the demonstration of

neural connectivity, is available. Given a starting seed point, a path of a set length is

drawn along the principle eigenvector. The endpoint of that path then becomes the

new seed point for the continuation of the path. These tracts, as shown in Figure 5-2

provide useful information for surgical planning.
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Figure 5-2: Estimated locations of example white matter tracts derived from DT-
MRI.

5.4 Spatial Transformations of Tensor Volumes

5.4.1 Motivation

Deforming an initial image to match a target image via registration requires a spatial

transformation to be applied. For scalar volumes, it is possible to simply copy the

value at each voxel in the transformed image from the corresponding position in

the original image, given some kind of interpolation method. However, if this same

technique were applied to a tensor volume, such as the one in Figure 5-3(a), it would

yield the result in Figure 5-3(b). The lines within the pathways of the corpus callosum

no longer point along the pathway, as they did in the original image.
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(a) Tensor glyph image (zoomed in
around the corpus callosum)

(b) Rotated image without reorienta-
tion of tensors

(c) Rotated image after reorientation
of tensors

Figure 5-3: A 45◦ rotation of the DT-MRI image, with and without tensor reorienta-
tion.
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Clearly the diffusion tensors themselves need to be rotated, and this can be

achieved by applying the same rigid rotation matrix to each tensor in the image

as was applied to the volume. If R is the rotation matrix representing the image

transformation, D must be replaced by D′:

D′ = RDRT (5.3)

For a rigid transformation the same, known, R is applied to each voxel, and

the result is in Figure 5-3(c). This additional level of complexity can be avoided

when transformation invariant tensor characteristics are registered in place of the

actual tensor volume [11]. Unfortunately, the tractography and glyphs can only be

visualized from the full tensor volume.

Because our registration algorithm allows non-rigid deformations, we need to ex-

tend the method to cope with higher order transformations. The first step is con-

sidering the problem of applying affine transformations, which include a deformation

component that can change the shape of image regions. The size and shape of the

diffusion tensors in the image should be preserved, since these are properties of the

tissue microstructure, but must be reoriented in a way consistent with the reorien-

tation of the anatomy caused by the transformations. A rigid rotation matrix, R,

at each point in the image, which reflects the local reorientation that occurs as a

consequence of an affine transformation, F, must be calculated.

5.4.2 Method

Alexander et al. [1] address the problem of applying spatial transformations to DT-

MRI volumes. They present two possible methods for finding such a rotation and

discuss their relative merits. One method, referred to as the finite strain (FS) re-

orientation strategy, decomposes the transformation into a rigid rotation and a pure

deformation operation and uses the rigid rotation component for reorientation. A

drawback of the FS reorientation strategy is that the deformation component is dis-

carded and does not contribute to the estimated reorientation. This component
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includes shearing and non-uniform scaling, which also affect the orientation of the

underlying image structure, but in a more complex way than rigid rotation.

The other method, called the preservation of principle direction (PPD) is a re-

orientation strategy that takes into account and compensates for the additional re-

orientation caused by the deformation. In synthetic data sets, the PPD method was

shown to be an effective reorientation strategy and eliminated the problems associ-

ated with FS. However, in the intra-subject human study, both methods were shown

to be effective.

In the work presented in this thesis, the spatial transformations are defined by the

deformation of the volumetric meshes corresponding to the structures in the brain.

Although there is expected to be some orientation change that cannot be captured

by the FS method, its accuracy is adequate when taking into account the limited

computation time available under time constraints of the surgery.

We therefore chose to implement the finite strain (FS) reorientation strategy. We

extract the rigid rotation component from F and use it to reorient each diffusion

tensor in the image. Any non-singular F can be decomposed into a rigid rotation

component, R, and a pure deformation component, U:

F = UR, R = F(FTF)
− 1

2 (5.4)

We generalize the method to higher order deformations by taking advantage of

the local affine transformation that initial and deformed volumetric meshes provide.

Every voxel in the volume that is displaced, and thus requires reorientation, is con-

tained in one tetrahedral cell of the mesh. Each node in that mesh is displaced as the

mesh is deformed by the biomechanical model. Therefore, the 3 locations of the four

nodes of the tetrahedron fully determine the affine transformation that tetrahedron,

and each of the voxels contained in it, undergoes. Where A represents the x, y, and

z coordinates of each node of a given tetradron as follows:
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(5.5)

the affine transform is defined as:

F = A−1
initialAtarget (5.6)

R is then extracted from F and applied to each voxel contained in the given

tetrahedron. This is then repeated for all the tetrahedra in the mesh.

5.4.3 Sample Result

In Figure 5-4, the DT-MRI volume has been deformed to match an intraoperative

image where brain shift has occurred. The surface of the DT-MRI volume matches

reasonably well with the intraoperative greyscale, and the tensor glyphs are aligned

with the brain structures. Each of the glyphs are oriented in an expected way, con-

sistent with the directions of the fiber structure that is present.

5.5 DTI-MRI and Material Parameters

To incorporate the white matter structure into the biomechanical model described in

Chapter 3, at each tetrahedron, the local coordinate system aligned with the fiber

direction and its corresponding elasticity parameters must be defined to calculate the

stiffness matrix. We do this by assigning a diffusion tensor to each tetrahedron in

the volumetric mesh and calculating its eigenvectors and eigenvalues. The local x

direction is defined by the eigenvector with the smallest eigenvalue, the y direction

by the eigenvector with the middle eigenvalue, and the z direction by the eigenvector

with the largest eigenvalue (the fiber direction). The transformation matrix to the

global coordinate system is calculated from these eigenvectors.
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Figure 5-4: Result of deforming DT-MRI volume to an intraoperative image where
the tumor has been resected and brain shift has occurred.

The stiffness matrix for a transversely isotropic material from Section 3.1 requires

5 independent parameters. From the work described in Section 2.2, the cross-fiber

stiffness is approximately 2x to 10x greater than the fiber stiffness for anisotropic brain

tissue. However, not all brain tissue is anisotropic. Fractional anisotropy, defined in

the equation below, is calculated from the eigenvalues of the diffusion tensor and

provides a quantitative measure of the degree of anisotropy of the tissue.

FA =
1√
2

√

(λ1 − λ2)
2 + (λ1 − λ2)

2 + (λ1 − λ2)
2

√

λ2
1 + λ2

2 + λ2
3

(5.7)

When fractional anisotropy is zero, the region is isotropic and the Young’s moduli
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should be the same in all three directions. When fractional anisotropy is one, the

region is completely anisotropic and the Young’s modulus in the cross-fiber direction

should be greater than the Young’s modulus in the fiber direction. Therefore, we

simply calculate the Young’s modulus in the cross-fiber direction as a linear function

of the fractional anisotropy and maximum stiffness ratio (α) and leave the Young’s

modulus in the fiber direction at its default value.

Ep = (1 + (α − 1)FA)E Ef = E (5.8)

The Poisson’s ratios are assumed to be equal in all three directions because the

compressibility of the tissue is not expected to change. The shear moduli are calcu-

lated from the Young’s moduli and Poisson’s ratios as follows:

Gf = Gp =
Ep

2(1 + ν)
(5.9)

Gf is actually an independent parameter, but it is arbitrarily set equal to the

shear modulus in the plane of isotropy because the experiments for the elasticity

parameters for anisotropic brain tissue focus do not include the shear moduli.

Once the local stiffness matrix has been determined, it is rotated according to the

transformation matrix. The Finite Element model is then assembled just as it was in

the isotropic case.
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Chapter 6

Registration Results

Image-guided neurosurgery requires the most accurate registration possible within

the time constraints of the procedure. It is within this context that we evaluate the

performance of the registration algorithm described in Chapter 4. First, for verifi-

cation of the model, we apply the algorithm to a synthetic dataset representing an

elastic solid with fibers running along its length. Next, the algorithm is applied ret-

rospectively to three surgical cases. These results include estimation of the elasticity

parameters and comparison of both accuracy and time to the original isotropic model

developed by Ferrant [6].

6.1 Fiber Phantom Experiment

In this experiment, the aim is to deform a linear elastic solid, containing fibers along

its length, to approximately half its original height. 3D models derived from the

surface of the solid and the boundaries of the fiber are shown in Figure 6-1.

To set the surface boundary conditions for the models, the surface of the phan-

tom is matched to a target surface of the desired size and shape. For the isotropic

model, the elasticity parameters are set to ν = 0.2 and E = 10000Pa, and the dis-

placements at each tetrahedron in the volumetric mesh are calculated by solving the

Finite Element model. Because the material properties are uniform for the entire

volume, the phantom is expected to deform evenly. Figure 6-2(a) shows that the
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Figure 6-1: Volume rendering of the rectangular solid, containing four fibers along its
length.

cross-sectional area of the fibers, as well as that of the surrounding non-fiber regions,

has been decreased by approximately a factor of two.

If, however, we are to treat the synthetic fibers as if they were fiber tracts in

the brain, the Young’s modulus in the cross-fiber direction is larger than Young’s

modulus in the fiber direction in completely anisotropic regions. In order to provide

this structural information to the model, a synthetic diffusion tensor MRI volume is

required. For this example, we set diffusion in the non-fiber regions of the phantom

to be isotropic and of relatively small magnitude. In the fibers, diffusion along the

fiber direction was set at 10x greater than in the cross-fiber direction and in the

isotropic regions. The glyphs representing the major eigenvectors are overlayed on

a cross-section of the phantom in Figure 6-3. The equations in Section 5.5, defining

how DT-MRI data relates to the elasticity parameters, therefore yield a fractional

anisotropy (FA) value of 0.89 in the fibers and a Young’s modulus of 9010Pa in the
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(a) After isotropic deformation (b) After anisotropic deformation

Figure 6-2: Cross-section of fiber phantom after volumetric deformation

Figure 6-3: Cross-section of fiber phantom, where tensor glyphs show the preferential
diffusion of water along the fibers.

cross-fiber direction when we assume that the maximum stiffness ratio is 10.

Because of the differing material properties of the fiber and the surrounding re-

gions, we expect that the fiber will maintain its structure. This is exactly what we

see in Figure 6-2(b), as the fibers have nearly the same cross-sectional area as they

did in the original volume. We have shown that given the diffusion tensor at every

tetrahedron in the mesh, we can calculate the local stiffness parameters at each lo-

cation and automatically adjust the deformation to behave in a way consistent with

what we know of the structure.
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6.2 Retrospective Surgical Cases

For the surgical cases in which DT-MRI data was acquired, the volumetric deforma-

tion can be applied using both the isotropic and anisotropic linear elastic models.

6.2.1 Estimating Elasticity Parameters

The aim in this section is to determine the input elasticity parameters E and ν for

both models in order to compare them consistently in later experiments. In the

original implementation of this registration algorithm [6], the Young’s moduli were

set to E = 3000Pa for the brain and 1000Pa for the ventricles. Poisson’s ratio was

set to 0.45 for both. A more detailed description of how these material properties are

determined is found in Chapter 2.

Poisson’s Ratio

Unfortunately, when we use those default settings for E and ν in the anisotropic case

(adjusting E according to the diffusion tensors and the stiffness ratio), the Finite

Element solver fails to produce reasonable displacements, likely because of numerical

instabilities that occur as ν approaches 0.5, described in [6]. Therefore, we vary

Poisson’s ratio from 0.2 to 0.45 in Table 6.1 to determine where a solution can be

found.

ν = 0.20 ν = 0.25 ν = 0.30 ν = 0.35 ν = 0.42
ν = 0.25 0.259 mm
ν = 0.30 0.590 mm 0.094 mm
ν = 0.35 1.033 mm 0.227 mm 0.594 mm
ν = 0.42 11.01 mm 11.01 mm 11.00 mm 11.00 mm
ν = 0.45 220.1 mm 220.2 mm 220.2 mm 218.3 mm 215.9 mm

Table 6.1: Maximum difference in displacement fields generated with varying Pois-
son’s ratios.

For ν > 0.35, the solution does not satisfy the boundary conditions determined

by the surface displacements. For ν < 0.35, the boundary conditions are satisfied
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and the interior deformations differ in an expected way. Repeating this experiment

with the isotropic model, the maximum difference in the displacement fields when

ν = 0.35 (on the low end of the range of values for Poisson’s ratio found in previous

experiments) and when ν = 0.45, is 1.24 mm. While this amount is not insignificant,

it is small enough that it appears reasonable to use ν = 0.35 to be able to compare

the isotropic and anisotropic models consistently.

Stiffness Ratio

Determining the relative stiffness along and across the fiber is a much more challenging

problem. As explained in Chapter 2, the experiments which determine the relative

stiffnesses are extremely limited. The first issue is that they are in vitro studies,

which have been show to differ considerably from in vivo and model results. Second,

the measurements of fiber stiffnesses are in very specific regions of the brain, such as

the corpus callosum and corona radiata, and the stiffness ratios differ throughout the

entire brain. Next, there is no measure of how the stiffness ratio relates to anisotropy

of diffusion. Finally, there is a large range of potential stiffness ratios, generally from

2x to 10x greater in the cross-fiber direction. For the most part, as was explained in

Section 5.5, we calculate the relative stiffness as a linear function of the the fractional

anisotropy and the maximum stiffness ratio (α) of the tissue.

To evaluate the performance of the registration algorithm by varying the maximum

stiffness ratio, we use a set of landmarks identified by a neurosurgeon in both the

preoperative and intraoperative image for one surgical case. These landmarks include

the medial tumor margin, 3 points on the lateral temporal lobe surface, and the optic

tract. In Table 6.2, the maximum stiffness ratio yields the following results for the

average landmark displacement error.

From these results, we see that a maximum fiber stiffness ratio of 10 yielded the

best registration given this small set of landmarks. There was no solution found by

the numerical solver for α = 12 that satisfied the surface boundary conditions, so

greater ratios were ignored. For the remainder of the experiments, α is set to 10.
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Maximum stiffness ratio Average Error
α = 2 2.7806 mm
α = 4 2.7748 mm
α = 6 2.7695 mm
α = 8 2.7650 mm
α = 10 2.7613 mm
α = 12 no solution

Table 6.2: Max. stiffness ratio α and the displacement error averaged over the 5
landmarks.

6.2.2 Comparison to Isotropic Model

For each of the three surgical cases, both the isotropic and anisotropic models were

used to deform the volumes given the same initial surface displacement boundary

conditions.

Landmark Displacement Error

Using the same set of landmarks described in the previous section, we compared the

registration errors of both the isotropic and anisotropic models, as well as the original

rigid registration. These results are presented in Table 6.3.

Landmark Location Rigid Reg. Isotropic Anisotropic
Medial Tumor Margin 1.000 mm 0.357 mm 0.357 mm
Lateral Temporal Lobe Surface (1) 7.211 mm 7.343 mm 7.143 mm
Lateral Temporal Lobe Surface (2) 2.236 mm 1.510 mm 1.512 mm
Lateral Temporal Lobe Surface (3) 2.236 mm 2.584 mm 2.559 mm
Optic Tract 2.236 mm 2.236 mm 2.236 mm
Average Error 2.984 mm 2.806 mm 2.761 mm

Table 6.3: Comparison of error in landmark displacement for rigid registration, the
isotropic model, and the isotropic model.

These displacement errors are all very close, and there is a limited number of

landmarks, but it appears that the anisotropic model does show a minimal amount

of improvement. However, to better characterize how the isotropic and anisotropic
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models differ throughout the volume, we consider the entire deformation fields in the

next section.

Deformation Fields

The most direct way to compare how the volumes are deformed differently is to look

for differences in the deformation fields. In Figure 6-4(a), an axial slice shows the

differences in the two deformation fields. Regions of greater displacement appear

brighter in the image. The regions that are bright in the image, particularly sur-

rounding the ventricle, correspond to regions of high anisotropy. Coronal and sagittal

slices are shown as well.

Axial slices from the other two surgical cases are shown in Figure 6-5. They show

similar trends, with most of the changes occurring in regions of high anisotropy, but

because no inter-subject registration was applied and the deformation that occurred

intraoperatively was different for each surgical case, they are obviously not identical.

For a quantitative analysis of the differences in the deformation fields, Table 6.2.2

shows the maximum displacement difference in each of the three axes, the maximum

displacement difference, the mean displacement difference, and the percentage of the

maximum displacement.

dxmax dymax dzmax Dmax Dmean D%

Case 1 1.06 mm 1.30 mm 2.60 mm 2.92 mm 0.174 mm 22.6%
Case 2 0.36 mm 0.56 mm 1.14 mm 1.14 mm 0.141 mm 10.7%
Case 3 0.51 mm 0.54 mm 2.08 mm 2.08 mm 0.152 mm 24.5%

Table 6.4: Differences in deformation fields between the anisotropic and isotropic
models.

Computation Time Analysis

The time constraints of a neurosurgical procedure require consideration of the ad-

ditional computation time required to assemble and solve the more complex model.

For the purpose of this experiment, we focus only on the assembly and solution time
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(a) Axial

(b) Coronal (c) Sagittal

Figure 6-4: Image representing the magnitude of the difference in displacement in the
three directions (surgical case 3).
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(a) Case 1 (b) Case 2

Figure 6-5: Sagittal slices of the magnitude of the difference in displacement fields for
two surgical cases. Note there is no intra-subject registration used here, so the slices
do not correspond.

because the additional time required (approximately 9 minutes) for segmentation,

rigid registration, applying deformation fields, etc. has already been accounted for

by [38].

Two major factors determine the time required for the Finite Element model.

The first is the size and connectivity of the mesh, which affects both the isotropic and

anisotropic computation times. The second is the amount of DT-MRI data available

for the mesh. At each point where a diffusion tensor corresponding to a tetrahedron

exists, the eigenvectors and eigenvalues, fractional anisotropy, and transformation

matrix must be calculated. Table 6.2.2 shows that in general, the anisotropic model

requires about twice as long as the isotropic one to be assembled and solved. However,

this only increases the time required from 12 minutes to 14 minutes, which is still

very reasonable, especially considering the rapid increases in computational power.
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Isotropic Model Anisotropic Model
Case 1 65.6 sec 118.1 sec
Case 2 87.7 sec 175.1 sec
Case 3 97.9 sec 188.3 sec

Table 6.5: Computation time comparison between anisotropic and isotropic models.

6.3 Summary

In this chapter, we have shown that we can use DT-MRI data to incorporate structural

information into the biomechanical model originally developed by Ferrant [6]. We ver-

ified that a fiber phantom will deform differently internally when the diffusion tensor

is used to calculate the local elasticity parameters. The default elasticity parameters,

including the Young’s modulus, the Poisson’s ratio, and the maximum stiffness ratio,

were optimized for the anisotropic model given a limited set of landmarks identified by

a neurosurgeon. The errors in landmark displacements and differences in deformation

fields were compared for the isotropic and anisotropic models to evaluate registration

accuracy. Finally, the computation time requirements for both models were analyzed.
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Chapter 7

Conclusions

7.1 Discussion of Results

In the previous chapter, we verified that we could in fact integrate structural prop-

erties derived from the diffusion tensor in the linear elastic model for non-rigid reg-

istration. First, we deformed a fiber phantom isotropically, where the entire volume

deformed evenly, and anisotropically, where the fibers maintained their structure and

the surrounding regions deformed. This showed that by calculating the local stiffness

parameters at each location, we are able to automatically adjust the deformation to

behave in a way consistent with what we know of the structure.

For the surgical cases in which DT-MRI data was acquired, the volumetric defor-

mation was applied using both the isotropic and anisotropic linear elastic models. To

evaluate the performance of the registration algorithm while varying the maximum

ratio of stiffness along and across fibers, we used a set of landmarks identified by a

neurosurgeon in both the preoperative and intraoperative image for one surgical case.

These landmarks include the medial tumor margin, 3 points on the lateral tempo-

ral lobe surface, and the optic tract. A maximum stiffness ratio of 10 was optimal,

but the displacement error differences were very small and the set of landmarks was

limited.

The error in landmark displacements for the anisotropic model was then compared

to that of the isotropic model and of the original rigid registration. The average for
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each was 2.761 mm (anisotropic), 2.806 mm (isotropic),and 2.984 (rigid). Again,

these differences are small, but the anisotropic model does show slight improvement.

To account for displacement differences that occurred where there were no land-

marks identified, we compared the deformation fields directly. We began with a

qualitative analysis of the difference images derived from the deformation fields and

found that most of the displacement differences occur, as expected, in regions of high

anisotropy. Quantitatively, the differences in displacement was between 1 and 3 mm

for each surgical case, which is up to nearly 25% of the total maximum displacement

due to brain shift.

Finally, we showed that the computation time required for the anisotropic model

was approximately twice that of that of the isotropic model, but still on the order of

about three minutes. Because the other registration steps require almost 10 minutes

to complete, this additional time should not be an obstacle in using the software

during the procedure.

7.2 Contributions

Overall, the goal of this thesis was to extend the current implementation of the non-

rigid registration algorithm [6] to incorporate the underlying structure of the brain

tissue into the biomechanical model, while still maintaining the ability to use the

results of the registration in near real-time.

The registration software [38] was extended to make it possible to apply the de-

formation field, calculated from the volumetric deformation of the model, to DT-MRI

images. Visualizations of the deformed DT-MRI and white matter structure are then

available in addition to the MRI, MRA, fMRI volumes and models.

The linear elastic Finite Element model implementation was extended to allow

for inhomogeneity and anisotropy according to the diffusion tensor data. DT-MRI

provided magnitude and directional information of the diffusion of water, which has

been shown to correspond to the anisotropy of brain tissue. Elasticity parameters

are calculated at each tetrahedron in the mesh from the degree of anisotropy of the
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corresponding voxels, the direction of the anisotropy, and input material parameter

estimates.

After verification of the model with synthetic data, the registration algorithm

was applied to several surgical cases retrospectively. From the results of those cases,

the elasticity parameter estimates were optimized. Finally, the registration results

were compared to those of the isotropic linear elastic model in order to evaluate the

amount, if any, of improvement made by extending the model.

7.3 Perspectives and Future Work

There are several avenues that can be pursued to extend upon this work. First, there

should be additional verification and evaluation of the model with more surgical

cases, particularly those with larger amounts of brain shift. Identification of a greater

number of landmarks would provide greater confidence in the registration accuracy

differences. Additionally, a DT-MRI scan acquired at the end of the procedure would

make it possible to compare the actual deformation of the white matter tracts to the

model’s prediction.

Next, the relationship that we define between the anisotropic tissue stiffness and

the diffusion tensor is a simple linear mapping based on the fractional anisotropy.

This is likely not how the diffusion tensor and the elasticity parameters are related,

and more comprehensive studies could be used to improve this calculation. Intraoper-

ative measurement of brain material properties would also allow for a more accurate

modeling.

The model itself could also be extended to use the more complex material equa-

tions described in the related work in Chapter 2. As more powerful computers become

available, these models become computationally feasible even given the time con-

straints of the neurosurgical procedure. Finally, the segmentation, rigid registration,

and surface matching have become the slowest portion of the registration algorithm.

Improvements here, in both computation time and accuracy, would further improve

the registration.
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