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1 Introduction

Recent developments in micro-fabrication will enable
the inexpensive manufacturing of massive numbers
of tiny computing elements with integrated sensors
and actuators. It will become possible to cheaply
assemble systems that incorporate large numbers of
elements into the environment, provided that the el-
ements are manufactured in bulk, without individual
programming or precise interconnects. Smart sensing
agents can be randomly distributed on surfaces or in
structures to create intelligent environments, such as
bridges with active surfaces that monitor traÆc load
and structural integrity, improved materials such as
beams that resist buckling or airplane wings that ac-
tively reduce drag, or sensitive walls that locate shad-
ows and sounds [6, 2].

Amorphous computing is the study of program-
ming paradigms for such environments, where spec-
i�ed global behavior must be achieved from lo-
cal information and interactions, without depending
on precise arrangement or individually programmed
parts. An Amorphous Computer [1] consists of mas-
sive numbers of randomly distributed, identical, pro-
grammable elements that have only local information
and communicate with a small neighborhood of phys-
ically nearby elements within a �xed radius.

Since the elements are identically programmed,
they have no apriori knowledge of global location.
The question arises whether it is possible to organize
a coordinate system, such that each element assigns
itself a logical coordinate that approximately maps to
its global physical location, strictly using local com-
munication. For many of the applications mentioned,
it is important for elements to know their physical lo-
cation relative to other elements in order to interpret
sensor information. Coordinate systems are also use-
ful for pattern generation, shape detection, naming
and routing.

In this paper we present an algorithm for organiz-
ing a coordinate system on an amorphous computer.
The algorithm is inspired by biological systems that
use chemical gradients to determine the position of
cells [12]. We show, via analysis and simulation, that
it is possible to generate a reasonably accurate coordi-
nate system on randomly distributed processors using
only local information and local communication. Two
key results are: there is a critical minimum average
neighborhood size of 15 for good accuracy and there
is a fundamental limit on the resolution of any co-
ordinate system determined strictly from local com-
munication. We also demonstrate that, using this al-
gorithm, random distributions of processors produce

signi�cantly better accuracy than regular processor
grids, such as those used by cellular automata. This
has implications for biological models as well as build-
ing smart materials.
The outline of this paper is as follows: Section 2

presents the amorphous computing model. Section 3
presents a biologically inspired algorithm for generat-
ing a coordinate system from local information. An
extensive analysis of the accuracy of the coordinate
system generated by this algorithm is presented in
section 4 with experimental results in section 5. Sec-
tion 6 compares the results to coordinate systems
generated on regular processor grids. The remaining
paper discusses future work, such as generating co-
ordinate systems from a manifold of local coordinate
patches.

2 An Amorphous Computer

The amorphous computing model is a massively par-
allel computing model [1], like cellular automata, but
with some signi�cant di�erences. In an amorphous
computer, myriad identical processors are randomly
distributed on a surface or in a volume, in this case
on a two dimensional plane. Processors do not have
global knowledge of the topology or their physical lo-
cation. Nor do they have global ids; instead they have
random number generators. Each processor commu-
nicates with physically nearby processors within a
�xed distance r, where r is much smaller than the
dimensions of the plane. All processors within the
distance r of a processor are called its communication
neighborhood and, unlike cellular automata, there is
no knowledge of the relative orientation of any of the
neighbors.

3 A Biologically Inspired

Coordinate System

Developmental biology is an important source of in-
spiration for amorphous computing paradigms be-
cause of its many similarities to the amorphous com-
puting model. Cells with identical programs (DNA)
use many di�erent techniques to robustly determine
their position relative to other cells. Positional infor-
mation is key for pattern formation [15]. One com-
monly observed technique involves the use of chemi-
cal gradients - a chemical is released from a cell such
that the concentration of the chemical decreases as
one moves further away from that cell, giving an in-
dication of distance. For example, in the drosophila
embryo there are three chemical gradients originating

1



from three points at the anterior, posterior and dor-
sal side of the embryo respectively [12]. These three
chemical gradients e�ectively create a coordinate sys-
tem which is used to segment the embryo into head
thorax and abdomen regions, as well as dorsal and
ventral regions. On the amorphous computer, we use
a algorithm inspired by the drosophila embryo.

3.1 Coordinate System Algorithm

The algorithm is based on the fact that the position
of a point on a two dimensional plane can be uniquely
described by its distance from three non-colinear ref-
erence points. The basic algorithm consists of three
main steps. First three non-colinear anchor proces-
sors are chosen, either by an external stimulus or by
a leader election algorithm. Second, each anchor pro-
duces a gradient that allows other processors to deter-
mine their distance from the three anchors. Finally
a triangulation formula is used to convert from dis-
tances to cartesian coordinates relative to the three
anchor processors. The following subsections describe
each step of the algorithm in more detail.

3.1.1 Gradient Algorithm

An anchor processor initiates a gradient by sending
its neighbors a message with a count set to one. Each
recipient remembers the value of the count and for-
wards the message to its neighbors with the count
incremented by one. Hence a wave of messages prop-
agates outwards from the anchor. Each processor
maintains the minimum counter value received and
ignores messages containing larger values, which pre-
vents the wave from traveling backwards. If two pro-
cessors can communicate with each other directly (i.e.
without forwarding the message through other pro-
cessors) then they are considered to be within one
communication hop of each other. The minimum
count value, hi, that a processor i maintains will
eventually be the length of the shortest path to the
anchor in communication hops. Hence a gradient is
essentially a breadth-�rst-search tree [9].
In an amorphous computer, a communication hop

has a maximum physical distance of r associated with
it. Therefore we see that processors with the same
count tend to form concentric circular rings, of width
approximately r, around the anchor processor. Fig-
ure 1 shows gradients originating from two corner an-
chors. The circular shape and the uniformity of the
width of the ring are better when the average neigh-
borhood size is high, because then the shortest com-
munication path between any two processors is likely
to lie close to the straight-line path between them.

Figure 1: Gradients propagating from two corner an-

chors. Each dot represents a processor. Processors with

even valued distances are colored darker.

3.1.2 Smoothing Algorithm

As described, the distance estimates obtained from
the gradients are integral multiples of r. To obtain a
better resolution, all processors perform a smoothing
step, where they average their coarse distance values
with their neighbors' values to compute a new dis-
tance of much higher resolution.

si =

P
j2nbrs(i) hj + hi

jnbrs(i)j+ 1
� 0:5 (1)

Figures 2(a) and (b) show the e�ect of smoothing.
Before smoothing processors `think' they lie on con-
centric circles around the anchor. After smoothing
the resolution improves signi�cantly.

3.1.3 Triangulation Algorithm

After the smoothing phase, processors combine the
distances from the three anchors to estimate their
position relative to the triangle created by the anchor
processors. There are several possible formulas for
obtaining cartesian coordinates from the distances.
For example one side of the triangle can be made the
x-axis or the actual coordinates of the anchors can be
used, if they are available. Figure 3 shows the error
in the �nal position estimate.

3.1.4 Algorithm for Choosing Anchors

The three anchors can be chosen by an external stim-
ulus, for example by using a probe to select three
processors. Or processors can select the three an-
chors in a distributed manner. Processors use their
random number generators to select a single leader
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(a)

(b)

Figure 2: Error in distance estimates (a) before and (b)

after smoothing. The line represents the di�erence be-

tween the actual distance of the processor from the anchor

and the estimated distance (represented by a dot). Before

smoothing, processors in concentric rings around the an-

chor share the same distance estimate. After smoothing

the overall error in distance estimates decreases.

(several distributed algorithms for leader election are
presented in [9, 11]). The leader can then use a gra-
dient to �nd all processors at a given distance and
select one to be the second anchor. Together the
two anchors together choose a third point at given
distances from them, again using gradients. This is
similar to constructing a triangle using a compass.
Other heuristics can also be used, such a giving a
higher weight to processors that are likely to be on
the boundary of the plane.

Figure 3: Error in position after triangulation. The line

connects the actual position to the logical position and

represents the error in the position estimates. The error

is less inside the anchor triangle and least in the triangle

center.

4 Theoretical Analysis

In this section we analyze the quality of the coordi-
nate system produced by the algorithm. In particu-
lar we look at the e�ect of the random distribution
of processors and the average neighborhood size on
the accuracy of the position estimates. The next sec-
tion (section 5) presents simulation results that con-
�rm the analysis presented here. This section also
demonstrates that there is a fundamental limit on
the resolution of a coordinate system generated by
any algorithm that depends only on local communi-
cation information.
The quality of the coordinate system is measured

by computing the average absolute error (distance)
between the actual physical location and the logical
position. We found three main sources of error in the
position estimates.

1. Errors in the distance estimates produced by gra-
dients due to the discrete distribution of proces-
sors.

2. Errors in smoothing due to variations in the den-
sity of processors.

3. Region speci�c errors introduced by the trian-
gulation formula used to combine the distances
into a position estimate.

The remaining section presents an analysis of each
of these three sources of error. For the purpose of
analysis we introduce some notation regarding the
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processor distribution. Processors are distributed
independently and randomly on a two dimensional
plane. The probability of a certain number of pro-
cessors in a given area can be described by a Pois-
son distribution 1 [14]. The expected neighborhood
size, navg, is equal to ��r2, where � is the density of
processors per unit area and r is the communication
radius. The processor density � is equal to N

S
where

N is the total number of processors and S is the total
surface area.

4.1 Accuracy of Gradients Before

Smoothing

4.1.1 Error due to Discrete Distribution

Given any two processors, there may not be enough
intermediate nodes for the shortest communication
path to lie along the straight-line path between the
source and destination. In that case, the shortest
communication path will overestimate the actual dis-
tance between processors. Intuitively this is more
likely if the density of processors is low.
This phenomena has been extensively studied in

the context of random plane graphs and packet radio
networks, which share a similar model to an amor-
phous computer. The average distance covered per
communication hop, d1hop, can be determined by di-
viding the physical distance between a pair of proces-
sors by the number of hops in the shortest communi-
cation path. Kleinrock and Silvester [8] show that the
expected distance covered in a single hop, depends
only on the average neighborhood size, navg .

d1hop = 1 + e�navg �
Z 1

�1

e�
navg

�
(arccos t�t

p
1�t2)dt

(2)

In �gure 4, d1hop is plotted for di�erent navg. As
navg increases, d1hop gets closer to one and hence the
distance estimate improves as the density of proces-
sors increases. Once navg reaches 15, d1hop begins
to level o� and increasing the neighborhood size has
diminishing returns.
Hence we expect 15 to be a critical average neigh-

borhood size for achieving low errors in the distance
estimates. Diminishing improvements in the gradient
distance estimates are expected as the density is in-
creased beyond the critical value. In addition, d1hop
represents the average width of a ring in the gradient.

1

Pr(k processors in area a) =
(�a)k

k!
e��a
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Figure 4: Kleinrock and Silvester's formula for the ex-

pected distance covered in one communication hop, d1hop,

plotted for di�erent neighborhood sizes, navg. At navg =

15 the improvement in d1hop levels o�.

The distance of a processor i from the anchor can be
estimated as hid1hopr.

4.1.2 Error due to Coarse Resolution

Even with in�nite density, the gradients produce dis-
tance estimates that are integral multiples of the com-
munication distance, r. This low resolution adds an
error of approximately 0.5 r on average to the dis-
tance estimates.

4.2 Accuracy of Gradients After

Smoothing

A gradient propagated on a linear array of regularly
spaced processors looks like a staircase, where the
width of each step is r (�gure 5(a)). Averaging self
and neighbor values produces a smooth line through
the staircase, which when shifted gives the correct
distance from the anchor, in units of r. This is the
basis for the smoothing formula.
Claim: For processors evenly spaced along a line,

the distance of a processor i from the anchor is given
by the smoothing formula (1).
Proof: Let processor i be distance di from the an-

chor. di = (hi � 1)r + xi, where hi is the distance
estimate from the gradient and xi is less than r. �
is the density of processors. After smoothing the dis-
tance estimate is:

si =

P
j2nbrs(i) hj + hi

jnbrs(i)j+ 1
� 0:5

=
(hi � 1)(r � xi)�+ hir�+ (hi + 1)xi�

2r�
� 0:5

= hi � 1 +
xi
r
=

di
r

q.e.d.
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However in an amorphous computer the processors
are not regularly spaced, and there are variations in
density even within a neighborhood. In the absence
of any positional information about the neighbors, a
processor is forced to weigh all its neighbors equally,
which introduces error into the smoothed distance es-
timate. The expected error in smoothing is related
to the variance in the density of processors.

Theorem 1: For processors distributed unevenly
along a line, the error in the distance estimate
(smoothed estimate - actual distance) is inversely pro-
portional to the square root of the density of proces-
sors.
Proof: Let the neighborhood size of processor i

be 2r�. Suppose the processors are redistributed such
that the neighborhood size remains the same, but the
processors are placed unevenly within the neighbor-
hood. Then, using formula (1), the smoothed esti-
mate is:

si =
(hi � 1)(r � xi)(�� �0) + hir�+ (hi + 1)xi(�+ �1)

2r�
� 0:5

�0 and �1 represent the variation from the density
when the processors were evenly distributed (�). The
neighborhood size remains the same, therefore 2r� =
(r�xi)(���0)+r�+xi(�+�1) and (r�xi)�0 = xi�1.
The error in the smoothed estimate is:

errori = si � di
r

=
�(hi � 1)(r � xi)�0 + (hi + 1)xi�1

2r�

= (
xi
r
)
�1
�

The ratio xi=r depends on the distance of the pro-
cessor from the anchor and on average is constant.
�1 represents the expected variation in processor den-
sity. Therefore the error is proportional to the ratio of
the variation in density to the density. As explained
before, the processor distribution on an amorphous
computer can be described as a Poisson distribution
and the standard deviation in density is

p
�. Hence

the error is proportional to
p
�=�. q.e.d.

Intuitively, the higher variation in density is coun-
teracted by the larger number of processor values that
get averaged. Figure 5(b) plots the distance esti-
mates for processors before and after smoothing, for
an amorphous computer simulation on a 2D plane
with navg = 20. As can be seen, smoothing improves
the distance estimate as expected, however it is not
perfect. Section 5 experimentally determines the im-
provement due to smoothing.

(a)

before 
smoothing

processor i

smoothing
after

1

2

3
distance
estimate

r

distance from anchor

xi
hi

(b)

Figure 5: (a) Smoothing on a 1D array of regularly

spaced processors. (b) Smoothing on a 2D plane of ran-

domly placed processors, from simulation (navg = 20).

Before smoothing the distance estimates are integral mul-

tiples of the communication radius. Smoothing improves

the resolution signi�cantly, even for uneven distributions

4.3 Accuracy of Triangulation

The error in the distance estimate from a single an-
chor does not depend on the orientation of the pro-
cessor about the anchor (radially symmetric). How-
ever, when the distances from the three anchors are
combined, the error varies depending on the position
of the processor relative to the three anchors. Fig-
ure 3 indicates that the error in position is largest
outside the triangle, particularly behind the vertices,
and smallest at the triangle center.

This can be understood analytically by looking at
the position of a processor relative to two anchors on
a two dimensional plane (�gure 6(a)).

Claim: Let the distance estimates for a processor
p be dA+ � and dB + � from anchors A and B respec-
tively, where dA; dB are the actual distances from the
anchors and � is the error in the distance estimate.
Let x be the position of p along the along the A B
axis. Then the error �x in the position estimate, de-
rived from the distance estimates, is proportional to
�(dA � dB).
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dA-dB=ab

minimum error
dA = dB

dA

dA > dBdA < dB

dB

A B

p

x
maximum

error
maximum

error

A B

(a)

(b)

Figure 6: (a) The error in the x position of p relative to

two anchors, A and B. (b) Gradient overlap regions are

smallest in the center and largest behind the anchors.

Proof: From the formulas for dA and dB , one
can derive that x = (dA

2 � dB
2 + ab2)=2ab. The

error in position is obtained by simply substituting
the distances with the distance estimates and is given
by �x = �dA�dB

ab
where ab is the distance between the

anchors. q.e.d.

The result is that the error in position does not
only depend on the error in the distance estimates,
but is weighted by the di�erence in distances from
the anchors. Hence, for the same error in distance
estimates, processors along the bisector of line AB
have very accurate position estimates because the er-
rors cancel each other out. On the other hand, areas
behind points A and B have a large error because the
di�erence between dA and dB is large2.

The spatial distribution of error can also be under-
stood qualitatively, without using cartesian coordi-
nates. Along the bisector of the anchor line, the con-
centric rings of the gradients from both anchors in-
tersect creating small overlapping regions where pro-
cessors have similar distance estimates. Behind the
anchors the concentric rings look almost parallel and
intersect to create large overlap regions with many
processors that share similar values. Higher resolu-
tion distance estimates are needed to distinguish be-
tween so many processors and the sensitivity to error
is much higher.

When using three anchor points, the high and low
sensitivity areas of the three sides of the anchor tri-
angle overlap, resulting in larger errors outside the
triangle and behind the vertices and small errors near
the centroid of the triangle where the bisectors of the

2 dA�dB
ab

< 1 by the triangle formula

A(z)

z

r

Figure 7: Processor p can move distance z without chang-

ing the connectivity if there are no processors in the

shaded area.

triangle sides meet. Therefore it is advantageous to
create the largest possible triangle within the given
area.

4.4 Resolution Limit

Here we demonstrate that there is a fundamental
limit to the accuracy of any coordinate system de-
veloped strictly from the topology of the processor
graph. An amorphous computer can be represented
by a processor graph where processors are nodes and
the nodes are connected by an edge i� the proces-
sors can communicate in one hop, i.e. they are less
than r distance apart. However, a processor can be
physically moved a non-zero distance without chang-
ing the set of processors it communicates with, and
thus without changing any position estimate that is
based strictly on communication between processors.
The average distance a processor can move without
changing the connectivity of the processor graph gives
a lower bound on the expected resolution of any such
coordinate system, because the old and new locations
of the processor are indistinguishable.

Theorem 2: The expected distance a processor can
move without changing the connectivity of the proces-
sor graph on an amorphous computer is ( �

4navg
)r.

Proof:3. Let Z be a continuous random variable
representing the maximum distance a processor p can
be moved without changing the neighborhood. The
probability that Z is less than some real value z is:

F (z) = Pr(Z � z) = 1� e��A(z)

which is the probability that there is at least one
processor in the shaded area A(z) (�gure 7). The
areaA(z) can be approximated as 4rz when z is small

3proof courtesy of Chris Lass
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compared to r and we expect z to be small for rea-
sonable densities of processors. The expected value
of Z is:

E(Z) =

Z 1

0

z _F (z)dz

=

Z 1

0

�4rze��4rzdz

by the product rule

= �ze��4rz
���� 10 + (� 1

�4r
)e��4rz

���� 10
= r(

�

4navg
) q.e.d

Hence, we do not expect to achieve resolutions
smaller than �

4navg
of the local communication radius,

r, on an amorphous computer.

4.5 Analysis Conclusions

The analysis in this section suggests that there is a
critical neighborhood size of 15 up to which we ex-
pect to see signi�cant improvements in the position
estimates due to improvements in distance estimates.
Beyond 15 most improvements are likely to be due to
smoothing alone. In addition we expect that, for a
given area, larger anchor triangles will produce more
accurate coordinate systems. The resolution limit
provides a lower bound on the expected accuracy of
the coordinate system.

5 Simulation Results

In this section we present experimental results that
support the analysis from the previous section. The
experiments were performed on an amorphous com-
puter simulator, that simulates a random layout of
processors executing identical programs in parallel
and only communicating with other processors within
a distance of r. In each experiment, the processors
are randomly placed on a unit square, and r is con-
stant. The average neighborhood size, navg, is varied
by varying the total number of processors, N , thus
keeping the diameter of the processor graph roughly
the same over all experiments. All data points are
averaged over ten or more simulation runs.

5.1 Experimental Values for d1hop

Our simulation experiments (�gure 8) con�rm that
the average distance covered per hop, d1hop, is signif-
icantly less than the communication radius r and is
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Figure 8: Experimental values for the average distance

covered in one communication hop, d1hop, closely follow

Kleinrock and Silvester's formula for di�erent neighbor-

hood sizes, navg.

much closer to the value predicted by Kleinrock and
Silvester. The experimental values for d1hop follow
the same trend as formula (2) predicts, with dimin-
ishing improvements once navg is greater than 15.
The formula slightly under-predicts d1hop due to an
approximation made when the source and destination
are close.
In addition we plot the percentage of processors

not connected to the anchor. Our simulations sug-
gest that an average neighborhood size of above 10
is required to ensure high probability of connected-
ness. In [13] it is shown that theoretically the average
neighborhood size to ensure connectedness is between
2.195 and 10.526 and simulations in [8] suggest that
navg should be at least 5.

5.2 Error in Distance Estimates

These experiments measure the average absolute er-
ror in distance estimates from an anchor placed in the
lower left corner. The absolute error in the distance
estimate (units of r) for processor i is calculated as:

errori = mid1hop � di
r

where mi is the distance estimate in communica-
tion hops (before or after smoothing) and di is the
physical distance between processor i and the anchor.
We use Kleinrock and Silvester's formula (2) for d1hop
(again in units of r) to estimate the distance covered
in one communication hop. Figure 9 plots the average
absolute error in distance estimates before and after
smoothing for di�erent average neighborhood sizes.
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Figure 9: Average absolute error in distance estimates

before and after smoothing for di�erent navg. Signi�cant

improvements in distance estimates occur until navg =

15. Beyond that smoothed estimates continue to improve

slowly.

5.2.1 Error Before Smoothing

As navg increases, the accuracy of the distance esti-
mate before smoothing improves due to the increased
likelihood that the shortest communication path lies
along a straight line from the anchor to the processor.
As expected, the improvement peaks around a navg
of 15 and the error becomes practically constant at
0.4 r due to the limited resolution before smoothing.

5.2.2 Error After Smoothing

As shown in �gure 9, the average error is reduced
after smoothing due to increased resolution. We
observe that the improvement from smoothing con-
tinues to increase as navg increases beyond 15, as
predicted by theorem 1 and the trend is similar to
1=
p
navg for higher densities. At navg = 40 the aver-

age error is 0.2 r. The distance estimate is not perfect
even for high navg because of variations in density.

5.3 Error in Triangulation

Figure 10 plots the average absolute error in position
after triangulation for di�erent navg for two di�erent
triangle sizes. The �rst triangle (big) is an isoceles
with unit base and height (placed on a unit square).
The second smaller triangle (small) has a base and
height of .3, or approximately one tenth the area.
We measure the overall error as well as the di�erence
in errors inside and outside the triangles.

For both anchor triangles we observe that the er-
ror in position estimates decreases as navg increases
because of improvements in distance estimates, be-
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Figure 10: The average error in position after triangu-

lation, for di�erent navg. The error is plotted for two

anchor triangles, big and small, placed on the same unit

square, where small is 1=10 the area of big. The overall

error is less for larger triangles because the average error

is smaller inside the triangle.

coming as low as 0.3 r for the larger triangle. Signi�-
cant improvements in position estimates occur before
the critical neighborhood size of 15, however improve-
ments continue beyond 15 due to the increased accu-
racy of smoothing.
Our simulation results also con�rm that the overall

error is larger for smaller triangles and that this is a
result of higher errors outside the triangle. However
even with a large triangle and high density, the errors
are not close to the resolution limit.

5.4 Simulation Conclusions

The simulation results con�rm our analysis and show
it is possible to obtain a reasonably accurate coordi-
nate system, provided the processors are reasonably
dense. The resolution obtained is smaller than the
local communication radius. An average neighbor-
hood size of 15 to 20, with a large triangle, produces
reasonably accurate coordinates and higher densities
produce average errors as low as 0.3 r.

6 Simulation Results on

Hexagonal Grids, or

A Case for Randomness

We also performed simulation experiments on hexag-
onal grids to understand the e�ect of the random dis-
tribution of processors on the accuracy of the position
estimates. Neighborhood sizes of 16, 36, 48 and 64
were used, such that the radius of communication is a
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Figure 11: Average absolute error in position estimates

on hexagonal grids with di�erent navg. The errors are

signi�cantly higher than for random grids with the same

average neighborhood size.

integral multiple of the unit grid distance. An isoce-
les anchor triangle of unit base and height was used.
The results were surprising.

� The average error in position is signi�cantly
larger than for a random distribution with the
same average neighborhood size (�gure 11).

� This error is a direct result of the large direction-
based errors in the distance estimates before
smoothing (�gure 12). Smoothing is unable to
compensate for these errors.

� Other discrete regular grids show similar results.

Regular grids tend to prefer certain directions - di-
rections that fall along grid lines. In the non pre-
ferred directions there are errors in the distance esti-
mates because of the lack of intermediate processors
along the straight-line path. These errors quickly ac-
cumulate the further away a processor moves from
the anchor in the same direction. As a result some
processors have no error whereas others have a very
high error that is proportional to their distance from
the anchor. This produces a high average error and
high standard deviation in error. Figure 12 shows an
example simulation on a hexagonal grid with a neigh-
borhood size of 18. Processors on straight grid lines
from the anchor experience no error at all whereas
processors thirty degrees o� experience a small con-
stant error for every communication hop and this ac-
cumulates to produce very large errors. The proces-
sors `think' they are on a warped space and this can
not be corrected by local smoothing.
Random distributions on the other hand tend not

to favor any particular direction and the error experi-
enced by any single processor is small. Using d1hop to

Figure 12: Error in position before and after smoothing

on a hexagonal grid with a neighborhood size of 18. The

line connects the actual position to the logical position

(represented by a dot). As we can see processors 'think'

they are on a warped space.

estimate the distance covered in one communication
hop removes any per hop error that might accumu-
late. Experiments (not presented here) con�rm that
the error in distance estimates for most processors is
similar, irrespective of the distance from the anchor
or the direction relative to the anchor. Thus ran-
dom distributions are able to avoid the many of the
artifacts generated by regular grids.

This has important implications for modeling bi-
ology. The amorphous computing model may be a
more appropriate model for biological systems, since
cells are unlikely to be organized in perfect grids. Fur-
thermore, pattern formation is likely to be sensitive
to directional biases in the grid. The algorithm pre-
sented in this paper is based on a commonly observed
technique from developmental biology and has signif-
icantly di�erent behavior on regular grids. Di�erent
levels of randomness and reliability would more ac-
curately model biological systems and help avoid the
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pitfalls caused by regularity.
This also has implications for designing applica-

tions such as distributed smart sensor arrays. Our
simulations suggest that the smart sensors need not
be placed on a regular grid to be able to determine
their position accurately. There are two main advan-
tages to using randomly distributed sensors. First,
the sensors are signi�cantly easier to deploy and one
can dispense with wires all together. Second, algo-
rithms designed for random distributions have the
advantage of being more robust to the occasional fail-
ure of some processors (the resulting graph is still
random).
One can design algorithms that take advantage of

the exact structure of the regular grid to produce
more accurate results - for example, on a rectangu-
lar grid, if processors have local orientation (which
neighbors are opposite one another) one can deter-
mine the position perfectly. However such algorithms
quickly become complicated and untenable when ran-
dom processors and wires may fail. Algorithms,
like gradients, are more robust because they do not
depend on the existence of perfectly reliable parts
and can tolerate a large degree of variation. This
paradigm shift makes it possible to conceive of large
systems of cheap easily deployable sensors that can
robustly self organize global information by commu-
nicating local pieces of information, which is at the
heart of making smart materials a reality.

7 Related Work

Several other e�orts have been made to create and
analyze coordinate systems on amorphous comput-
ers. In [3], Coore presents a technique for developing
a coordinate system on an amorphous computer by
solving Laplace's equations in a circle. Preliminary
measurements suggest that the algorithm produces
similar average error. However, because it is based on
iteratively averaging neighbor information, it is very
sensitive to variations in density and termination is
diÆcult to detect locally. Katzenelson [7] and Abel-
son have been investigating algorithms that use mul-
tiple anchor processors that know their exact global
position.
The algorithm for generating gradients presented

in this paper has also been used to create patterns
in a local manner. In his thesis [4], Coore presents a
pattern formation language based on following local
pheromone gradients. The analysis in this paper fur-
thers the understanding of the e�ects of density and
random distribution on his results.
Our group is in the process of implementing exam-

ple applications of active controlled structures, such
as randomly distributed microphones that localize
sound, that will make use of these techniques to dis-
cover their position.

8 Future Work

Future work will consist of extending these techniques
to more complex surfaces. For very large surfaces,
creating a coordinate system using a single anchor
triangle, may not be feasible because of the time
taken and the accumulation of errors over distance.
Instead one can construct a large coordinate system
by creating a manifold from multiple small overlap-
ping patches of coordinates [5, 10]. A similar ap-
proach may be possible on more complex surfaces,
such as a sphere, torus or a surface with holes, by
segmenting the surface into overlapping plane coor-
dinate patches. Since the processors have no apriori
positional information, algorithms for detecting sur-
face characteristics, such as curvature and holes, from
local information will aid in segmentation.

9 Conclusions

In this paper we present an algorithm for organizing
a coordinate system on an amorphous computer. The
algorithm is inspired by biological systems that use
chemical gradients to determine the position of cells
[12]. We show, via analysis and simulation, that it
is possible to generate a reasonably accurate coordi-
nate system on randomly distributed processors using
only local information and local communication. Two
key results are: there is a critical minimum average
neighborhood size of 15 for good accuracy and there
is a fundamental limit on the resolution of any co-
ordinate system determined strictly from local com-
munication. We also demonstrate that random dis-
tributions of processors produce signi�cantly better
accuracy than regular processor grids, such as those
used by cellular automata. This has implications for
biological models as well as building smart materials.

Finally, we would like to acknowledge the help of
Hal Abelson, Daniel Coore, Kevin Lin, Ron Weiss,
and Chris Lass in this work.
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