MIT9904-12 Cooperative Computing in Dynamic Environments

- Developing models, analysis methods for distributed systems, focusing on cooperative group activities in networks.
- Agent communication, group communication
- Dynamic:
 - Participants come and go, change location.
 - Network topology changes, components fail and recover.
- Implementations complex; hard to build/understand/analyze
- Use formal modeling/analysis methods:
 - I/O automata, pi calculus, knowledge-based methods
 - Extend, combine methods
- Case studies: CSCW, e-commerce, distributed databases

MIT9904-12 Cooperative Computing in Dynamic Environments

Nancy Lynch and Idit Keidar

Progress Through June 2000

- Agents
 - Dynamic I/O Automata
 - Travel agent case study
- Group communication
 - Scalable group membership for WANs
 - Client-server Virtually Synchronous Group Communication
 - Dynamic configuration service
 - Totally ordered multicast with QoS
 - Availability study of dynamic voting

MIT9904-12 Cooperative Computing in Dynamic Environments

Nancy Lynch and Idit Keidar

Research Plan for the Next Six Months

- Agents
 - DIOA improvements
 - Extension to time
 - NePi2 implementation model
 - Erdos application model
- Group communication
 - Scalable reliable multicast
 - Group communication in WANs
 - Implementation and performance analysis
 - Continue work on TO-Mcast with QoS
 - Study Atomic broadcast