
Malleable Architectures for Adaptive Computing
MIT 9904-04

Progress Report: July 1, 2000—December 31, 2000

Arvind, Larry Rudolph and Srinivas Devadas

Project Overview

Field Programmable Gate Arrays (FPGAs) are being used as building blocks in many different adaptive

computing systems. We propose a framework for the synthesis of reconfigurable processors based on existing

million-gate FPGAs such as the Xilinx XC4000XV series. The instruction sets of the processors are synthesized

prior to running each application so as to significantly improve performance or the power dissipated during the

execution of the application. Synthesis of instruction sets is made possible by the development of an architecture

exploration system for programmable processors. Further, processor caches can be reconfigured in a dynamic

manner so as to improve hit rates for multimedia streaming data. This reconfiguration is made possible by

implementing several hardware mechanisms such as column and curious caching into the processor cache.

Neither general-purpose microprocessors nor digital signal processors meet all the needs of intelligent personal

devices, multimedia players and recorders, and advanced communication applications. Designing special

purpose chips for each application is too expensive to be a feasible solution. It is possible that a large

reconfigurable device with appropriate tools and infrastructure may be the solution.

We are investigating a revolutionary technology for designing hardware and firmware from high-level

specifications. The approach is to synthesize "malleable" processors, with application specific instruction sets,

into million-gate FPGAs. The instruction sets of the processors are tailored to each application so as to

significantly improve either the performance or the power dissipated during the execution of the application.

Synthesis of instruction sets is made possible by the development of an architecture exploration system for

programmable processors. This technology can dramatically reduce the time to market in sectors where the

standards are changing too quickly or where functionality evolution is too rapid for traditional hardware design.

For the past six months, we have focused on the malleable cache aspect of a malleable processor. We

developed a methodology to improve the performance of embedded processors running data-intensive

applications by managing on-chip memory on an application-specific or task-specific basis. We provide this

management ability with several novel hardware mechanism, column, curious, TLB, caching.

Column caching provides software with the ability to dynamically partition the cache. Data can be placed within a

specified set of cache ``columns'' to avoid conflicts with other cached items. By mapping a column-sized region

of memory to its own column, column caching can also provide the same functionality as a dedicated scratchpad

memory including predictability for time-critical parts of a real-time application. Column caching enables the

ability to dynamically change the ratio between scratchpad size and cache size for each application, or each task

within an application. Thus, software has much finer software control of on-chip memory.

Progress Through December 2000

For the past six months, we have focused on the effectiveness of column caching for streaming applications in the

practical context of a speech recognition program. First we obtained memory traces of the speech recognition

program and analyzed whether there are streaming data in the traces. We indeed found some address ranges

containing streaming accesses, and these were used to perform simulations with column caching. Our

experimental results show improvements in cache hit ratios.

In particular, we started with the speech recognition program of the SLS group at MIT/LCS, compiled it for a

SPARC system and then converted it to be run under our SimICS simulation system. SimICS is a whole system

simulator that includes a simulation of interrupts, operating system functions, and all other machine specific

operations. Thus we simulate under real “system” conditions.

SimICS alone does not generate memory traces. We had to use two other tools as well as a modification to

SimICS. Finally, we had to deal with a mapping between a 64-bit to 32-bit addressing. After much work, we were

able to capture an accurate slice of hundreds of millions memory accesses. We analyzed this memory address

trace to uncover long streams. Surprisingly, some of the “streams” are used both as streams and as random

access addresses. This was an unexpected result that explains some of the poor caching performance of the

speech application.

Some improvements in the cache utilization were obtained with column caching and we expect that with more

effort, significant improvements can be had. In the range of 114 to 115 million references, a 16% improvement in

the cache miss rate was achieved. Such an improvement immediately translates to lower power requirements

and higher performance. We have also noticed an improvement in the “worst-case” performance using column

caching. This leads us to conjecture that general purpose processors augmented with column caching can lead

to more predictable performance.

Over the past six months, we have also be devising accurate models of cache usage in multitasking

environments. We have discovered that there is a critical range where the LRU replacement strategy behaves

poorly. The range depends on particular ratios of the number of concurrently executing tasks, their respective

time quantums, and the size of the cache. Although current generation DSP and general purpose

microprocessors usually do not operate in this poor range, we expect this to happen in the near future as cache

sizes grow, the number of streaming applications increases, and the relative time quantums shrink.

Research Plan for the Next Six Months

We have shown a case where column caching can improve cache utilization over a normal cache for streaming

data. However, there remain many things to do. The most important thing is to be able to change column

assignment dynamically. We plan to implement this in our cache simulator: hiercache. Then, we need to consider

an actual hardware implementation of a column cache. We have evidence that these features of hiercache can

be implemented practically. Identifying the address and time range of streaming data is another big problem.

Although we can identify them from memory traces, we need to have a mechanism to generate them without

memory traces in practical situations.

Applications do not execute in isolation; intelligent applications often have a large number of simultaneously

executing applications all competing for the same resource. We expect to devise task scheduling and cache

partitioning schemes to make the best use of the expensive and scarce on-chip memory resource.

