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Project Overview

The goal of this research is to develop algorithms that

extract essential characteristics of network traffic streams

passing through routers, such as the most common

destination address, subject to a limited amount of

memory about previously seen packets.  Such

characteristics are essential for designing accurate

models and developing a general understanding of

Internet traffic patterns, which are critical for such

applications as efficient network routing, caching,

prefetching, information delivery, and network upgrades.

We proposed to design and analyze efficient algorithms

and data structures that have provable guarantees on the

quality of gathered statistics based on weak assumptions

on the traffic distribution.  We proposed to consider the

range from deterministic, fully guaranteed algorithms

(which we expected to be extremely difficult if not

impossible) to randomized, probabilistically guaranteed

algorithms (which are more powerful).  On the other hand, we proposed to prove lower bounds on the possible

success of any algorithm.

Progress Through December 2001

In the past two months, we have made major progress in collaboration with Prof. Alejandro López-Ortiz and Prof.

Ian Munro of the University of Waterloo.  Our research has focused on perhaps the most practical and most

difficult statistic to gather from a stream of data while using little memory: finding the k most popular packet

destination addresses, for a desired value of k (smaller than the amount of memory available).  This problem

arose in an applied setting while Prof. López-Ortiz was Director of Core Research at Internap Network Services
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Corporation.  Our work on this problem can be divided into four main categories: (1) designing practical models of

allowed computation, (2) designing various levels of reasonable assumptions on network traffic distributions, (3)

developing algorithms under these models, and (4) proving lower bounds under these models.  We have made

breakthrough advances in all four of these categories.

1.  Practical Models of Computation

As shown in the figure above, our basic model of computation is that a statistics gathering process watches a

stream of n packets passing through an Internet router or similar device.  The stream is rapid, so the process can

make only one pass through the data, and furthermore can perform little computation per packet.  Specifically, we

limit the amount of computation to O(1) operations per packet.  The storage space available to the process is

limited, but a more important limiting factor is that the working store of the process is very small: all actively used

variables (e.g., counters) must fit in a small cache in order to keep up with the data stream.  Thus, in some

settings, we may be willing to record a significant amount of data (but still much less than one item per packet) to

external storage, and make a final pass through these records at the end of the computation.

A key operation that the statistics gathering process can perform is counting.  The process is limited to having at

most m active counters at any time.  Each counter has an associated destination address that it monitors.  A

counter can be incremented, decremented, or reset to monitor a different address.  A representative example of

how counters can be used is the following: when a packet streams by, the process can check whether its

destination matches any of the m currently monitored addresses, and if so, increment that counter.  The idea is

that the destination address with the highest counter is likely to be the most popular destination address.

The primary difficulty in counting with very few counters is to know which destination addresses to monitor.  If we

never reset the counters and start counting newly discovered destination addresses, we may never notice the

most popular destination addresses, thus never counting them and discovering their popularity.  On the other

hand, if we reset counters too frequently, we will not gain enough statistics to be sure which counter is

significantly higher than the others.

We believe that this model of computation captures essentially the entire spectrum of possible algorithms, while

capturing all of the important limiting factors in the application.

2.  Network Traffic Distributions

We have developed three natural assumptions on the network traffic distributions that enable us to prove

guarantees on quality.  All of these models lead to interesting theoretical results which are closely related to the

practical problem.

The two most general models are worst-case distributions.  In this context, the network traffic is essentially

arbitrary, and at any moment, an imaginary adversary can choose the next packet’s destination address.

Algorithms in this model are difficult but surprisingly turned out to be possible.  There are two subtly different

versions of the model.  In the omniscient adversary model, the adversary knows everything about the

algorithm’s execution, and can choose the packet sequence to be the absolute most difficult.  In the slightly less

powerful but highly natural oblivious adversary model, the adversary knows the entire algorithm, but does not



know the results of any random coin tosses made by the algorithm.  Thus the algorithm can hope to win over the

adversary with high probability by using random bits.

Of course, these worst-case models are overly pessimistic, and limit the provable strength of any algorithm.

Fortunately, real traffic is not worst-case, but rather follows some sort of distribution.  A natural such distribution is

the stochastic model: an arbitrary probability distribution specifies the relative frequencies of the destination

addresses, but in what order these addresses occur in the packet stream is uniformly random.  While this model

may not precisely match reality, we feel that it is sufficiently representative to lead to highly practical algorithms.

(We plan to evaluate this statement experimentally.)

In any of these models, we can also assume a spread on the probabilities of the various addresses, because if all

the addresses were almost equally likely (probabilities ª 1 _ n), every answer would be just as good.  We identify

the probability of the most popular destination as p1.  We assume that this probability is reasonable large, say at

least 1 _ ÷n.  Such a bound is required to make the problem interesting, and will certainly hold in practical

situations.

3.  Algorithms

We have designed and analyzed efficient algorithms with provable guarantees in both the stochastic model and

the omniscient adversary model.  We have also developed a general technique for transforming an algorithm that

simply returns an answer, which might have poor quality in rare circumstances, into an algorithm that returns an

answer together with a confidence measure of the answer’s quality.

In the stochastic model, the basic algorithm works roughly as follows.  We divide the stream into a collection of

rounds, carefully sized to balance the counter-reset trade-off described in the first section.  At the beginning of

each round, the algorithm samples the first m distinct packet destination addresses, and counts their occurrences

for the duration of the round.  Applying Chernoff bounds on tails of probability distributions, we prove that the

counts obtained during a round are close to the actual frequencies of the addresses.  The k addresses with the

maximum counter values at the end of the round are the winners for that round.  If extra nonworking storage is

available to the algorithm, we record these winners and their counts for a final tournament at the end of the

algorithm.  Otherwise, we reserve a constant fraction of the working storage for the current best winners, and only

compare against those.  In either case, we prove that with high probability the true frequencies of the final winners

are close to the frequencies of the truly most popular addresses.  The probabilities are somewhat higher when

extra nonworking space is available.

The ideal choice for the size of a round in this algorithm depends on the length n of the stream and on the

probability distribution on addresses.  Of course, the algorithm does not generally know the probabilities, and may

not even know for how long it will be monitoring the stream: imagine a scenario in which the statistics gathering

process is running constantly, and at will a networks designer can request the current guess and confidence of

the most popular addresses; as time passes, the confidence increases.  To solve these problems, we harness the

algorithm in an adaptive framework that gradually increases the round length until the confidence is determined

to suffice.  This flexible framework requires monitoring the stream for only slightly longer.

In the oblivious adversary worst-case model, we are working on adapting a similar algorithm by randomly

perturbing the sizes of the rounds.  The idea is that such perturbations prevent the adversary from knowing when



the actual samples occur.  The probabilistic analysis of this variant is significantly more complicated, and it

remains to be soon how good a bound can be achieved.

In the omniscient adversary worst-case model, where randomization is not possible, we have developed an

algorithm that guarantees to find all sufficiently popular addresses: p > 1 _ (m + 1).  The basic idea is to increment

the counter of an address that appears on the stream, and furthermore decrement all of the other counters.

Whenever a counter reaches zero, it resets and starts counting the next new address on the stream.  We prove

the surprising result that sufficiently popular addresses are guaranteed to remain in working memory by the end of

the stream, even though they may be kicked out part way through the stream.  We have also developed an

efficient data structure so that, instead of changing every counter for each packet, only O(1) work is performed

per packet.

4.  Lower Bounds

We have proved a precise matching lower bound in the omniscient adversary worst-case model, and therefore

that algorithm is optimal under this most powerful network-traffic model.  In addition, we have proved that the

algorithm for the stochastic model is within a constant factor of optimal.  The latter result is particularly difficult,

and we omit the technical description here.

Research Plan for the Next Six Months

To summarize, tremendous progress has been made in all directions of the problem.  Nonetheless, several

important open problems remain.  The most prominent problem is to determine to what extent randomization and

an oblivious adversary can allow us to improve the bounds even for the worst case.  As described above, we are

hopeful that a random perturbation strategy will lead to interesting results in this context.

In the future, we plan to implement the algorithms and test them on real-world data.  We are currently on the

lookout for appropriate students for such an experimental project, and are investigating possible sources for real-

world data.


