

Arvind, Larry Rudolph and Srinivas Devadas

- TRS
 - High Level Architecture Specification
 Language and Synthesis
- Malleable Architectures
 - Arch. Specific ISA
 - Malleable Caches

Arvind, Larry Rudolph and Srinivas Devadas

Progress Through December 2001

Cache Control

- Cache compression
 - Apply data compression technique to L2 caches
 - Dynamically allocate the cache between compressed and uncompressed data
 - Improves performance & power consumption
- Dynamic performance optimization
 - Dynamic cache monitoring
 - Count marginal gains of each process for various cache sizes
 - Cache-Aware scheduling
 - Choose simultaneous processes to minimize cache contention
 - Cache partitioning
 - manage cache allocation amongst processes

Bandwidth Scheduling

- Bandwidth requirement is bursty
 - Time-sharing: cold misses, difference among processes
- Make CPU schedule follow data (bandwidth) schedule
 - Prefetch for next job before starting the execution

Research Plan for the Next Six Months

- Apply Cache Compression to MPEG 2 & 3
 - Assume small cache, embedded processor
 - Show compressed cache behaves as if it was 2 to 4 times larger
- Apply Adaptive Prefetching to Stream-Based Computation
 - Show factor 2 reduction in required bandwidth
 - Show significant reduction in power requirements
- Microprocessor with Malleable Cache
 - Show performs as well as specialize network processor for routing applications.