
Dynamic Invariant Detection for Program Understanding
and Reliability

MIT2001-01

Progress Report: January 1, 2002—June 30, 2002

Michael Ernst

Project Overview

The Program Analysis Group (PAG) of MIT is collaborating with Tadashi Araragi of NTT on problems raised by
NTT's Erdös internet agent system. The goal is to formally verify mobile agent systems in which agents may be
widely separated and may move about a network, yet must communicate, coordinate, and negotiate in order to
perform useful work. Examples include internet marketplaces (in which directories of shops must be maintained),
auctions (in which programs may be dynamically downloaded), and airline ticket reservation (in which multiple
ticket agencies must have a consistent view of a database). In each of these cases, it is crucial that the system
perform correctly, yet it is difficult to understand and verify it. PAG has provided several technologies that can
increase confidence in such systems.

Progress Through June 2002

PAG's foremost contribution is a technique for automatically generating program specifications, and an
implementation (named Daikon) of the technique. Program specifications are required for most program
understanding, maintenance, and verification tasks, but are rarely present. One reason is that people find it
tedious, and error-prone to write specifications; another is that it is as difficult to write a good specification as to
write the program in the first place. Therefore, automating the task holds great promise. The Daikon system
automatically generates specifications; it requires only a program and a test suite.

Between January and June 2002, we have made additional progress on the project’s goals.

We have continued to improve our tools infrastructure and make it easier to use. In particular, we made seven
releases of the Daikon system. These incorporate an expanded manual, a significantly more robust C front end,
new user-settable configuration and debugging flags, and bug fixes. Three more substantive projects were
transitioned from internal research to the public software releases. The first compares formal specifications (that
is, sets of invariants) and indicates differences between them. This permits different programs, or different test
suites, or different versions of a program to be compared to one another, permitting easy understanding of how
they differ in behavioral semantics. The second inserts invariants into a program as stylized comments;
presently, these comments can be read by the ESC/Java static checker, but work is underway to extend this work
to the Java Modeling Language (JML) toolkit and other tools. This permits the system to be integrated with other
research and commercial systems that work with specifications. The third augmentation adds a static analysis
technique that aids in detecting implications, or conditional invariants. These are properties of the form “p fi q”,
where q is not universally true, but holds only when p does. (In July, we added a clustering technique for the
same goal.)

Because the final goal of this NTT-MIT project is program verification, PAG has continued to press forward on
proofs of program correctness in two domains: Java and the IOA programming language. The Java experiments
have used the ESC/Java program checker from the Compaq Systems Research Center. They have resulted in

two conference publications. One shows that the technique is much more accurate than might have been
predicted of a dynamic tool that operates over runs; this indicates that users need not be unduly concerned about
its unsoundness. The other shows that the output aids users who are interested in proving that their programs do
not throw run-time exceptions. We have continued to use the techniques in other research.

IOA is a language for modeling distributed systems that is being developed by Prof. Nancy Lynch's Theory of
Distributed Systems (TDS) group. It is the subject of another NTT-MIT collaboration, and both research projects
have benefited from the close relationship between the research topics and the principal investigators. The IOA
work has been done in collaboration with TDS. We have completed three semi-automated Daikon-assisted
proofs of distributed algorithms: mutual exclusion, a consensus protocol, and a distributed cache. The IOA
experiments use the LP theorem-prover written by Dr. Stephen Garland (another NTT-MIT PI); there is an
automatic mapping from IOA to LP formulas. However, the human user must still provide many small facts about
the program; these are distracting and easy to forget. Daikon produces many of the desired invariants and
intermediate steps required for a proof in LP. Human direction is still required for the high-level direction of the
proof and for some of the smaller steps. (Since July, we have started investigating use of the Isabelle theorem-
prover from Cambridge University and TU Munich. Although we do not already have local expertise with it, it has
a larger user base, it is under active development, it has built-in support for arithmetic, and it has user-
programmable tactics that can obviate much user input. Applying our system to a second theorem-prover will
further indicate its generality and utility.)

The results for both Java and IOA programs suggest that similar verification results may be possible in the Erdös
system.

We have obtained preliminary results in detecting temporal invariants -- properties that describe behavior over
time. For example, the property of a traffic signal, “no two directions show green simultaneously” is true over all
time, but “after a car arrives, the signal eventually turns green” is a temporal property. We have implemented a
prototype system that detects temporal properties and have applied it to both a set of textbook examples and to
commercial codes. In the latter, we discovered deficiencies in the test suite, confirmed sets of behaviors that
were intended to hold, and increased confidence in a (proprietary) compiler. Presently, it has an impoverished
notion of scope, and it checks only simple relationships such as “preceeds” and “follows”. We will continue to
extend this work in the next six months.

Research Plan for the Next Six Months

Our research is just beginning to bear fruit, and we will continue to improve the results and extend them into new
directions. We will continue to support the Daikon system and its users, adding functionality and making research
results more broadly available. We will integrate Daikon with the Isabelle theorem-prover, generalizing our
techniques as necessary and producing fully automatic proofs that require no human intervention whatever – not
even to indicate what goal to prove! We will improve our detection of temporal invariants, moving it from a rough
prototype to something that can be run on substantial programs. We will collaborate with Dr. Tadashi Araragi and
Dr. Seung Mo Cho of NTT in their use of the Daikon tool and its applications to theorem-proving, temporal
properties, and other problems. If possible, we will obtain NTT programs in order to analyze them in parallel with
our NTT colleagues.

