Project Overview

• Develop models, analysis and verification methods, and algorithms for distributed systems

• Focus on highly dynamic systems
 - Participants may join and leave the system and may change location
 - Network topology may change
 - Components may fail and recover

• Address the problems of such complex environments
 - By developing formal modeling and analysis techniques based on interacting state machines
 - By developing useful "building blocks" --- definitions of global services and efficient algorithms to implement them
Progress Through December 2002

• Formal modeling and analysis
 - Enhance the front-end of the IOA toolset with static checks related to composition [Garland, Tauber]
 - Design and implement syntactic transformations to expand a composite I/O automaton into an equivalent primitive I/O automaton [Garland, Tauber]
 - Investigate ways to combine executions, dynamic program analysis, and automated deduction for reducing the amount of human interaction required for proving the correctness of distributed systems [Ne Win, Ernst, Garland, Kirli, Lynch]
 - Case studies to evaluate our verification methodology [Ne Win, Ernst, Garland, Kirli, Lynch]
 - An interface between IOA and the Isabelle theorem prover [Luhrs, Ne Win]

• Algorithms for dynamic distributed systems
 - Dynamic Atomic Broadcast algorithm [Bar-Joseph, Keidar, Lynch]
 - RAMBO: Reconfigurable Atomic Memory for Basic Objects [Lynch, Shvartsman]
 - LAN implementations of RAMBO, optimizations for RAMBO [Fan, Gilbert, Fan, Musial et. al.]
 - MultiChord: An algorithm to implement a fault-tolerant overlay network for a dynamically-changing wide-area network [Lynch, Stoica]
 - Algorithms for new environments involving networks of sensors [Lynch et. al.]
 - Performance evaluation of distributed algorithms over the Internet [Bakr, Keidar]
 - Formalization and verification of reliable multicast with caching [Livadas]
Research Plan for the Next Six Months

• Formal modeling and analysis
 - Finish the implementation of static checks related to composition in the IOA front end
 - Finish a prototype implementation of the IOA code generator tool
 - Enhance the preliminary interface to Isabelle, to generate proof tactics appropriate for proofs of invariants and implementation relations
 - Enhance the interface between IOA and Daikon to suggest additional lemmas for use in proofs
 - Enhancements to the IOA language and toolset for specifying and reasoning about timing behavior

• Algorithms for dynamic distributed systems
 - Performance analysis of RAMBO for a larger number of situations
 - Implementations of RAMBO targeted to mobile settings (such as Oxygen) and peer-to-peer settings (such as Chord)
 - Complete simulation and analysis of MultiChord, carry out experiments, and compare the experimental and theoretical results
 - Analyze the correctness and the performance of the LMS-based reliable multicast protocol of Papadopoulos et. al.
 - New algorithms for resource allocation, global snapshots, and leader election in highly dynamic networks