
Threshold PKC

Shafi Goldwasser and

Ran Canetti

 Public Key Encryption [DH]

A PKC consists of 3 PPT algorithms (G,E,D)
 - G(1k) outputs public key e, and
 secret key d
 - E(m, e) outputs cipher text c
 - D(c, e, d) outputs m.

 Public Key: e
 Secret key: d

C

Active Adversary: Standard PKC [RS]

• Chosen Cipher-text Attacks (CCA)

 -Adversary chooses m0 m1

 -Adversary receives c either in E(m0) or E(m1) at random

 -Adversary may ask

 c’ = c

A scheme is secure against CCA if adversary still
cannot tell whether c in E(m0) or in E(m1)
better than 50-50

Decoding
Equipment

c’
m

comes
up in
protocols

Threshold Cryptography [D,DF]

An encryption or digital signature scheme
where :

• Secret key is shared among trustees s.t.
• Trustees can decrypt or sign only if enough

cooperate
• Faulty trustees can’t prevent decryption or

s ignature
• Faulty trustees can be detected if they act up

(optional).

Threshold Public Key Cryptography [DF]
A Threshold PKCn consists of 3 PPT algorithms (G,E,D)
 - G(1k) outputs public key e, and
 shares of secret key d1,...,dn

 - E(m, e) outputs cipher-text c
 - D* = (D1, D2) where D1 (c, di) outputs decryption share dsi
 D2 (c, e, ds1, ..., dsn) outputs m.
 * Interaction maybe allowed between servers and user.

C

Decryption Servers

C

d 1 d 2 dn...

C

dsn

ds1

Public Key: e
Secret Key Shares: di

distributed among servers

Security: Threshold PKC

collaborating with

t servers
adversary

While launching the CCA: the adversary has access to all
the private data of collaborating servers

Say A Threshold Public Key Encryption Scheme is :
t-secure: a coalition of t curious but honest servers +
 adversary cannot break it.
t-robust: a coalition of t faulty servers cannot
 prevent user from decrypting (no denial of
 service).

Previous Work

• Gennaro-Shoup: under the assumption that Random
Oracles exist and the DDH intractability assumption, show
a Threshold PKC which is t-secure and t-robust for t< n/2
against CCA. (No interaction is necessary.)

• Dolev-Dwork-Naor: under the assumption trapdoor
functions exist show single server PKC secure against
CCA. Use NIZK for construction. (Prior [NY] LTA)

• Cramer-Shoup: under the DDH intractability assumption

 show a single server PKC secure against CCA.
Quite Efficient.

New Threshold PKC
• KEY GEN: PK = (g1, g2 , a=g1

x1g2
x2, h= g1

z)

 SK: each decryption server holds a share of
x1,x2,y1,y2,z (using polynomial secret sharing,

 e.g. x1i = X1(i) where X1(0) =x1, deg (X1) = t)

• ENC: Same as in single server case

• DEC(SK,c): Let s be random and S a deg t polynomial s.t

 (u1,u2, e, tag) S(0)=s and each server I has S(i)=si

- Server i computes tagi’ = u1
x1iu2

x2i and sends the user

 gQ(i) = (tag/tagi’)si hzi

 - User combines shares to obtain

 gQ(0) = (tag/tag’)shz and lets m = e/ (tag/tag’)shz
 HOW?

Combine decryption shares by using
Lagrange Interpolation?

• User received for all I ,

 Share i = (tag/tagi’)si hzi = gQ(i) where Q is some

 degree 2t polynomial s.t. Q(0) = (tag/tag’)s hz ,

 and needs gQ(0)

 .
 Lagrange Interpolation: Gives λi s.t Q(0) = Σ λiQ(I) for

 every 2t degree polynomial Q.

• To combine shares, user computes

 Π (Sharei) λi = Π (gQ(i)) λi = g Σ λiQ(I) = gQ(0)

Where do si come from for each decryption ?

1 Servers share in advance random poly’s
S1,…Sk s.t. deg (Sj) = t and Sj(0)=sj . I.e
server i holds sji= Sj(i) for all j, to use for
decrypting jth cipher text.

2 To avoid synchronization errors, servers can
share in advance on a single 2-var polynomial
S(x,y) where S(c,) is as above, I.e server i
holds polynomial S(x, i), and uses si=S(c,I) for
cipher text c.

EVOX 1.0 (current status)
• F.O.O. protocol: practical, scalable elections

• Simple implementation done in Java 1.1

• So far, 2 medium-size elections with relative
success. Issues found:

• Unintuitive user interface

• Low Reliability

• Some relatively obscure security bugs

• Numerous people (including 3 universities)
have expressed interest in using EVOX.

EVOX 2.0 - 3.0 (this year)
• Coming Improvements

• Multiple administrator servers (registrars) and threshold
signature schemes to prevent single corruption point
weakness in F.O.O. protocol.

• Timing improvements through signature and verification
batching (based on scheme by Amos Fiat), or delegation.
Different schemes are currently being analyzed.

• Improved UI, code security analysis, packaging of
system to enable wider use.

• Hoping for wider release of code (possible GPL?)
• Current contributors: Ben Adida, Brandon DuRette, Kevin McDonald

• http://theory.lcs.mit.edu/~cis/voting/voting.html

