Threshold PKC

Shafi Goldwasser and
Ran Canetti

Public Key Encryption [DH]

A PKC consists of 3 PPT algorithms (G,E,D)
- G(1¥) outputs public key e, and
secret key d
- E(m, e) outputs cipher text c
- D(c, e, d) outputs m.

Public Key: e

? f Secret key d

Active Adversary: Standard PKC [RS]

* Chosen Cipher-text Attacks (CCA)
-Adversary chooses m, m,

-Adversary receives c either in E(m,) or E(m,) at random

-Adversary may ask ¢’ , | Decoding
c Fc g .m_|Equipment
\COmGS

A scheme is secure against CCA if adversary stillum® 1
cannot tell whether ¢ in E(my) or in E(m;) [P
better than 50-50 >

Threshold Cryptography [D,DF]

An encryption or digital signature scheme
where:

o Secret key Is shared among trustees s.t.

e Trustees can decrypt or sign only iIf enough
cooperate

e Faulty trustees can't prevent decryption or
signhature

e Faulty trustees can be detected If they act up
(optional).

Threshold Public Key Cryptography [DF]

A Threshold PKC_ consists of 3 PPT algorithms (G,E,D)
- G(1¥) outputs public key e, and
shares of secret key d,,...,d,
- E(m, e) outputs cipher-text ¢
- D*=(D,, D,) where D, (c, d) outputs decryption share ds,
D, (c, e, dsy, ..., ds,) outputs m.
* Interaction maybe allowed between servers and user.

Public Key: e
Secret Key Shares: d,
distributed among servers

Decryption Servers

Security: Threshold PKC
@

X)
collaborating with
- —

adversary

t servers

While launching the CCA: the adversary has access to all
the private data of collaborating servers

Say A Threshold Public Key Encryption Scheme 1s :
t-secure: a coalition of t curious but honest servers +
adversary cannot break it.
t-robust: a coalition of t faulty servers cannot
prevent user from decrypting (no denial of
service).

Previous Work

e Gennaro-Shoup: under the assumption that Random
Oracles exist and the DDH intractability assumption, show

a Threshold PKC which 1s t-secure and t-robust for t<n/2
against CCA. (No interaction is necessary.)

e Dolev-Dwork-Naor: under the assumption trapdoor
functions exist show single server PKC secure against
CCA. Use NIZK for construction. (Prior [NY] LTA)

e Cramer-Shoup: under the DDH intractability assumption

show a single server PKC secure against CCA.
Quite Efficient.

New Threshold PKC

« KEY GEN: PK=(g, g,,a=g g, h=g?

SK: each decryption server holds a share of
X1,X5,Y 1,¥2,Z (using polynomial secret sharing,

e.g. X;; = X,(1) where X,(0) =x,, deg (X,) =t)
 ENC: Same as in single server case

. DE(M: Let s be random and S a deg t polynomial s.t
(u,u,, €, tag) S(0)=s and each server I has S(1)=s;

Server 1 computes tag;’ = u;*u,*? and sends the user

(tag/tag,”)si h7 -

- User combines shares to obtain
- HOW?
gQO))= (tag/tag’)’h* and lets m = e/ (tag/tag’)h?

Combine decryption shares by using
Lagrange Interpolation?

« Userreceived forall I,
Share , = (tag/tag;’)s h% =g where Q is some
degree 2t polynomial s.t. Q(0) =(tag/tag’)*h? ,
and needs g

-
Lagrange Interpolation: Gives A, s.t Q(0) =X A.Q(I) for

every 2t degree polynomial Q.
N /

* To combine shares, user computes
I1(Share,) M =TT (gQW) A= g Z:QM) = gQ)

Where do s; come from for each decryption ?

1 Servers share 1n advance random poly’s
Sp,-.-S s.t. deg (S5;) = tand 5,(0)=s; Le
server 1 holds s;= S;(1) for all j, to use for
decrypting jth cipher text.

2 To avoid synchronization errors, servers can
share 1n advance on a single 2-var polynomial
S(x,y) where S(c,) 1s as above, l.e server1
holds polynomial S(x, 1), and uses s.=S(c,I) for
cipher text c.

EVOX 1.0 (current status)

* F.O.0. protocol: practical, scalable elections
* Simple implementation done 1n Java 1.1

e So far, 2 medium-size elections with relative
success. Issues found:

» Unintuitive user interface
« Low Reliability

» Some relatively obscure security bugs

* Numerous people (including 3 universities)
have expressed interest in using EVOX.

EVOX 2.0 - 3.0 (this year)

* Coming Improvements

e Multiple administrator servers (registrars) and threshold
signature schemes to prevent single corruption point
weakness 1n F.O.O. protocol.

* Timing improvements through signature and verification
batching (based on scheme by Amos Fiat), or delegation.
Different schemes are currently being analyzed.

« Improved UI, code security analysis, packaging of
system to enable wider use.

« Hoping for wider release of code (possible GPL?)
» Current contributors: Ben Adida, Brandon DuRette, Kevin McDonald
 http://theory.lcs.mit.edu/~cis/voting/voting.html

