Image Database Retrieval

9807-NTT03

Progress Report: July 1, 1999–December 31, 1999

Paul Viola

 

Project Overview

In this research project we plan to study and create systems that can scan images and video to locate items of interest. For example, such a system should be able to scan a travel documentary for images of distinct locations and objects, like ``Buddhist temples'', ``gothic cathedrals'', or ``statues on horseback''. We believe that by leveraging our existing work in this area, we can play a key role in setting the standard for research in visual information retrieval. At the same time, this research provides an excellent opportunity for transition to practical applications. We believe that the complementary skills of MIT and NTT are well suited for pursuing this dual path of developing practical applications of image indexing in conjunction with fundamental progress in associated science and engineering.

Progress Through December 1999

We have made progress on several problems related to the core goals of the Image Database retrieval problems:

We believe that this approach is actually quite general and will allow us to detect more complex patterns, such as the appearance of the human body. This problem is very hard because of the variety of poses that the human body can assume. Faces and people are a critical aspect of image databases.

We have created a mechanism of computing features of this type called "Complex Features". A retrieval system based on this insight works much better than previous systems. The algorithms for constructed this feature set, and the query system itself, is computationally efficient.

We have constructed a system that can automatically interpret mathematical expressions in such documents. This provides a new mechanism for searching technical documents. Based on the same ideas we have built an interactive handwritten mathematical expression recognizer. The system provides a friendly and intuitive interface for the entry of mathematical expressions.

 

New Results since July 1999

 

Research Plan for the Next Six Months