
Cooperative Computing in Dynamic Environments
MIT9904-12

Progress Report: July 1, 1999—December 31, 1999

 Prof. Nancy Lynch and Dr. Idit Keidar

Project Overview

The Theory of Distributed Systems research group at MIT, led by Prof. Nancy
Lynch, is working with the Cooperative Computing group at NTT on developing models
and analysis methods for distributed systems, with a focus on cooperative group
activities in networks. Such group activities range from human social activities
in cyber communities to powerful distributed applications involving
data sharing and cooperative work. These activities are often supported by agent
communication services, which provide distributed intelligence, or by group
communication services, which manage group membership and guarantee coherent
communication. The environments in which such activities take place are highly
dynamic: participants come and go (and change location), network topology changes,
and components fail and recover. Coping with such difficult environments leads to
complex implementations, which are difficult to build, understand, and analyze.

This project addresses these problems using formal modeling and verification
techniques, in particular, a combination of Input/Output automaton methods used at
MIT and process algebraic and knowledge-based methods used at NTT. This involves
extensions to the existing techniques, for example, extending I/O automata to allow
dynamic process creation and destruction. As the basic framework is developed, it
is being applied to a collection of typical examples from cooperative computing
applications, including computer-supported cooperative work, e-commerce, and
distributed databases. Other issues being studied include analysis of performance
and fault-tolerance properties, and connecting the formal models with actual
runnable code.

Progress Through December 1999

2.1: Agents

We have developed a new dynamic I/O automaton (DIOA) model, which extends the I/O
automaton model to allow automaton creation and destruction.

Working with NTT researchers Kogure, Mano, and Araragi, we have been carrying out a
comparative case study for three formal methods for specifying and reasoning about
agent programs. The case study involves a simple travel agent example.
The methods used are: knowledge-based programming, a process algebraic method, and
the new dynamic I/O automaton model [1].

2.2: Group communication

In the past six months we have continued our efforts in the area of group
communication systems, focusing on modeling and on designing new algorithms for
group communication systems in wide area networks.

In [2] we provide a comprehensive set of clear and rigorous specifications, which
may be combined to represent the guarantees of most existing GCSs. In the light of

these specifications, over thirty published GCS specifications are surveyed. Thus,
the specifications serve as a unifying framework for the classification, analysis
and comparison of group communication systems. The survey also discusses over a
dozen different applications of group communication systems, shedding light on the
usefulness of the presented specifications.

In [3] we present a formal design for a novel group multicast service that provides
virtually synchronous semantics in asynchronous fault-prone environments. The
design employs a client-server architecture in which group membership is maintained
not by every process but only by dedicated membership servers, while virtually
synchronous group multicast is implemented by service end-points running at the
clients.

Specifically, [3] defines service semantics for the client-server interface, that
is, for the group membership service. This interface does not impose restrictions
on the membership service's choice of views. The paper then specifies virtually
synchronous semantics for the new group multicast service, as a collection of
commonly used safety and liveness properties. Finally, the paper presents new
algorithms that use the defined group membership service to implement the specified
properties. The algorithm that provides the complete virtually synchronous
semantics executes in a single message round in parallel with the membership
service's agreement on views, and is therefore more efficient than previously
suggested algorithms providing such semantics.

In [4], we describe a novel scalable group membership algorithm which complements
the above virtually synchronous group communication service, and satisfies the
specifications of the group membership service in [3]. Our membership service does
not evolve from existing LAN-oriented membership services; it was designed
explicitly for WANs. Our membership service is scalable in the number of groups
supported, in the number of members in each group, and in the topology each group
spans. Our service also supplies the hooks needed to provide clients with full
virtual synchrony semantics.

Our service attains, on average, a low message overhead by agreeing on membership
within a single message round. It avoids flooding the network and uses a scalable
failure detection service designed for WANs. Furthermore, our service avoids
notifying the application of obsolete membership views when the network is
unstable, yet it converges when the network has stabilized. In contrast to most
group membership services, we separate membership maintenance from reliable
communication in multicast groups: membership is not maintained by every process,
but only by dedicated servers.

We have also produced a new type of group-oriented communication service, a
"dynamic configuration" service [5].

Research Plan for the Next Six Months

We will continue our work on the travel agent case study by stating correctness and
performance properties and carrying out formal analyses. We hope to present this
work at a NASA workshop in early April. We will evaluate and compare the three
methods used, and consider how they might be combined.

We will develop the dynamic I/O automaton (DIOA) model further. In particular, we
will try to introduce other considerations such as timing-dependence and liveness
into the model. We will attempt to identify proof methods for this model that work
well in practice, and formalize these as proof rules. We will develop a stylized
way of modeling mobility within the DIOA model.

We will continue our agent programming case study work by modeling and
analyzing another agent system, most likely the Norwegian Army

Protocol of [6]. This case study introduces considerations of failures,
distribution, and mobility that were not present in our earlier example.
We may also consider introducing such considerations into the travel agent example.

We also plan to continue the research described above on group communication,
focusing on implementation of the algorithms. We intend to introduce optimizations
to the algorithms to achieve better performance. We also intend to finalize journal
versions of the papers [3,2].

Our work on group communication services is aimed at providing middleware support
for WAN applications that require a certain degree of consistency, mainly
collaborative computing applications such as drawing on a shared white-board or a
shared text editor. In the coming months, we intend to study alternative
approaches to building middleware support for similar applications.

One such approach can be providing totally ordered multicast services that preserve
Quality of Service (QoS). We are now starting to study the QoS guarantees of
totally ordered multicast algorithms. We intend to consider two reservation models:
constant bit rate (CBR) and variable bit rate (VBR). Preliminary results show that
for these models, we can construct totally ordered multicast algorithms that
preserve the bandwidth and latency reserved by the application within certain
additive constants. Furthermore, we believe that we can tolerate message loss (in
which case, there can be gaps in the total order) and allow for dynamic joining and
leaving of processes while still preserving the QoS guarantees.

References

1. Tadashi Araragi, Paul Attie, Idit Keidar, Kiyoshi Kogure, Victor Luchangco,
Nancy Lynch, and Ken Mano. On Formal Modeling of Agent Computations. Unpublished.

2. Roman Vitenberg, Idit Keidar, Gregory~V. Chockler, and Danny Dolev. Group
communication specifications: A comprehensive study. Technical Report MIT-LCS-TR-
790, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, September 1999.

3. Idit Keidar and Roger Khazan. A client-server approach to virtually
synchronous group multicast: Specifications and algorithms. In 20th International
Conference on Distributed Computing Systems (ICDCS), April 2000.
To appear. Full version: MIT Lab. for Computer Science Tech. Report MIT-LCS-TR-794.

4. I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A Client-Server Oriented
Algorithm for Virtually Synchronous Group Membership in WANs. In 20th
International Conference on Distributed Computing Systems (ICDCS), April 2000. To
appear. Full version: MIT Technical Memorandum MIT-LCS-TM-593.

5. Roberto DePrisco. On Building Blocks for Distributed Systems.
PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, 1999.

6. Dag Johansen, Keith Marzullo, Fred B. Schneider, Kjetil Jacobsen, and Dmitrii
Zagorodnov. NAP: Practical Fault-Tolerance for Itinerant Computations. In
Proceedings of the 19th IEEE International Conference on Distributed Computing
Systems (ICDCS'99). Initial submission available as, Technical Report TR98-1716,
Department of Computer Science, Cornell University, USA, November 8, 1998.

